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1. ABSTRACT 
 

The epidermal growth factor receptor (EGF-R) 
signaling pathway maintains a balance between cell 
proliferation, differentiation and apoptosis, and thus it is 
believed that EGF-R signaling pathways play an important 
role in the development and progression of several human 
carcinomas. Epithelial-mesenchymal transition (EMT) 
describes the dedifferentiation switch between polarized 
epithelial cancer cells and contractile and motile 
mesenchymal (invasive) cells during cancer progression 
and metastasis. Activation of EGF-R signaling regulates 
EMT-associated invasion and migration in normal and 
malignant epithelial cells. In contrast, blocking EGF-R and 
consequently its pathways, by a monoclonal antibody 
(mAb) or a tyrosine kinase inhibitor (TKI), inhibit cellular 
migration and invasion, suggesting an essential role for 
EGF-R inhibitors in the control of cancer metastasis. The 
purpose of this review is to summarize current information 
regarding the role of EGF-R signaling on EMT during 
human cancer progression and metastasis. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.  INTRODUCTION  
 

Carcinomas are tumors of epithelial origin and 
represent over 90% of human cancers; metastatic 
carcinomas are responsible for the majority of cancer-
related deaths, either directly due to tumor involvement of 
critical organs or indirectly due to complications of therapy 
to control tumor growth and spread. The epidermal growth 
factor receptor (EGF-R) is a receptor tyrosine kinase that is 
over-expressed in a wide variety of human carcinomas, 
including non-small cell lung, breast, head and neck, 
bladder, ovarian and prostate cancer, and it has been 
associated with a number of studies of advanced disease 
and poor prognosis (1,2). In addition, it is well known that 
EGF-R is not only important in cell proliferation, but in a 
number of varied processes likely to be significant for 
carcinomas progression such as cell adhesion, cell motility 
and invasion which are major steps in the epithelial-
mesenchymal transition (EMT) event (3,4). The EMT is a 
highly conserved cellular program that allows polarized, 
immotile epithelial cells to convert to motile mesenchymal 
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Figure 1. EGF receptor signaling pathways. Ligands of the EGF family bind to the EGF-R and incite homo or hetero-
dimerization that causes phosphorylation of distinct tyrosine residues. Afterwards, the receptor homo or hetero-dimers activate 
downstream-signaling pathways including JAK, PI3 kinase, SRC kinase, PLCy and the ERK pathway. These pathways 
ultimately alter the activity of multiple nuclear transcription factors. The EGF-R network initiates diverse cellular mechanisms 
that lead to cell proliferation, differentiation, dedifferentiation, angiogenesis, cell adhesion, migration and invasion. 

 
cells (4,5). This important process was initially recognized 
during several critical stages of embryonic development 
and has more recently been implicated in promoting 
carcinomas invasion and metastasis. In this review, we 
discuss the role of EGF-R signaling in human carcinomas 
progression through its regulation of the EMT process.     
3. EPIDERMAL GROWTH FACTOR RECEPTOR 
SIGNALING  
 

The epidermal growth factor receptor (EGF-R) is a 
170-kd, 1186–amino acid long transmembrane receptor 
belonging to a family of receptor tyrosine kinases that 
includes, in addition to EGF-R, three other members 
(ErbB2/HER-2, ErbB3/HER-3, and ErbB4/HER-4) (6,7,8). 
These four receptors share a common structure that is 
composed of an extracellular domain with binding site for 
specific ligands, a short transmembrane region, and an 
intracellular tyrosine kinase domain. A number of ligands 
can bind to EGF-R such as epidermal growth factor (EGF), 
heparin-binding EGF-like growth factor (HB-EGF), 
amphiregulin (AR), betacellulin (BTC) and transforming 
growth factor-alpha (TGF-α) (9,10,11,12). Binding these 
ligands to the extracellular domain of the receptor results in 

