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1. ABSTRACT

Healthy individuals live in peaceful co-existence
with an immense load of intestinal bacteria. This symbiosis
is advantageous for both the host and the bacteria. For the
host it provides access to otherwise undigestible nutrients
and colonization resistance against pathogens. In return the
bacteria receive an excellent nutrient habitat. The mucosal
immune adaptations to the presence of this commensal
intestinal microflora are manifold. Although bacterial
colonization has clear systemic consequences, such as
maturation of the immune system, it is striking that the
mutualistic adaptive (T and B cells) and innate immune
responses are precisely compartmentalized to the mucosal
immune system. Here we summarize the mechanisms of
mucosal immune compartmentalization and its importance
for a healthy host-microbiota mutualism.
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2. INTRODUCTION

The lower intestine is a habitat for one of the
highest densities of microbial consortia on the planet
(1). An enduring question is exactly how this load of
microbes (reaching 10'? organisms/g of intestinal
contents) can be accommodated without damaging the
host, given that the barrier between the lumen of the
intestine and host tissues is composed of a simple
epithelial layer, one cell thick. It is clear that although
commensal microbes generally lack pathogenicity genes
that characterise pathogens, which encode for proteins
that facilitate adhesion, penetration of the epithelium,
facultative persistence within host cells or toxin
formation, they do share prokaryotic molecular patterns
that are powerful activators of the innate immune
system.
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Table 1. Comparison of Ulcerative Colitis and Crohn’s

disease'
Characteristic Ulcerative Colitis Crohn’s disease
Site of disease Colon Colon (2/3), Ileum
(proctosigmoiditis, left- | (2/3), infrequent in

sided colitis, pancolitis,
backwash colitis)

jejunum and duodenum

pseudopolyps, shortened
colon, rectum involved,

Clinical Fever, abdominal pain, | Fever, abdominal pain,

Features bloody diarrhea, weight | diarrhea, weight loss,
loss fatigue

Intestinal Strictures absent, fistulas | Strictures present

Complications absent, punctate ulcers, | (fibrotic and stenotic),

fissures and fistulas
common, deep ulcers,

perianal disease absent cobblestone
appearance,  perianal
disease
Inflammation Primarily mucosal, | Transmural, crypt
cryptitis, crypt abscess, | abscess, granulomas,
granulomas absent, | associated with IL-
associated with IL-13 12/IL-23  and IFN-
gamma/IL-17
production

IThis table was created based on references (39, 40).

This question of how commensal microbial
mutualism with the host is induced and maintained is also
medically important for several reasons. First, about 2 in
every 1000 people in industrialised countries suffer from
inflammatory bowel disease (IBD) (2). This can manifest in
two forms — ulcerative colitis (UC) and Crohn’s disease.
Table 1 provides an overview of the major differences in
immunity between UC and Crohn’s disease. Both probably
depend on abnormal mucosal immune responsiveness to
commensal intestinal microbes: the evidence for a
dysregulated handling of intestinal commensals in Crohn’s
disease is particularly strong on the basis of clinical data
(3), the genes that give a genetic susceptibility in the
human population (4-6) and animal models of the disease
(Table 2). Secondly, many infections in
immunocompromised patients, such as in individuals
treated with chemotherapy, are from commensal intestinal
bacteria.

In this review we will focus on the
compartmentalisation of the immune system in responding
and adapting to the presence of commensal intestinal
microbes with an emphasis on the induction of IgA against
commensals as a method of dissecting host-microbial
immune mechanisms. Because of the ability to precisely
control and manipulate the intestinal microflora in mouse
models, the majority of the data discussed here is derived
from animal studies. However, where data is available we
have added evidence from human studies.

