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1. ABSTRACT 
 

Cell therapy is a promising therapeutic 
alternative for Parkinson's disease, and one possible 
limiting factor may be that the pathological environment of 
PD is hostile for the process of neurogenesis, including 
grafted stem cells survival, proliferation, migration and 
dopaminergic neuronal fate specification along with 
maturation of the immature neurons and ultimately 
integration of the new neuronal progeny into functional 
neuronal circuits. Uncontrolled microglial activation and 
neuroinflammation contributes to neuronal damage in PD. 
Similarly, the microglia-derived inflammatory mediators 
may also influence grafted stem cells. Thus, we discuss 
reactive microgliosis and sustained, chronic 
neuroinflammation in PD, together with cytokine-
dependent neurotoxicity and inflammation-derived 
oxidative stress on dopaminergic neuron in the substantia 
nigra pars compacta substantia nigra pars compacta (SNpc). 
Based on these, we further summarize the interaction 
between neuroinflammation and stem cells, and conclude 
that neuroinflammation acts as double-edged swords, 
instead of simply beneficial or detrimental, and stem cells 
display immunomodulatory functions beneficial for 
dopaminergic neurons via an anti-inflammatory action in 
PD. 

 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

Parkinson's disease is a chronic and progressive 
neurodegenerative disease that affects approximately 1-3% 
of the population (1,2), characterized by the selective loss 
of dopaminergic neurons and the presence of Lewy 
bodies. The symptoms are only apparent when loss of at 
least 50% of the dopaminergic neurons in the SNpc 
occurs, which result in an over 80% reduction in 
dopamine (DA) levels in the striatum (2, 3). Because of 
the relative simplicity of the major pathology of PD 
with loss of a unifocal and phenotypically homogeneous 
neuronal population in SNpc, the anatomically well 
defined and easily accessible main target, namely the 
striatum with the relatively preserved downstream basal 
ganglia neurons, and well-characterized rodent and 
primate models of PD, PD has been thought to be 
particularly suitable for cell therapy to restore 
dopaminergic neurotransmission in the striatum (4, 5). It 
is proposed that the improved function depends on the 
number of continued survival and phenotypes of the 
grafted cells, and that a minimum of approximate 80,000 
dopaminergic neurons-- about one fifth of the normal 
number of dopaminergic neurons in the human substantia 
nigra, may be required to obtain an ideal therapeutic effect 
(4).  
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Numerous stem cells or their derivatives (e.g. 
embryonic stem cells, fetal mesencephalic neurons, and 
neural stem cells) have been proposed to treat animal 
models of PD as well as patients with PD(6-11). Both some 
experimental animals and clinical patients of PD studies 
demonstrate that intrastriatal grafts of nigral DA neurons 
gains long-lasting and therapeutically valuable 
symptomatic relief (12, 13). Importantly, survival of the 
grafted dopaminergic neurons, reinnervation of the 
striatum, and formation of synaptic connections are also 
observed in autopsy (14,15), indicating that grafted 
dopaminergic neurons can functionally integrate into 
neuronal circuitries in the brain. However, experiments 
with transplants of rat and human mesencephalic dopamine 
neurons placed in the rat striatum have shown that most of 
the transplanted dopamine neurons die within the first 24 h 
post-transplantation (16), and only 5-20% of the dopamine 
neurons survive the implantation procedure, and the 
symptomatic relief is far from complete (17). Besides the 
loss and damage in the preparation of the tissue ahead of 
grafting, it is likely to a large extent due to the pathological 
environment that the grafted cells encounter. The PD 
microenvironment is prone to ongoing neuronal death, and 
can affect grafted cells in hosts with a similar pathogenesis 
as in the host dopaminergic neurons(18,19). Microglial 
activation and neuroinflammation is now considered to be 
instrumental to at least the progression if not the 
pathogenesis of PD (20-26). Microglial activation initiates 
or perpetuates neuronal loss by increasing cytotoxic 
molecules like superoxide, nitric oxide (NO), various pro-
inflammatory cytokines, and prostaglandins (25,27, 28,29). 
Similar findings suggest that neuroinflammation inhibits 
neurogenesis in the adult hippocampus (30,31), suggesting 
the detrimental effects of neuroinflammation on stem cells. 
The blood-brain barrier (BBB) is also disrupted with 
intracerebral grafting and this may compromise the 
viability of the grafted cells through inflammatory 
mechanisms. Stem cells express receptors, and respond to 
trophic factors and cytokines, and the grafted stem cells can 
interact with the immune system. Hence, the effect of 
neuroinflammation and microglia activation on the grafted 
cells has turned out to be much complex. 