receptor conformational changes, which facilitate the 
receptor homo- or heterodimerization (13,14), followed by 
autophosphorylation of key tyrosine residues within the 
COOH-terminal portion of EGF-R, which can act as 
specific docking sites for specific proteins containing Src 
homology 2 and phosphotyrosine binding domains 
(15,16,17). The activation of EGF-R initiates intracellular 
signaling via several pathways including Ras/ MAPK, Akt, 
Src family of kinases, Jak-Stat and the phospholipids 
metabolism enzymes, phospholipase C-c (PLC- c), 
phosphatidylinositol 3-kinase (PI3K), and phospholipase D 
pathways (15,18,19,20,21). The activation of these 
pathways initiate the transcription of several genes 
involved in cell proliferation, survival, differentiation, 
apoptosis and adhesion (22,23,24,25,26,27,28) (Figure 1). 
More specifically, Ras/MAPK pathway regulates cell 
proliferation, transformation, and metastasis development, 
while, the Akt pathway is involved in cell survival 
processes, apoptosis resistance, invasion and migration 
(26,27,29). In addition to ligand binding, EGF-R can be 
activated by phosphorylation of specific amino acid 
residues as a result of trans-activation by G-protein coupled 
receptors (30). Phosphorylation of receptor can also occur 
in response to nonspecific stimuli, including exposure to 
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ionizing radiation, UV radiation, hypoxia, hyperthermia 
and oxidative stress (31,32,33,34). Given the significant 
role of EGF-R signaling in all aspects of cell growth and 
survival (Figure 1), the alterations in the function of EGF-R 
are expected to play a crucial role in the development and 
progression of some pathological conditions including 
cancer. 

 
Accumulating evidence supports the key role of 

EGF-R in the development and progression of many human 
tumors. For example, EGF-R mutations are found in most 
of human tumors such as head and neck squamous cell 
carcinomas (HNSCC), glioblastoma, NSCL, breast, 
colorectal, bladder, prostate and ovarian carcinomas 
(35,36,37,38,39,40,41,42,43).  A strong correlation has 
been found between EGF-R mutations and tumor 
aggressiveness (44), decreased overall survival (45), poor 
prognosis (46), treatment resistance (47), disease 
recurrence (48), and increased risk of metastasis (49,50,51). 
EGF-R abnormalities within detected cancer types include 
gene amplification (40), protein over-expression and 
aberrant activation (51,52,53,54). Gene amplification of 
EGF-R has been shown to especially occur in epithelial 
cancers, and it was presumed to play a central role in the 
early pathogenesis and progression of these tumors 
(35,40,55,56,57). Over-expression of EGF-R has been 
detected in squamous cell carcinomas and to a lesser extent 
in adenocarcinomas (39,58,59).  

 
Mutations in the EGF-R kinase domain have been 

often diagnosed in a number of carcinomas such as 
HNSCC, colorectal and NSCLC (38,60,61). EGF-R 
mutations were also reported in atypical adenomatous 
hyperplasia, which is considered to be a precursor lesion of 
lung adenocarcinomas (62,63), suggesting that EGF-R 
mutations are also involved in the early stage of lung 
cancer progression. Moreover, several studies have shown 
that mutations in the tyrosine kinase domain of the EGF-R 
gene strongly correlate with ethnicity (64,65), and the 
clinical responses to EGF-R inhibitors such as gefitinib 
(66,67,68,69). The majority of EGF-R mutations occurs in 
exons 18–21, the first four exons encoding tyrosine kinase 
domain, and the most prevalent mutations consist of in-
frame deletions in exon 19 (45.7%). Over 20 variant types 
of mutations have been detected (70,71). The mutation in 
exon 21, which leads to L858R substitution, accounts for 
43% of EGF-R mutations. Less frequent, point mutations, 
such as G719C and G719S in exon 18, account for 3.5% of 
EGFR mutations. There are occasional in-frame insertion 
mutations in exon 20 (72,73,74). 