3. ADAPTATION OF THE HOST TO THE
COLONISATION OF THE INTESTINE WITH A
COMMENSAL MICROBIOTA

The gut is a tube from mouth to anus, so luminal
bacteria are not, strictly speaking, inside the body tissues.
The evidence that the host has to adapt to the presence of
the commensal intestinal microbes comes from studies that
have compared germ-free animals with the same animal
strain colonised with intestinal bacteria. An alternative
approach is to follow the changes in host immunity and
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other body systems, as intestinal bacteria are introduced to
germ-free animals (7).

Germ-free rodents were first derived nearly a
century ago, stimulated by the question of whether animal
life was possible in the absence of commensal microbes
(8). Initially rodents were delivered aseptically and hand
reared for short periods: later it became possible to
interbreed the germ-free adults, and this is now standard
technology (7, 9-11). Because in vivo experiments are easy
with mice and many different genetic backgrounds and
targeted genetic lesions are available, most germ-free
experimentation is with this species. Today, it is convenient
to maintain strains in plastic flexible film isolators,
introducing sterile food, water and bedding from a
sterilised drum connected to the isolator with a plastic
sleeve. The inside of the sleeve is sterilised with a 2%
peracetic acid mist before the inner door of the isolator is
opened and the seal of the drum is broken to access the
sterilised contents (7). Although some units still use aseptic
Caesarian section to re-derive different genetic strains of
mice germ-free, this is a cumbersome and unreliable
procedure compared with aseptic embryo transfer into
germ-free pseudopregnant females, which then deliver and
foster the pups (7).

There are enormous differences between germ-
free mice and their colonised counterparts in almost every
body system (7). Immunity of the gut is shaped by the
introduction of intestinal commensal bacteria through
increase in the cellularity and organisation of secondary
lymphoid structure of the gut (Peyer’s patches and isolated
lymphoid follicles) and systemic immune system (spleen,
lymph nodes), the induction and secretion of IgA from
intestinal lamina propria plasma cells, increase in the
content of lamina propria CD4 T cells, and general increase
in serum immunoglobulin levels, especially the IgG
isotypes (12-14). Paradoxically, IgE levels are abnormally
high in germ-free mice and are decreased when the animals
become colonised with commensal intestinal bacteria (15).

It is clear from the manifold changes in immunity
and other body systems as the intestines of germ-free
animals become colonised, that mammals adapt to the
presence of commensal intestinal bacteria (14). We assume
that these adaptations are functionally relevant, although
this is still a developing area as discussed below.

4. UNCOUPLED MUCOSAL AND SYSTEMIC
IMMUNE RESPONSES TO COMMENSAL
INTESTINAL MICROBES

If pathogens are eliminated from colonies of mice (so they
are designated ‘specific pathogen free’ or SPF) they still
have a commensal intestinal microbiota. Such SPF mice
mount a strong mucosal response to their intestinal
commensals, manifested by the secretion of specific
intestinal IgA across the mucosa, but the systemic immune
system remains ignorant of these intestinal microbes and no
specific serum antibodies or T cells are induced (16, 17).
This ‘ignorance’ of the systemic immune system can easily
be broken experimentally by injecting a
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Table 2. Animal models of IBD versus human IBD

Defect

Epithelial integrity/enteric glia

Mouse Models Area involved Abnormality Flora-dependence Relationship to human IBD
Trefoil factor deficiency Colon Colitis induced with DSS' Unknown Role in mucosal healing (42)
“4D

Ablation of enteric Glia Fulminant Jejuno- Severe inflammation and Unknown Potential role of glial-derived

(43)

Tleitis

intraluminal hemorrhage

neurotrophic factor in human
IBD (44)

Multiple drug resistance
gene la (Mdrla)-deficient

Colon

Spontaneous colitis.
Dysfunctional intestinal

Colitis absent in
germ-free Mdrla™

Association between
polymorphism in MDR1 gene

mice (45, 46) epithelium rather than mice (47) and ulcerative colitis (48)
altered lymphocyte function.