 
Therefore, in this review we summarize cytokine-

dependent neurotoxicity and inflammation-derived 
oxidative stress on nigrostriatal pathway degeneration in 
PD. More importantly, we focus on the multifunction of 
inflammatory mediators on grafted stem cells or their 
derivatives and the immunomodulatory properties of stem 
cells. 

 
3. NEUROINFLAMMATION IN PD 
 
3.1. Microglial activation in PD 

The brain has been considered to be an immune-
privileged organ but this is now undergoing a considerable 
reevaluation, for the unequivocal evidence that the 
permeability of the BBB can be regulated under normal 
conditions and may become dysregulated in chronic and 
acute neurodegenerative conditions. The hallmark of 
neuroinflammation is the activation of microglia, the 
resident brain immune cells (32), being kept in a resting 

state by intimate communication between neurons and 
microglia (33), and changing from their “resting” ramified 
state to an “activated” ameboid form, in order to migrate to 
areas of damage, proliferate and engulf invading 
organisms, apoptotic cells or cell debris (34,35). The 
density of microglia varies strongly by distinct brain 
regions from 0.5-16.5%, with the highest density of 
microglia within the hippocampus, olfactory telencephalon, 
basal ganglia, and substantia nigra (36). 

 
As early as in 1988, McGeer and his colleague 

reported that large numbers of human leukocyte antigen-
DR (HLA-DR) - positive reactive microglia were detected 
in the SN, particularly in areas of maximal 
neurodegeneration, namely the ventral and lateral portion 
of the SN (37), and the results is corroborated in 1-methyl-
4-phenyl -1,2,3,6-tetrahydropyridine (MPTP) treated 
monkeys where activated microglia cells are found in the 
SN up to 14.5 years after the last exposure (38). Other 
animal models of PD, such as the rotenone (39) and 6-
hydroxydopamine (40) models, have also been shown to 
activate microglia. 

 
Moreover, excessive increased concentration of 

proinflammatory cytokines has been found in the SN, 
striatum and cerebrospinal fluid (CSF) in PD. For example, 
Interleukin-1β (IL-1β), interferon-γ (INF-γ) and tumor 
necrosis factor-α (TNF-α) are increased by 7- to 15-fold in 
the SN (41,42), and increased level of IL-1, IL-6, TNF-α is 
also observed in CSF (43,44). These data demonstrate that, 
besides an extensive loss of dopaminergic neurons in the 
mesencephalon, there exists neuroinflammation 
characterized by activation and proliferation of microglia, 
with excessive expression of inflammatory cytokines and 
inflammation-related factors in PD (45). A genome-wide 
association study of 2,000 individuals with PD 
demonstrates that PD is associated with a classical 
polymorphic HLA antigen and that rs3129882 is a proxy 
for this antigen. The evidence for genetic association of PD 
with the HLA region, lends strong and independent support 
to the involvement of neuroinflammation and humoral 
immunity in PD pathogenesis(46). 

 
Epidemiological research and case reports reveal 

that the antecedent traumatic brain injury correlate closely 
with the development of PD in later life (47,48), and 
postencephalitic parkinsonism may occur in those exposed 
to infectious agents such as viruses and bacteria, even 
several decades later (49). Additionally, In utero bacterial 
endotoxin exposure may play a role in the later 
development of PD (50). Bacterial vaginosis is a fairly 
common condition in humans, occurring in pregnancy and 
associated with overgrowth of Gram-negative bacteria, a 
source of lipopolysaccharide (LPS). Given the higher 
sensitivity of the SN to LPS than other regions of the brain 
(51) and the relatively unformed state of the foetal BBB, 
this raises the possibility that prenatal neuroinflammation 
may predispose to a higher risk of PD in later life. It could 
partly explain the apparently random epidemiology of 
idiopathic PD that a prenatal cerebral infection with no 
symptomology at birth would be connected to the future 
development of PD. Indeed, prenatal infection in rats 
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results in a more prolonged response to inflammatory 
stimuli in the adult (52). Therefore, as a sequence of 
neuronal injury or infection, inflammation is a common 
feature of disease in the brain, and nigral microglial 
activation acts as a risk factor causing the developing 
degeneration of dopaminergic neurons (53). 