 
In spite of many proposed hypotheses, the 

mechanisms of how the mutations affect EGF-R function 
and what role they play in the oncogenic processes require 
further investigations. It is proposed that mutations spread 
along the kinase-coding regions (exons 19- 21) result in 
constitutive autophosphorylation, leading to the stimulation 
of the basal kinase activity, and thus activation of EGF-R. 
These mutations also appear to enhance sensitivity to 
cancer treatment by TKIs (75). It has been hypothesized 
that EGF-R mutations in cancer cells (deletion in exon 19 
and L858R mutation in exon 21) lead to a selective 

activation of PI3K/Akt and Jak/Stat signaling pathways that 
inhibit apoptosis and promote cell survival with less effect 
on the mitogen-activated protein kinase (MAPK) pathway 
that induces cell proliferation (76,77). In contrast, over-
expression of EGF-R in different tissues including 
urothelium, glial cells or esophageal keratinocytes was 
found to increase proliferation, migration, and aggregation 
(78). Deletion of exon 19 appears to confer higher 
malignant transforming ability than exon 21-point mutation 
(L858R), and this difference is believed by some 
researchers to reflect patient survival (48,79). Finally, it has 
been shown that the EGF-R gene intron 1 has a 
polymorphic region of CA dinucleotide repeats, ranging 
from 9 to 26 repeats, and these repeats are proposed to 
affect EGF-R transcription efficiency, influence clinical 
prognosis, and modulate anti-EGF-R drug sensitivity in 
colorectal, head and neck, lung and breast cancers (80,81). 
The aforementioned pathways are often associated with the 
implication of cancer progression in accordance with EGF-
R in homo or hetro-dimerization with ErbB family 
members. Next, we will discuss the critical involvement of 
EGF-R pathways in human carcinomas progression through 
its regulation of epithelial-mesenchymal transition 
phenomena and E-cadherin expression.  

 
4. EPITHELIAL-MESENCHYMAL TRANSITION 
AND E-CADHERIN EXPRESSION     
 

Epithelial-mesenchymal transition (EMT) is an 
evolutionary conserved developmental process (82) that 
plays a critical role in the embryonic development, cancer 
progression and metastasis. It is probable that a common 
molecular mechanism is shared by these processes 
(4,83,84). EMT is a multi-step process in which cells 
acquire molecular alterations that facilitate dysfunctional 
cell–cell adhesive interactions (4), loss of cell–cell 
junctions (83) and reorganization of the cytoskeleton (85), 
all of which result in the loss of apical polarity and the 
acquisition of a more spindle-shaped morphology (4,82) 
(Figure 2). Most cancer cells, like epithelial cells during 
embryonic development, undergo physical and biochemical 
changes that enable them to interact with the surrounding 
microenvironment, thus facilitating their migration from 
the site of origin and dissemination to distant tissues and 
organs (4,82). Moreover, similar to normal development, 
epithelial-like cancer cells in the primary tumor can initiate 
a multi-step process whereby cells down-regulate the 
expression of intracellular proteins, such as E-cadherin, 
occludin and claudins and up-regulate signaling pathways 
and proteins, such as N-cadherin and vimentin (86) 
associated with a more motile, mesenchymal-like 
phenotype. Such changes lead to alterations in cell polarity 
and cell–cell adhesion as the epithelial cells transition to a 
mesenchymal-like phenotype (4,87). These changes are 
hallmark feature of EMT (87); this incites to a reduction in 
cell-cell adhesion and enhances migratory capacity 
(4,82,88). 
 