Galphai2-deficient mice Entire colon Increased Thl-driven Unknown Potential model for Ulcerative

(49, 50) inflammation colitis

Dominant negative N- Small bowel Epithelial barrier defect Unknown Potential model for Crohn’s

cadherin mutant Tg cecum disease
mice(51)
DSS administration (52) Colon Direct effect on the gut Germ-free mice Potential model for Ulcerative
epithelium. susceptible to DSS colitis
Colitis induced in T- and B- damage (54, 55)
cell deficient mice (53). Alleviated intestinal
Model for innate immune inflammation after
mechanisms antibiotic treatment.
TNBS? administration Colon Th1-mediated colitis Alleviated intestinal Potential model for Crohn’s

(56)

(small intestine?)

inflammation after
antibiotic treatment.

disease

Muc2 deficient mice (57- Colon Microscopic evidence of Unknown Muc?2 is prominent colonic mucin
59) colitis as early as 5 weeks of expressed in UC (60) and
age. expression may be altered in IBD
More susceptible to DSS (61-63)
colitis
Chloride channel CLC-5 Colon More susceptible to DSS Unknown Clc-5 is down-regulated in
(Clen5)-deficient mice colitis. sigmoid mucosal biopsies of most

(64)

Heightened Th1-Th17
cytokine profile after DSS

patients with active UC (65)

Keratin-8-deficient mice

(66, 67)

Cecum, colon

Chronic spontaneous Th2
colitis

Amenable to
antibiotic treatment

KRTS variants were not found to

be overexpressed in familial IBD
but potential role in sporadic IBD
was not ruled out (68)

Innate immune cell function

Antigen presentation

Stat3 deficient
macrophages and
neutrophils (69)

Cecum, colon

Spontaneous enterocolitis,
dependent on IL-12p40,
defective IL-10 production

Reduced
inflammation in
TLR-4" or MyD88™

Model of Crohn’s disease

(70)
A20 deficiency (71) Multiple organs T- and B-cell independent Unknown Butyrate -mediated
colon downregulation of IL-8 in human
intestinal epithelial cells may be
mediated through A20 (72)
T-bet deficiency in the Colon T-bet™xRag2” develop Transfer of Anti-TNF-alpha is a therapy to
innate immune system spontaneous colitis, colonic microbiota from treat IBD
(73) dendritic cells over produce afflicted mice causes
TNF-alpha, anti-TNFalpha intestinal
therapy prevented colitis inflammation in
wild-type mice
TLRS5 deficient mice (74) Colon Spontaneous colitis, Alterations in gut Dominant-negative TLRS

increased proinflammatory
cytokines

microflora observed,
colitis dependent on
TLR-4 and
ameliorated by
antibiotic treatment

polymorphism negatively
associates with Crohn’s disease
(75)

NOD?2 deficiency (exon

1) (76)

No spontaneous
colitis

Th1-mediated colitis
induced to microbial antigen
(77,78)

TLR-2-dependent

NOD2 deficiency (exon

3)(79)

No spontaneous
colitis

More susceptible to bacterial
infection via oral route.
Not more susceptible to DSS

Reduced cryptadins
in NOD2™" mice.
Altered regulation of
commensal flora in
NOD2™" mice and
decreased expression
of NOD2 under
germ-free conditions
(80)

NOD2%** mutant (81)

No spontaneous
colitis

Increased susceptibility to
DSS, elevated IkB kinase
and caspase-1 in response to
muramyl dipeptide

Unknown

Mutations in CARDI1S5, the gene
encoding NOD2, found to be a
major susceptibility factor in
Crohn’s disease (4-6)
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HLA-B27/human
beta2microglobulin
transgenic rats (82-84)

Entire intestine
Other organs

Increased macrophage and
lymphocyte infiltration in
colon, increased pro-
inflammatory cytokines and

No colitis in germ-
free conditions

HLA-B27 association with
Crohn’s disease (85, 86)