 
Experimental models of PD in animals demonstrate 

that neuroinflammation appears to be a ubiquitous finding. 
Animal models of PD produced by supranigral and 
continuous infusion of nanogram quantities of LPS for 2 
weeks further reveal that maximal activation of microglia 
in the SN occurs between 1 to 2 weeks after the start of 
LPS infusion, while degeneration of nigral dopaminergic 
neurons does not begin until 3 to 4 weeks after the 
occurrence of peak microglial activation (54). Critically, 
the damage to the dopaminergic neurons is still clearly 
evident 1 year postinjection, indicating that a transient 
exposure to a proinflammatory substance may initiate a 
sequence of events leading to apparently permanent 
neurodegeneration as occurs in PD itself (55). In addition, 
TLR4, the main receptor for LPS, is preferentially 
expressed on microglia compared to astrocytes, but 
expressed at very low or undetectable levels on neurons, 
confirming that microglia are much more responsive than 
astrocytes to LPS, whereas neurons are virtually 
unresponsive (56,57). 

 
3.2. Cytotoxic effects of activated microglia in PD 

Microglial activation in PD is not limited to the 
SN, but is also observed in the putamen, hippocampus, 
transentorhinal cortex, cingulate cortex and temporal 
cortex. The pathological basis of PD confined to pars 
compacta of substantia nigra could be due to both the 
special sensitivity of dopaminergic neurons to oxidative 
action and the higher abundance of microglial cells in the 
SN (51,58). Activated microglia exert cytotoxic effects 
through two very different and yet complementary 
processes. First, they can act as phagocytes which involve 
direct cell-to-cell contact. Activated microglia phagocytose 
dopamine neuronal fibers at early stage of neuronal 
degeneration, suggesting that microglial phagocytosis of 
degenerating neurons is early occurring in neuronal 
degeneration. In addition, they phagocytose bystander 
dopamine neurons, suggesting that activated microglial 
participation in the progressive degeneration of dopamine 
neurons (59). Second, in response to immunologic stimuli, 
activated microglia produce proinflammatory and immune 
regulatory cytokines, as well as large variety of potentially 
noxious substances and growth factors, but the levels and 
timing of production of cytokines may greatly influence 
their overall effects, as overproduction of cytokines by 
microglia may lead to more deleterious and neurotoxic 
consequences as opposed to a merely defensive response, 
or may be neuroprotective in the initial and / or acute stage, 
and later become neurotoxic due to and prolonged 
production of cytokines in the chronic stage (60). For 
example, in transgenic mice with IL-6 overexpression in 
the brain, IL-6 enhances neuroprotection and 
neuroregeneration in models of brain insults (61,62). 
However, after the chronic exposure to the cytokine, 
features of neurodegenerative disease, consisting of 

neurodegeneration, blood–brain barrier breakdown, 
reactive gliosis, and impaired hippocampal neurogenesis 
are observed (63), confirming the possibility that the same 
inflammation can be beneficial in an acute situation but 
detrimental in a chronic condition, and that the degree and 
the specific profile of various factors present in the 
inflamed tissue might regulate brain degeneration or 
regeneration. 
 

IL-1 and TNF-α are two main proinflammatory 
cytokines produced by activated microglia, and they are 
capable of promoting the development of the central 
nervous system (CNS) inflammation through the disruption 
of the BBB, the induction of adhesion molecules and 
chemokines from astrocytes and endothelial cells which 
facilitate the infiltration of leukocytes into the CNS (59, 
64). TNF-α can also activate receptor-mediated 
proapoptotic pathways within the dopaminergic neuron, 
and the toxic effects of LPS are reduced by about 50% after 
the addition of neutralizing antibodies to TNF-α in rat 
primary dopaminergic neurons (65). Moreover, the 
proinflammatory cytokines TNF-α, IL-1β and IFN-γ cause 
potent activation of inducible nitric oxide synthase (iNOS) 
(66). However, a large body of evidence has supported the 
notion that microglia also produce cytokines with anti-
inflammatory activity, such as transforming growth factor-
beta (TGF-β) , IL-10, both of which inhibit microglial 
activation through their ability to inhibit antigen 
presentation and proinflammatory cytokines, chemokines 
and reactive oxygen intermediates (53). 