Several genes including ErbB family are involved 
directly and/or indirectly in the initiation of the EMT 
phenomenon and consequently cancer progression and 
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Figure 2. Epithelial-mesenchymal transition (EMT) event and EGF-R modulation. The EMT is a multi-step process which 
allows cells migration and invasion through dysfunctional cell–cell adhesive interactions, loss of cell–cell junctions and 
reorganization of the cytoskeleton; these procedures result in the loss of apical polarity and the acquisition of a more spindle-
shaped morphology. Activation of EGF-R induces dedifferentiation EMT which is accompanied by over-expression of 
mesenchymal markers such as vimentin, fibronectin and N-cadherin. In contrast, EGF-R inhibition, by a TKI or antibody, 
provokes differentiation MET which is escorted by markers such as E-cadherin and ZO-1. 

 
metastasis. For example, EGF-R activity has been shown to 
induce tumor cell motility and invasion by regulating the 
activity of downstream signaling molecules, such as FAK, 
β-catenin, Ras, Raf, MAPK, and PI3K/Akt (89). The 
activation of different pathways including ErbB signaling 
can result in increased activity of transcriptional repressors, 
such as Snail, Zeb, and Twist, which repress expression of 
cell adhesion molecules like E-cadherin (90). On the other 
hand, EGF-R signaling can induce EMT, invasion, and 
metastasis in several different types of rodent and human 
cancer cells including human breast cancer, which can be 
mediated via STAT3-dependent Twist up-regulation (91) or 
by inducing the expression of Snail and Zeb (90,82).  

 
The E-cadherin expression in normal cells is 

thought to stabilize the cell architecture, and as such its 
expression is an indispensible element of epithelial 
differentiation (3). More importantly, its reduced 
expression has been associated with the induction of EMT, 
which is instrumental in pathologies such as carcinomas 
invasion (92,83). In addition, earlier studies have described 
the EMT signature of decreased E-cadherin expression and 
increased vimentin and N-cadherin expression in mammary 
gland hyperplasia’s and tumors from transgenic mice over-
expressing human Cripto-1 (93). An increase in migration 
and invasion of cervical and breast cancer cells has been 
associated with Cripto-1 over-expression (94,95). These 
findings support the significant role of Cripto-1 in the 
induction of EMT in cancer cells which may explain, in 
part, why Cripto-1 expression has been associated with 
more aggressive behavior in several human carcinomas 
including breast cancer and colon cancer (95,96).  

 
Further, previous studies reported that E-cadherin 

expression can be regulated by the deregulation of Cox-2 
and Pge-2 in human lung carcinomas (97,98). Cox-2 and 
Pge-2 expression resulted in a significant reduction in E-
cadherin via Zeb-1 and Snail transcriptional factor 
mediated mechanism, and inhibition of Cox-2 resulted in 

the rescue of E-cadherin expression (97). This newly 
defined pathway for transcriptional regulation of E-
cadherin has important implications on chemoprevention 
and treatment of human carcinomas especially lung 
metastatic cancer using Cox-2 inhibitors through the 
inhibition of EMT progression. Moreover, the ectopic 
expression of Snail or Slug has resulted in EMT-associated 
enhanced motility, invasiveness, and tumorigenicity in 
ovarian cancer cells (99); while, activation of these 
transcriptional factors by hypoxia revealed immediate up-
regulation of Slug expression with consequent down-
regulation of Snail and E-cadherin expression (100) thus 
stimulating EMT progression. Further evidence of EMT in 
ovarian cancer is supported by a recent study which 
demonstrated that 17b-estradiol increased Snail expression 
with subsequent increase in the MMP-2 expression and 
decrease in E-cadherin expression in estrogen receptor 
positive and estrogen receptor negative ovarian cancer cell 
lines (101).  

 
The coupled expression of E-cadherin and β-

catenin has been shown to be critical for the stable 
assembly of a cytoskeleton structure, and maintenance of 
cell-cell contact in epithelial cells (102). In colon cancer, 
constitutive activation of the Wnt signaling pathway is a 
key contributor to tumorigenesis (103). Accumulation of 
nuclear β-catenin was observed at the invasive front and in 
tumor cells migrating into stroma (104,105), consistent 
with an EMT. In contrast, in the remainder of the primary 
tumor, and in metastases, heterogeneous intracellular 
distribution of β-catenin was detected (103,106). 