Cytokines/immune regulation

myeloperoxidase
TNF D*** mice (TNF Multiple organs, Ileitis depends on presence Unknown Blockade of TNF-alpha
over production) (87, 88) terminal ileum, of lymphocytes, therapeutic in human IBD
proximal colon milder disease in the
absence of IL-12p40 or IFN-
gamma
IL-7 Tg mice (89) Colon CD4" T cell-mediated. IL-7R" CD4* IL-7 receptor has been identified

Long-lived colitogenic
CD4" memory T cells
express IL-7R

colitogenic T cells
transferred in germ-
free mice do not
drive colitis unless
commensal bacteria
introduced (90)

as a risk loci for ulcerative colitis

(C2))

TGF-betal deficient mice
92)

Multiple organs

Aberrant immunoregulation,
CD4 T cell-mediated

Absence of colitis
(and cancer) in

TGF-beta negatively controls
inflammatory pathways in the

germ-free TGF- human gut (94), expression is
betal/Rag2™"- increased in human IBD but
deficient mice (93) Smad signaling pathway impaired
5)
CD4-dnTGFbeta RII Multiple organs Aberrant immunoregulation Activated CD4" T As above
transgenic mice (CD4 T including colon when CD4" T cells cannot cells in T cell
cell-specific expression of respond to TGF-beta transfer model of
dominant negative TGF- colitis escape control
betal receptor II) (96) by regulatory T cells
(1)
Intestinal Trefoil factor No spontaneous Increased susceptibility to Unknown As above
(ITF)-dnTGFbeta RII colitis DSS-induced colitis
transgenic mice
(Intestine-specific
expression of dominant
negative TGF-betal
receptor 1I) (98)
IL-10 deficiency (99) Cecum, colon Aberrant immunoregulation, | Attenuated by IL-10 decreased in severe cases
(small intestine?) Th1 mediated disease, antibiotic treatment of UC and CD (103, 104). No
T cell-derived IL-10 (100) consistent association of /L-10
important Absent in germ-free promoter polymorphisms and
(101) IBD susceptibility, strong
Absent in IL- association of polymorphism

10/MyD88-double-
deficient mice (102)

downstream of /L-10 gene and
susceptibility to UC (105) and
CD (106, 107). Loss-of-function
mutations in /L-10R results in CD
(108)

IL-2 deficiency (109)

Cecum, colon

Aberrant immuno-regulation
(Thl)

Reduced
inflammation in
germ-free (110, 111)

Polymorphism in /L-2 associated
with UC (91).

IL-2Ralpha deficient
(112)

Cecum, colon

Aberrant immuno-regulation
(Thl)

Probably

Polymorphism in /L-2RA
identified as susceptibility loci in
CD (107).

T cells/immune regulation

NFkB p50 deficiency Cecum and colon Increased Th1 cytokines Inflammation NFkappaB activation likely
(113) dependent on involved in human IBD (114)
presence of
Helicobacter
Gp39 (CD40L) transgenic | Colon, small Aberrant immunoregulation Unknown Increased soluble CD40L in

mice (115)

bowel, other
organs

Crohn’s disease, potential marker
for intestinal inflammation (116)

TCRalpha chain deficient
(117, 118)

Cecum, colon

Aberrant Th2-type T cells.

No inflammation in
germ-free mice or
mice with a limited
intestinal flora (119)

Some characteristics similar to
human ulcerative colitis

Tg 26e mice (human
CD3epsilon transgenic)
(120)

Cecum, colon

Abnormal T cell
development

Dependent on
continuous
stimulation by
luminal bacteria
(121

Some characteristics similar to
human ulcerative colitis

Stat4 tg mice (122)

Colon, Ileum

Th1-mediated

Unknown

Stat4 is involved in IL-12/IL-23
receptor signaling

CD4 CD45RB™ T cell
transfer into lymphopenic
host (123)

Cecum, colon

T cell-mediated
inflammation (Th1)