 
Furthermore, via induction of nicotinamide 

adenine dinucleotide phosphate (NADPH) oxidase and 
iNOS, activated microglia release reactive oxygen species 
(ROS) such as superoxide and NO, which have the 
potential to harm cells and contribute to oxidative damage 
and neurodegeneration. ROS may accelerate the process of 
alpha-synuclein aggregation, and result in the formation of 
more ROS through toxic alpha-synuclein fibrils, therein 
generating a repetitive cycle of death for the DA neurons 
(67). NADPH oxidase is the major source of ROS, and 
NADPH-oxidase main subunit gp91phox is up-regulated in 
the SNpc of PD and MPTP mice, and in contrast, NADPH-
oxidase inactivation attenuates MPTP neurotoxicity by 
mitigating inflammation-mediated oxidative attack on 
SNpc neurons, indicating that NADPH-oxidase-induced 
extracellular oxidative stress is instrumental in SNpc DA 
neurodegeneration caused by MPTP (68). Moreover, the 
activation of NADPH oxidase contributes to over 50% of 
the LPS-induced increase in intracellular ROS and that 
intracellular ROS is significant for the microglial activation 
and the production of proinflammatory mediators such as 
TNF-a (69) or prostaglandin E2 (PGE2) (70). Oxidative 
stress is the important mechanism through which microglia 
are toxic to neurons.  

 
Chemokines such as macrophage inflammatory 

protein-1α (MIP-1α), MIP-1β, monocyte chemotactic 
protein-1 (MCP-1) and stromal cell derived factor-1 (SDF-
1), produced by activated microglia, regulate rapid 
migration of microglia to the injury sites in CNS and 
amplify neuroinflammation (71). 
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3.3. Reactive microgliosis and sustained, chronic 
inflammation in PD 

The immune system plays essential roles in the 
maintenance of tissue homeostasis and the response to 
infection and injury. Microglia are activated at a very early 
stage, which often precedes reactions of any other cell type 
in the brain(72), and thereby promote an inflammatory 
response that serves to further engage the immune system and 
initiate tissue repair. In most cases, the response is self-
limiting, resolving once infection has been eradicated or the 
tissue damage has been repaired.  
 

Conversely, a self-propelling cycle of sustained, 
chronic inflammatory process exists in the brain of PD, which 
is particularly damaging to the SN dopaminergic neurons. 
First, exposure to infectious agents such as viruses and bacteria 
or certain environmental toxicants such as rotenone, can 
directly lead to the activation of microglia. Second, a variety of 
soluble factors such as neurotransmitters or its metabolites, 
released from injured neurons, have proved to be the potential 
stimulators of reactive microgliosis (73). Third, Lewy bodies 
containing a-synuclein exist in brain of PD (74). The 
accumulation of a-synuclein results in the formation of 
intermediate state oligomers, leading to neuronal cell death 
with release of protein aggregates into the extracellular space 
(75). Microglia phagocytose extracellular released a-synuclein, 
and aggregated, nitrated, and oxidized forms of a-synuclein 
and neuronal death itself induce additional microglial 
activation (76). The internalization of a-synuclein by microglia 
is followed by activation of NADPH oxidase and production 
of ROS (77). Forth, neurons are able to negatively regulate the 
reactivity of glial cells through a potential dimerization of the 
neural cell adhesion molecules expressed on the surface of 
both cell types, therefore, loss of cell–cell contact between 
neurons and glial cells may also result in microglial activation 
(78, 79). Therefore, regardless of the nature of the initiating 
factors, a cycle may exist: Microglial activation leads to 
neurodegeneration; neuronal injury, in turn, leads to reactive 
microglial activation, which further exacerbates 
neurodegeneration. Over time the continuing presence of this 
cycle results in the distinct, eventually self-perpetuating 
neurodegenerative process in the SN. 