 
The role of EMT in prostate cancer progression has 

emerged from studies using in vitro and in vivo models. 
Various factors appear to be altered in the prostate cancer 
microenvironment through increased production of tumor 
cells or the cancer-associated stroma these changes appear 
to be associated with EMT (107). Many of these factors 
have also been shown to cause EMT in other systems (107-
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109). For example, the transcription factor Twist similarly 
represses E-cadherin expression as well as up-regulates N-
cadherin levels in prostate cancer cells (110,111). In 
contrast, loss of prostate-derived ETS factor (PDEF), which 
is down-regulated by TGF-β, induces EMT in PC3 cells 
(112). In addition, over-expression of prostate specific 
antigen (PSA) and kallikrein-related peptidase 4 
(KLK4), both potential activators of pro-EGF and latent 
TGF-β2, results in EMT in PC3 cells (113,114). On the 
other hand, PSA and KLK4 which are part of normal 
prostatic secretions, leak into the tumor 
microenvironment due to the disruption of glandular 
architecture during cancer progression, suggesting a link 
between tissue architecture and EMT. 

 
 Earlier study indicates that EMT of tumor cells 

not only causes increased metastasis, but also 
contributes to drug resistance (115). This implies that 
treatments that target cell growth pathways might not be 
effective in killing these cells. Indeed, increasing 
amount of data relate drug resistance of tyrosine kinase 
inhibitors to the existence of EMT. For instance, 
epithelial but not mesenchymal gene signature has been 
associated with sensitivity to the small molecule-EGF-
R-inhibitor erlotinib (Tarceva) (116). Clinical trials 
confirmed this relationship in several carcinomas; 
significant benefits were observed in lung carcinoma 
patients with high expression of E-cadherin who were 
treated with erlotinib, contrarily to the E-cadherin-
negative patients this was also found in xenografts of 
lung carcinoma cells (117) as well as in other types of 
tumors such as head and neck squamous cell carcinomas 
and hepatocellular carcinomas (115). Other EGF-R 
inhibitors exhibited the same affect, such as gefitinib 
(Iressa) (118) and cetuximab (119). In parallel, 
gemcitabine-resistant pancreatic cells with increased 
invasive capacities, oxaliplatin-resistant colorectal 
cancer cells and post-ionizing radiation related tumor 
distant metastasis in patients with advanced lung cancer, 
have all been associated with EMT (120-122). In 
addition, an EMT implication in therapeutic drug 
resistance was recently increased with Lapatinib 
resistance in breast cancer (123) and paclitaxel 
resistance in epithelial ovarian carcinomas (124). In 
fact, empirical reports connecting EMT to the emergence 
of stem cells has recently been reported (125). 
 

To conclude, progression of human carcinomas 
involves spatial and temporal occurrences of EMT, 
whereby tumor cells acquire a more invasive and metastatic 
phenotype. Subsequently, the disseminated mesenchymal 
tumor cells must undergo the reverse transition, MET, at 
the site of metastases, as metastases recapitulate the 
pathology of their corresponding primary tumors. Initiation 
of tumor growth at the secondary site is the rate-limiting 
step in metastasis. This suggests that cellular plasticity and 
the ability to undergo from EMT to MET in the appropriate 
microenvironments are key features for a successful cancer 
treatment (Figure 2). Thus, targeting EMT and/or its 
regulators may provide a novel strategy to inhibit cancer 
progression and metastasis by trapping disseminated tumor 
cells in a state of micro- metastasis.  