No or severely
reduced
inflammation in
antibiotic treated or
germ-free recipient
SCID mice

Altered immunity to enteric flora

Oxazalone administration
(124)

Colon

Th2-mediated

Potential model for ulcerative
colitis
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costimulation (132)

Wiskott-Aldrich Colon CD4+ T cell-mediated, Th2 Spontaneous colitis Some patients with Wiskott-
Syndrome protein cytokine predominance, and requires presence of Aldrich syndrome develop IBD
(WASP) deficiency (125) abnormal T regulatory Helicobacter (129) (130, 131)

induction (126-128)
Altered B-7-mediated Colon Soluble B7-2 Fc transgenic Unknown CTLA-4 blockade as treatment

mice develop chronic colitis,
altered activation of CD4 T

for melanoma has led to
development of colitis in some

cells. patients (133)
C3H/HeJBir mice (134) Cecum, colon CD4" T cells transfer colitis Serum IgG reactivity | Illustrates genetic risk factors in
to scid recipients (135) (136) and CD4" T humans

cells specificity to
antigens from
intestinal bacteria
(135). Reduced
colitis in SPF
conditions (137)

Samp1/Yit mice (138,
139)

Ileum

Undefined genetic models

One of the few models with
severe inflammation in the

terminal ileum.
Th-1-mediated

Reduced (but not
absent) inflammation
in germ-free

Peroxisome proliferator-activated
receptor gamma (PPAR-gamma)
is a susceptibility gene in both
Samp1/Yit mice and human
Crohn’s disease (140)

Abbreviations: Dextran sulfate sodium’, trinitrobenzene sulfonic acid®

single dose of a commensal bacteria prepared from pure
culture into the tail vein and measuring the appearance of a
specific antibody response approximately 14 days later

(16).

This shows experimentally that, in unmanipulated
SPF animals containing a microbiota, the mucosal immune
system mounts responses against commensal microbes
quite independently of the systemic immune system (16,
17). As one might expect, the systemic immune system
can very easily mount a response provided that the
microbes reach systemic secondary lymphoid structures
in sufficient numbers (16, 18). In other words immune
compartmentalisation is responsible for mutualism with
commensal microbes, and there is little or no evidence
for systemic immune tolerance (19).

We have recently been able to refine the way
in which antibacterial antibodies are detected. Earlier
methods of using Western blots of bacterial lysates or
binding whole bacteria to plastic and then using enzyme
linked (ELISA) methods to detect bound antibodies
detect non species-specific binding (16). Although these
antibodies are probably functionally relevant, they are
presumably of relatively low affinity against bacterial
epitopes. Using a flow-cytometric (FACS) assay, we have
been able to detect antibodies bound to bacteria with high
specificity, for example although Salmonella and
Escherichia coli are closely related bacterial species,
antibodies raised by priming with the different organisms in
vivo do not cross-react in the FACS assay (18).

A further advance has been the ability to use
genetically modified bacteria containing auxotrophic
mutations for synthesis pathways of bacterial
compounds that are not found in eukaryotes. These
bacteria (HA107) can be grown in culture in the lab
(with media containing the appropriate chemical
supplements), but they cannot survive in animals, so
germ-free mice can be exposed to these bacteria and
become germ-free again after about 72 hours (20). This has
allowed us to study induction of commensal intestinal
immune responses in germ-free animals uncoupled from
colonisation.
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Germ-free mice treated with E.coli HA107, that
become germ-free again, develop a specific intestinal IgA
response against HA107 that is extremely long lasting (>16
weeks) even though the exposure to live bacteria is very
short (72 hours). This shows, in a clean experimental
system, that the anti-commensal IgA response in the
intestine is very specific (20).