 
Considering the presence of sustained, chronic 

inflammation in PD and cytotoxicity induced by activated 
microglia, a warning regarding the long-term viability of 
transplanted stem cells is raised. Stem cells carry receptors 
for many cytokines and chemokines, suggesting an active 
crosstalk between the immune and stem cells. Modulating 
the inflammatory response, particularly the microglial 
activation, could improve the survival of transplanted cells 
in patients with PD, and increase the likelihood of a 
successful outcome. 

 
4. NEUROINFLAMMATION MODULATES THE 
FATE OF GRAFTED CELLS 
 
4.1. Role of inflammation on cell survival and stem cell 
proliferation 

Experiments with transplants of rat and human 
mesencephalic DA neurons in the rat striatum have shown 

that only 3-20% of grafted dopamine neurons survive the 
procedure (16,17,79, 81). The reasons for the high death 
rate of grafted neurons may be features in the environment 
surrounding a graft that are toxic to DA neurons. Mediators 
produced by activated microglia such as TNF-α and IL-1β 
activate astrocytes (56), and the combination of factors that 
are produced by activated microglia and astrocytes in turn 
may promote neurotoxicity. Specially, these factors are 
preferentially toxic to DA neurons. In order to improve the 
survival of DA neurons in grafts, Lazaroids are applied to 
inhibit free radical generation, and the yield of surviving 
DA neurons increases significantly (17). 

 
The vigorous inflammatory and immune reaction 

associated with activated microglia at the lesion sites of PD 
might be key to the decreased survival of neural stem or 
progenitor cells long term. It is demonstrated that a 
negative correlation of cell survival of the grafted neural 
stem cells (NSC) to IB4-positive cells, suggesting that 
inflammatory cytokines are detrimental to the transplanted 
cells(82). However, the proinflammatory cytokines show 
differential effects on the proliferation of stem cells. Ben 
Hur et al. found that neural progenitor cells (NPCs) 
expressed the receptors of TNF-α and IFN-γ, and both 
TNF-α and IFN-γ inhibited NPCs proliferation. 
Additionally, IFN-γ increased NPCs apoptotic cell which 
was partially blocked by TNF-α.(83). Contrary to their 
findings, others prove that TNF-α triggers apoptotic cell 
death of NPCs through TNFRI (84). And moreover, recent 
findings reveal that exposure of SVZ cultures to 1 ng/ml 
TNF-α induces cell proliferation, whereas 10 and 100 
ng/ml TNF-α induces apoptotic cell death (85). 

 
Sasaki T et al. investigated the postischemic 

proliferation of progenitor cells in the subgranular zone 
(SGZ) after administering cyclooxygenase (COX) 
inhibitors with various specificities and postischemic 
neurogenesis in COX-2 knockout mice, and found that the 
postischemic enhanced proliferation of NPCs was 
attenuated by COX inhibitors and in COX-2 knockout 
mice, and thus they thought that COX-2 was an important 
modulator in enhancement of proliferation of NPCs after 
ischemia (86). On the contrary, recent studies reveal that 
COX-2 mediates the impairment of the survival of newly 
generated cells derived from the NSCs in the dentate gyrus 
by LPS, and it is suggested that the ameliorating effects of 
COX-2 inhibitor against LPS action might be exerted by 
suppressing the cytokine production involved in 
neuroinflammation, but further experiments should be 
required to confirm this possibility(87). 

 
It is widely thought that NS/PCs are very 

sensitive to increases of ROS and result in apoptosis. In 
consistent with this, it is demonstrated that DMNQ-induced 
excessive oxidative stress causes p53 accumulation and 
consequently caspase-2 activation, which in turn initiates 
apoptotic cell death via the mitochondria-mediated caspase-
dependent pathway in NSCs (88). H2O2 induces acute cell 
apoptosis in NS/PCs in concentration- and time-dependent 
manners (89). Similarly, endogenous NO is proved to exert 
a negative control on the proliferation rate of 
undifferentiated precursors (90). Contrariwise, it is 
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proposed, that the cellular response to small changes in the 
level of ROS has beneficial effects on cell growth and 
viability under normal conditions (91,92), and a recent 
research reveals that endogenous ROS and NO are essential 
for the proliferation of embryonic NS/PCs (93). 