5.EPITHELIAL-MESENCHYMAL 
TRANSITION/EPIDERMAL growth factor receptor 
interaction  
 

It is known that epithelial and mesenchymal tissues 
are endowed with different adhesion systems that have to 
be modulated in order to allow cells to move. Normal 
epithelial cells adhere to the basement membrane matrix 
and to each other by the E-cadherin/catenin complex (3). 
Mesenchymal cells, that generally do not establish 
significant cell–cell adhesions, are characterized by 
dynamic cell–matrix adhesions present on the entire cell 
surface which allows them to move individually within the 
ECM (3-5) (Figure 2). In addition to regulating cell–matrix 
adhesion, EGF-R can also influence cell–cell adhesion. 
Indeed, there is strong evidence that the altered balance 
between the two adhesion systems can contribute to 
invasion and cancer progression (4,126) (Figure 2). It is 
well documented that EGF-R activation causes disruption 
of cell–cell junctions and promotion of invasiveness 
through the phosphorylation of the E-cadherin/catenin 
complex thus resulting in dissociation of the latter and 
functional loss of E-cadherin; these events releases β-
catenin into the cytoplasm and then into the nucleus, which 
stimulates transcriptional activity (3,127,128,129). β-
catenin-regulated genes, such as Myc, Snail-family 
members, cyclin D1, vimentin, and matrix-degrading 
proteases, are involved in EMT, invasion and tumor 
progression (128,130).  

 
In order to investigate the role of EGF-R activation 

in human lung carcinomas EMT and consequently cell 
motility and invasion in these cancer cells, we examined 
the effect of a ligand-blocking mAb against the EGF-R, 
LA1, in three human lung cancer cell lines H322, A549 and 
H661 as well as human normal bronchial epithelial 
(HNBE) cells. We found that the LA1 mAb inhibits cell 
growth, induces differentiation to a more epithelial 
phenotype and up-regulates E-cadherin protein expression 
in H322, A549 and HNBE cells. In contrast, LA1 had no 
effect on H661 cells, which do not express detectable levels 
of EGF-R (3,131,132). Furthermore, we investigated the 
effect of LA1 mAb on the E-cadherin/catenin complex in 
H322 and A549 cell lines. Inhibition of EGF-R was 
associated with re-localization of E-cadherin, α-catenin and 
β-catenin, but not γ-catenin. Moreover, we demonstrated 
that mAb LA1 induces up-regulation of the E-
cadherin/catenin complex and inhibits cell motility of both 
cell lines. In contrast, EGF and HB-EGF lignads induce 
cell proliferation and the epithelial-like to fibroblastoid 
(mesenchymal) conversion of H322, A549 and HNBE 
cells, slightly reduces the expression of E-cadherin and β-
catenin, but not α- and γ-catenins, and stimulates cell 
motility (3,131,132,133). More interestingly, we found that 
amphiregulin, another lignad of EGF-R, stimulates cell 
proliferation but not the epithelial-like to fibroblastoid 
conversion of H322, A549 and HNBE cell lines. This is a 
very important issue for different aspects of human health 
especially in skin restoration where we can provoke normal 
epithelial cell proliferation without any modification in 
their phenotype [Al Moustafa et al., unpublished data]. 
Nevertheless, these studies demonstrate that EGF-R 
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modulation regulates the E-cadherin/catenin complex and 
consequently cell motility and invasion of human lung 
carcinoma cells.  

 
In order to develop new strategies in the treatment 

of human prostate and lung carcinomas, we investigated the 
effect of Teucrium polium (TP) medicinal plant extract on two 
human prostate and lung cancer cell lines, PC3 and DU145 
and A549 and H322, respectively; we found that TP plant 
extract inhibits cell proliferation and induces cell apoptosis in 
these cell lines (134,135). More importantly, we demonstrated 
that TP plant extract induces differentiation (fibroblast-like to 
epithelial transition) and blocks cell invasion ability of PC3 
and DU145 prostate cancer cells though the restoration of E-
cadherin/catenin complex via Src dephosphorylation which is 
an important pathway of EGF-R activation (134); Our recent 
results revealed that TP plant extract blocks cell invasion 
through the inactivation of EGF-R which in turn 
dephosphorylates Src in human prostate and lung cancer cells 
(134). Activation of several different cell signaling pathways 
regulated by EGF-R stimulates the induction of EMT 
(136,137). Chronic stimulation with EGF can result in 
activation of Snail and EMT in several human carcinomas 
including breast (131,136,138). Blocking EGF-R signaling 
inhibits alcohol-stimulated Snail mRNA expression which play 
an important role in EMT (139) and Snail mediated colon 
cancer metastases in mice (140). EMT in cervical cancer is 
also correlated with EGF-R and Snail over-expression (141). 
Moreover, cigarette smoke exposure activates EGF-R which 
can contribute to prolonged downstream signaling through the 