The HA107 tool has also allowed us to show that
the threshold for an IgA response in the intestine is very
high (>10° organisms are required for experimental
induction) and does not show the prime-boost memory
effect that is characteristic of systemic immune priming.
Indeed the overall anti-commensal IgA response is rather
an integral of the total amount of bacterial exposure. This
suggests that in this system memory seems to be achieved
by persistence of the IgA response, which will eventually
be displaced when a new IgA response is induced to a
different intestinal commensal (20).

5. THE MUCOSAL IMMUNE FIREWALL

Since there is a separation of mucosal and
systemic immune responses to commensals, the question of
the mechanism of how a mucosal response to commensals
can be induced in the absence of a systemic response arises.
We, and others, have shown that intestinal dendritic cells
(DC) sample commensal bacteria at the mucosal surface
(21, 22). The small intestine is thought to contain two main
types of DC distinguished by the expression of CD103
(also known as alphag-integrin) (reviewed in 23). The
CD103" DC subset is thought to be conditioned by factors
in the intestinal microenvironment, such as TGF-beta,
retinoic acid, microbial antigens, and IL-10, and then
migrate via C-C chemokine receptor type 7 (CCR7) to the
mesenteric lymph nodes (MLN) where they can promote
regulatory T cell development and induction of CCR9 and
alphadbeta7 expression on T cells (24-26). This population
also seems to be conserved between mouse and man (27).
In contrast, the CD103" DC population has been implicated
in T helper 17 (Th17) cell induction (28) and expresses
CX3C chemokine recptor 1 (CX;CR1), which allows them
to extend dendrites between the tight junctions of the
intestinal epithelial cells and sample microorganisms (21,
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vein
/

Caecum
leading into
colon

\
Small intestine

Thoracic duct
joins blood-stream
at the left subclavian

Mesenteric
lymphatics

After surgery to
disconnect two

small intestinal loops
and rejoin the main

intestine at points xx
e

Two intestinal
loops opening
onto the skin

d

The intestinal
lymphatics (and blood
vessels) are not cut
at surgery

Figure 1. Isolated intestinal loops retain mesenteric lymphatics and blood vessels but are surgically disconnected from the rest of
the small intestine. The anatomy of the intestine is shown on the left, with the mesenteric lymphatics and lymph nodes in yellow.
Two segments of the small intestine are surgically disconnected from the main small intestine and brought out to the skin with
external stoma, as shown on the right. The main small intestine is reanastomosed at the two sections indicated by the red XX.

29). DC can also capture microorganisms that transcytose
through specialized M cells in the follicle-associated
epithelium of the Peyer’s patches (reviewed in 30).
Sampling of the commensal microflora occurs across the
length of the small intestine under steady-state conditions
but may increase, especially in the terminal ileum,
following infection with pathogenic bacteria (29, 31).
Compared with other host phagocytes, DC have rather poor
biocidal activity so the live bacteria are retained for up to
several days. The bacterially-loaded DC are capable of
inducing IgA B cells and can migrate to reach the MLN but
do not penetrate beyond the MLN to reach central body
tissues. This means that induction of mucosal immunity by
commensals is largely restricted to mucosal inductive sites
in animals, provided that the immune system is functioning
normally (22).

Of course the restriction of immune induction
against commensals to mucosal secondary lymphoid
structures does not preclude dissemination of the response
across the mucosal immune system, because induced B and
T cells recirculate through the lymph to the thoracic duct,
where they join the blood stream and home back to
mucosal tissues (32, 33). It is important for this
recirculation that the induced lymphocytes are programmed
to express the necessary homing receptors. Induction of
CCR9 and alphadbeta7 on intestinal B and T cells is
triggered through constitutive expression of retinoic acid by
intestinal dendritic cells (34).

Commensal bacteria (and presumably other elements
of the intestinal commensal microbiota) are efficiently
phagocytosed. There are several lines of evidence for this.
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1. It has been shown that intestinal bacterial pathogens
(such as Salmonella, Shigella and Yersinia) frequently
employ mechanisms to subvert entry into, or they trigger
mechanisms of biocidal compartments of phagocytes, in
order to maintain a facultative intracellular existence (35,
36). Since such subversion is required for pathogenicity, it
follows that non-pathogenic commensals that penetrate
mucosal defences allow themselves to be killed by
phagocytes as a part of host-microbial mutualism.