 
4.2. Role of inflammation on stem cell migration and 
homing 

Previous works have demonstrated that stem 
cells including both NSCs and mesenchymal stem cells 
(MSCs) transplanted systemically or intracerebrally could 
migrate selectively to the sites of lesion areas (94-98), and 
it is suggested that inflammation attracts stem cells to the 
appropriate place for repair purposes via the regulation of 
growth factor signaling and the secretion of a number of 
chemoattractant cytokines(99,100).  

 
Activated microglial cells have been shown to 

produce several chemokines such as SDF-1, MIP-1α, MIP-
1β, MCP-1, and Regulated upon Activation Normal T cell 
Expressed and Secreted (RANTES) (71). Correspondingly, 
NPCs express a wide range of proinflammatory chemokine 
receptors, including CCR1, CCR2, CCR5, CXCR3 and 
CXCR4, but no CCR3 or CCR7(101-103). The chemokines 
or chemoattractant cytokines via their receptors regulate the 
migration of stem cells to the sites of neuroinflammation, 
and very similar results are observed in MSCs(104,105). In 
addition, human neural progenitor cells express many 
adhesion molecules involved in inflammation such as α2, 
α6 and β1 integrins(106), and CD44 (107). 
 

Stem cell homing is defined as the arrest of stem 
cells within the vasculature of a tissue followed by 
transmigration across the endothelium, and engrafting into 
the tissue where they exert local, functional effects. Both 
MSCs and NSCs have proved to be capable of homing into 
inflamed areas of the CNS selectively after intravenous or 
intraarterial injection (95-97). The proposed mechanism of 
homing that sustains this phenomenon includes two ways: 
the active way that stem cells actively home to tissues using 
leukocyte-like cell-adhesion and transmigration and/or the 
passive way that stem cells become passively entrapped in 
small-diameter blood vessels (105). The active process 
consists of tethering, rolling and firm adhesion to inflamed 
endothelial cells, and extravasation into inflamed CNS 
areas, which is sequentially mediated by the constitutive 
expression of functional cell adhesion molecules (such as 
CD44), integrins (such as α4, β1) and chemokine receptors 
(such as CCR1, CCR2, CCR5, CXCR3 and CXCR4) on the 
surface of stem cells. In addition to chemokines and 
adhesion molecules, MSCs secrete proteases that regulate 
transmigration and invasion of the basement membrane of 
endothelium and degrade extracellular matrix during 
chemotaxis (105,108). Moreover, the transendothelial 
migration is reduced by both blocking antibodies toward 
matrix metalloproteinase-2 (MMP-2) and SiRNA 
knockdown of MMP-2 in MSCs (109). Therefore, 
inflammation, as the common feature of disease in the brain 
(110, 111) although alterations in the extracellular milieu 
during disease or injury are distinct for each pathology, is a 
key player in the homing and recruitment of stem cells to 
sites of CNS injury where factors such as SDF-1α, 

leukaemia inhibitory factor (LIF) and interleukin-6, are 
overexpressed (112).  

 
4.3. Role of inflammation on stem cell differentiation 
and integration 

Studying inflammatory effects on stem cells 
differentiation, embryonic rat striatal cells transplanted into 
the excitotoxic striatum lesion shows that the majority of 
grafted NSCs exhibit glial-like morphology and only a very 
small fraction develop into neuron-like characteristics 
(113). Surprisingly, it has been shown that, even in the 
quiescent form, microglial cells promote astrogliogenesis 
and maintenance of NSCs through their paracrine effects 
and that their effects are caused by activation of Stat3 
function(114). 

 
Considering the proinflammatory cytokines 

released by activated microglia, it is demonstrated that IL-6 
and LIF released by activated microglia promote astrocytic 
differentiation of NS/PCs via the activation of the 
JAK/STAT and MAPK pathways (115). IL-6 promotes 
both astrogliogenesis and oligodendrogliogenesis and 
diverts stem cells into a glial program, suggesting that IL-6 
inhibition of neurogenesis is primarily due to reduced 
neuronal differentiation rather than selective influences on 
cell death or proliferative activity (116). Several studies 
indicate that exposure of hippocampal NPCs to TNF-α 
when they are undergoing differentiation but not 
proliferation has a detrimental effect on their neuronal 
lineage fate, which may be mediated through increased 
expression of Hes1 (117,118). However, it is proved that 
low concentrations (1 ng/ml) of TNF-α promote 
axonogenesis and neuronal maturation of subventricular 
zone (SVZ) cell cultures (119). 