activation of Akt and extracellular signal regulated kinases 

(ERK1/2)-survival, proliferation and cell adhesion 
pathways and consequently the EMT process in human 
lung cancer (142,143). Meanwhile and as we mentioned 
above, it has been reported that EMT plays an important 
role in resistance to EGF-R TKIs, during which cancer cells 
lose their epithelial marker, such as E-cadherin 
(116,117,118). In contrast, strong expression of E-cadherin 
enhances gefitinib sensitivity in lung carcinomas with a 
mesenchymal phenotype (116). Although EMT can predict 
resistance to gefitinib or erlotinib (117,118,144), 
nevertheless the molecular mechanisms are still unknown. 
 

Src kinases are transducers of signals activated 
by many different classes of cell-surface receptors. More 
specifically, Src can be activated by growth factor receptors 
including EGF-R and Met-receptors, cytokine receptors, 
protein tyrosine phosphatase 1B, CAS, and focal adhesion 

kinase (FAK). Src interacts with a network of intracellular 

signaling pathways, including the integrin/FAK pathway, 
β-catenin/Wnt, RAS-MEK, phosphatidylinositol-3-OH 
kinase–AKT and Janus-activated kinase–STAT pathways 
(145,146,147). These complex interactions explain why Src 
is involved in a large number of cellular functions. In order 
to determine the role of Src , as an important pathway of 
EGF-R and a major target in the treatment of several 
human carcinomas, we examined the effect of Src/Abl 
inhibitor, SKI-606 on cell proliferation, cell cycle 
progression, mesenchymal-epithelial transition and finally 
invasion and motility in numerous human carcinoma cell 
lines including lung, breast and cervical. The Src/Abl 
inhibitor induces mesenchymal-epithelial transition and 

consequently up-regulates E-cadherin expression and 
inhibits cell invasion ability of human lung, breast and 
cervical cancer cells. This effect occurs through the 
conversion of β−catenin’s role from a transcription 
regulator to a cell-cell adhesion molecule via Src 
dephosphorylation (148,149). Collectively, these data 
suggest the concept that EGF-R and/or its pathways 
inactivation play an important role in the regulation of cell 
invasion and metastasis of human carcinoma cells through 
MET (Figure 2). Therefore, EGF-R-targeted therapies 
using new specific molecule of one and/or two pathways of 
EGF-R and/or mAbs against EGF-R are important 
strategies to treat several human carcinoma patients.  
 
6. SUMMARY AND PERSPECTIVES 
 

The EMT is a process that plays essential roles in 
epithelial cancer metastasis that is characterized by loss of 
homotypic adhesion, cell polarity, increased invasion and 
migration. On the other hand, the EMT process has provided 
insight into the mechanisms that are implicated in the 
migration, invasion, and metastatic spread of cancer cells. 
Indeed, this review has highlighted the importance of the EGF-
R alteration in regulating epithelial plasticity and EMT during 
human carcinomas progression. Understanding and defining 
the initial molecular signals leading to the EMT switch in 
tumor cells would undoubtedly contribute to earliest clinical 
detection and intervention strategies. Although the use of 
inhibitors delivered individually to EGF-R targets appears 
rational, however, limited efficacy suggests that a 
combinatorial approach would offer improved clinical 
outcome. Therefore, it should be promising to identify new 
molecules that selectively target cancer cells via more than one 
EGF-R pathway. Overall, understanding how EGF-R actuation 
controls EMT and in particular cancer cell motility should 
greatly facilitate the design of more successful, personalized 
cancer therapies. 
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