2. When biocidal mechanisms of phagocytes are
experimentally rendered deficient as a result of genetic
manipulation in mice, the consequence is a severe
phenotype with a susceptibility to fatal sepsis from
intestinal commensals that starts soon after weaning (37).

3. In experiments with isolated intestinal loops, we
asked whether commensal bacteria could penetrate to the
mesenteric lymph nodes in a free state, or whether they had
to be carried there contained within intestinal dendritic cells
(22). The experimental setup is shown in Figure 1. Two
segments of small intestine were disconnected surgically,
without disturbing the lymphatic or vascular supply, and
the main small intestine was reanastomosed at the positions
marked “xx” to restore continuity. The disconnected small
intestinal loops were brought out onto the skin with
external stomas (although the loops are shown close
together on the diagram for convenience, in fact they were
constructed on separate sides of the abdominal wall). We
then pulsed one loop with a commensal (Enterobacter
cloacae) carrying a naladixic acid antibiotic resistance, and
the other loops with Enterobacter cloacae carrying
rifampicin resistance. After 18 hours the dendritic cells
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were plated out at single cell density from disaggregated
mesenteric leukocytes. Our reasoning was that if the free
bacteria penetrated through the lymphatics some DCs
would contain bacteria carrying both resistances. On the
other hand, if the bacteria were exclusively taken up by DC
at the mucosal surface and then carried to the mesenteric
lymph nodes, because the bacterial exposure is in separate
loops each with a different bacterial resistance, DC in the
mesenteric lymph nodes would only carry Enterobacter
cloacae containing one antibiotic resistance. This latter
situation turned out to be the case. As a control the antibiotic
resistant preparations were mixed and put into one or both
loops, when mesenteric DC then contained bacteria with both
antibiotic markers (22).

In one sense, therefore, the mesenteric lymph nodes are
an immunological firewall that protects the systemic immune
system from unnecessary exposure to commensals. The system
works because microbes are very efficiently phagocytosed: in
most cases they will be killed by macrophages or neutrophils,
but some can persist in intestinal DC to assist in the induction
of anti-commensal immunity. These DC have a relatively short
lifespan, and are arrested within the mesenteric lymph nodes:
presumably the live commensal bacteria that are released from
effete DC in the mesenteric lymph nodes are rapidly destroyed
by biocidal activity from the abundant numbers of
macrophages present. Since sepsis from commensal
bacteria would be potentially serious (for example mastitis
in breast-feeding mothers) it is better to have mucosal
immune responses that are characterised by distinct
immune geography, rather than any system of immune
tolerance to these organisms.

6. THE ROLE OF INNATE IMMUNITY IN
MUTUALISM WITH INTESTINAL MICROBES

We have described how the normal immune
system is able to compartmentalise responses to commensal
intestinal microbes with induction within secondary
lymphoid tissues of the gut. Three levels of indirect
evidence were cited above to show that biocidal activity of
the innate immune system is an important part of this
compartmentalization.