 
In addition, neurogenesis is downregulated when 

NSCs are exposed to NO, and the decreased ability to 
generate neurons is also found to be transmitted to the 
progeny of the cells, whereas astroglial differentiation is 
instead upregulated. But it is suggested that endogenous 
NO contributes to the maturation of neurons that recently 
arrive to the olfactory bulb (90). 

 
However, Aarum J. et al studied microglial 

effects on differentiation, and found that precursor cell 
cultures from both the embryonic and the adult brain, 
grown in conditioned media from activated microglia, 
contained a higher proportion of neurons than would be 
expected from their spontaneous differentiation alone. It is 
speculated that microglia cells play a purely instructive role 
in inducing the precursor cells to be committed for a 
neuronal fate, instead of selectively promoting the survival 
of neuronal cells e.g., by providing neurotrophins or 
producing factors that are toxic to astrocytes (99). Further 
studies have revealed that hippocampal neurogenesis is 
associated with the recruitment of T cells and the activation 
of microglia, and is markedly impaired in immune-deficient 
mice (120), implying that microglial cells play an important 
role in neurogenesis (121,122). Therefore, the regulation of 
the immune-cell activity is crucial: too little immune 
activity (as in immune deficiency syndromes) or too much 
immune activity (as in severe inflammatory diseases) can 
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result in impaired neurogenesis (123), and the excessive 
glial scar formation would prohibit the new generated 
neurons from integrating morphologically into normal 
tissue (124). 

 
5. GRAFT REJECTION AND 
ALLOGENEIC/XENOGENEIC STEM CELLS 
 

Not only will transplanted cells encounter an 
inflamed environment, but they may contribute to it, 
because allogeneic/xenogeneic stem cells would not be 
immunologically matched to the host and induce some 
level of the immune rejection response. It is proved that in 
vitro cultured NSCs before differentiation exhibit low 
MHC molecule expression that then increases especially in 
differentiated astrocytes (125, 126). Isolated NSCs express also 
the costimulatory molecules CD80 and CD86. The exposure to 
proinflammatory cytokines such as IFN-γ and TNF-α enhances 
the expression of CD80, CD86 and MHC class I (but not class 
II) molecules (127, 128). This renders the NSCs recognizable 
by T cells or natural killer (NK) cells in vitro, leading to 
classical immune-mediated cytolysis (129). NSCs transplanted 
in a rat model of spinal cord injury were ultimately rejected 
after an extended period of growth and maturation (130). Even 
when grafts survive, numerous CD45+ cells are observed 
around the allograft in patients receiving grafts of fetal nigral 
tissue to treat PD (131). Compared with autologous NSCs 
transplantation, allografts not only show decreased survival, 
but also decreased migration away from the transplant site and 
decreased differentiation of neurons (132, 133). 

 
Embryonic stem cells (ES) express low levels of HLA 

class I molecules which are up-regulated by IFN-γ stimulation 
or after differentiation (134, 135). Human MSCs express low-
intermediate level of HLA-class I and LFA-3, but do not 
express the co-stimulatory molecules CD80, CD86, CD40 or 
CD40L (136, 137). In addition, human MSCs express HLA-G, 
a non-classical MHC class I antigen that may prevent the 
immune response against MSCs (138).  
 

Although the graft is proved to survive well with 
marked clinical benefit to PD, T cells have been observed in 
the site of the graft after cessation of cyclosporin A(131, 139). 
Moreover, in patients with Huntington’s disease who 
underwent neural transplantation containing striatal anlagen in 
the striatum a decade earlier, activated microglia, within and 
surrounding those components of the grafts containing 
striatal markers, are found periodically engulfing neuronal 
elements of the graft, suggestive of potential phagocytosis 
(124). These data indicate that chronic rejection events may 
take place, and the chronic inflammatory reactions may 
theoretically play a role in the reported development of 
abnormal movements (dystonia and dyskinesias) seen in 
the double-blind U.S. transplant trials (140). 