In fact, it is experimentally possible to allow
breaches in the mesenteric lymph node firewall, by
surgically removing the mesenteric lymph nodes.
Following this operation, the mesenteric lymphatics
spontaneously heal and reanastomose, so that the continuity
of lymphatic draining is restored within a few weeks: this
can be shown by gavaging the animal with olive oil,
following which lymphatics appear a (continuous) brilliant
white from the micelle emulsion of fat digestion. Whereas
central secondary lymphoid structures, such as the spleen,
remain sterile when wild-type mice are treated with
intestinal doses of commensal bacteria, mice without
mesenteric lymph nodes lose this protection and live
commensals can be cultured from the spleen. Breaking the
firewall also has functional consequences. Mice without
mesenteric lymph nodes develop extreme splenomegaly,
lymphadenopathy and skin acanthosis during these
experiments (22).
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Another approach to looking at the importance of
innate immunity in providing the immune mutualism with
commensal intestinal microbes was to study the effect of
mice deficient in both myeloid differentiation primary
response gene 88 (MyD88) and TIR-domain-containing
adapter-inducing interferon-beta (TRIF) adaptor molecules,
which in turn results in deficient Toll-like receptor (TLR)
signaling (38). These MyD88/TRIF double deficient mice
are hard to breed in normal animal vivaria, but we found
that they were very stable once re-derived germ-free (18).
We found that when these MyD88/TRIF deficient mice
were colonised with a limited (“modified Schaedler”)
microbiota, containing only 8 culturable bacteria, unlike
heterozygous littermates, they spontaneously developed
serum IgG antibody responses to the organisms in their
commensal microbiota (18). This could be reproduced with
a monocolonisation, so it was not a function of particular
bacterial species present.

The reason for an abnormal systemic immune
response in the face of a MyD88/TRIF double lesion, is
that immune phagocytes are poor at killing commensals.
This was shown by persistence of commensals following
intravenous injection. Moreover, when doses of
commensals were gavaged into MyD88/TRIF double
deficient mice culturable bacteria can be recovered from
the spleen: this is not due to a barrier defect, as
measurements of intestinal permeability ex vivo in Ussing
chambers or the extent of serum protein loss into the
intestinal lumen in vivo were normal. Indeed when we
directly studied mice deficient in the Phox enzyme required
to produce superoxide radicals as part of the lysosome
biocidal mechanism, the same systemic immune response
to the commensal microbiota was seen (18).

These abnormalities in host-intestinal microbial
mutualism in the face of severe innate immune defects
show us two things.

1. Innate immunity is an essential requirement for
the handling of commensal organisms. It is inevitable that
some of these microbes should penetrate the extremely thin
epithelial layer; indeed they need to do so in order to
induce host mucosal immunity as part of the mutualism
process. Biocidal mechanisms of macrophages are very
likely to be crucial in mopping up commensal microbes
that penetrate the barrier, or in eliminating microbes that
are released live from effete dendritic cells.

2. The fact that there is a systemic antibody
response suggested that the innate and adaptive immune
systems work as a continuum in host microbial mutualism.
This point was addressed experimentally by breeding a
MyD88 deficient murine strain that also carries a deletion
of the J segments of the immunoglobulin heavy chain locus
(Ju7), so it cannot produce antibody of any isotype. The
MyDS88 lesion was chosen in these experiments as it was
known to exert most of the phenotype of the MyD88/TRIF
double deficient strain (18). Under germ-free conditions the
MyD88, Ji;" mice bred well and matured normally, but
when colonised with an altered Schaedler microbiota the
offspring commonly died in the neonatal period, and those
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that survived to weaning had a severe growth defect
indicating that specific serum anticommensal antibodies
can partially compensate for defective innate immune
mechanisms.

7. CONCLUSIONS

This review has concentrated on the different
compartments in which antibodies to commensal intestinal
microbes are induced, as a means of exploring the immune
geography of host-microbial mutualism. Of course this is a
(small) part of the story and mutualism at the level of the
mucosal immune system is a multilayered process with
innate responses by epithelial cells and an important
component of effector and regulatory T cells. We
commonly read that mammals must be ‘tolerant’ of their
commensal intestinal microbes: of course semantically this
is so, but in an immunological sense we would like to
persuade  our readers that the evidence for
compartmentalisation which allows generation of a
selective mucosal immune response without unnecessarily
involving systemic immunity is far better than the concept
that systemic immunity is in fact downregulated to these
organisms. There would be a significant disadvantage of
such downregulation as we would be left liable to serious
sepsis from our commensals.
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