 
6. IMMUNOMODULATORY EFFECTS OF STEM 
CELLS 
 

Traditionally, neuroinflammation plays an 
important role in the fate of endogenous and grafted stem 
cells, and the initial purpose of stem cell transplantation for 
neurodegenerative disease is cell replacement therapy, 

which aims at promoting structural and functional repair of 
damaged tissues. However, experimental studies reveal that 
grafted stem cells display immunomodulatory functions 
that promote neuroprotection (141,142), and now most of 
such studies focus on the treatment of multiple sclerosis 
(MS), a chronic inflammatory neurodegenerative disease 
with loss of axons and myelin sheaths. 

 
Experimental autoimmune encephalomyelitis 

(EAE) is an animal model of MS (143,144). The 
systemically-injected NPCs selectively enter the inflamed 
CNS, survive in perivascular CNS areas, and exert 
immune-like function effects that promote long-lasting 
neuroprotection by inducing programmed cell death of 
blood-borne, CNS-infiltrating pro-inflammatory TH1 (but 
not anti-inflammatory TH2) cells (101,145). Other studies 
demonstrate that both intraventricular and intravenous 
NPCs transplantations attenuate brain inflammation in 
acute and chronic EAE. Especially, neural precursors 
grafted intravenously enter lymph nodes and spleen instead 
of CNS, inhibit the activation and proliferation of T cells, 
and markedly reduce their encephalitogenicity, indicating 
that NPCs exert an immunomodulatory effect by peripheral 
immunosuppression (146,147). Additionally, 
subcutaneously injected NPCs also accumulate and survive 
within draining lymph nodes for over two months, but not 
in the CNS, where a permissive ectopic germinal niche-like 
micro-environment in perivascular lymph node area is 
established. Within this context, surviving NPCs hamper 
the activation of myeloid dendritic cells (DC) via the 
release of major developmental stem cell regulators, 
including the morphogens bone morphogenetic protein 
(BMP)-4, sonic hedgehog (Shh), the extracellular matrix 
protein tenascin C, and the BMP antagonist Noggin. This 
BMP-4-dependent mechanism that hinders the DC 
maturation is highly specific for immune regulatory NPCs, 
and, in turn, leads to the steady restraint of the expansion of 
antigen-specific (encephalitogenic) T cells (148). 
Furthermore, NSCs genetically modified to overexpress IL-
10, an effective anti-inflammatory cytokine (IL-10–NSCs), 
significantly enhance both the ability of these cells to 
suppress autoimmune responses in the periphery and in 
inflammatory foci of the CNS and the ability of 
transplanted NSCs to differentiate into more neurons and 
oligodendrocytes but fewer astrocytes. Importantly, via 
reduced local inflammation and increased debris clearance, 
IL-10–NSCs convert a hostile environment into a 
supportive one, which promotes endogenous remyelination 
and neuron/oligodendrocyte repopulation (149). 

 
Aiming at investigating the effect on acute 

cerebral and peripheral inflammation after intracerebral 
haemorrhage (ICH) of NSCs, it is found that NSCs injected 
intravenously at 2 after collagenase-induced ICH results in 
fewer initial neurologic deteriorations and reduced brain 
oedema formation, inflammatory infiltrations and apoptosis 
in perihematomal areas, and that NSCs modulate the 
splenic inflammatory pathway to reduce the cerebral 
inflammation. Additionally, NSCs inhibit in vitro 
macrophage activations after LPS stimulation in a cell-to-
cell contact dependent manner. Therefore, intravenous 
NSCs administration during the hyperacute stage in stroke 
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modulates innate cerebral inflammatory responses with 
interacting with peripheral inflammatory systems, and 
protects the brain via a bystander mechanism rather than 
via any direct cell replacement (150). 

 
MSCs have been proved to have a number of 

unique immunological properties, and it is demonstrated 
that the MSC-mediated immunosuppression is exerted 
nonselectively on virtually all the cells of the immune 
system. Besides the suppression of proliferation of T, B 
(151,152), and dendritic cells through the induction of cell 
division arrest, MSCs are able to inhibit proliferation of NK 
cells and impair dendritic cell maturation, as well as 
antigen presentation (152,153). The immunomodulatory 
properties of MSCs in cell transplantation as a protective 
mechanism have also successfully been exploited in in vitro 
and in a number of disease models including autoimmune 
encephalomyelitis, PD, renal ischemia-reperfusion injury, 
toxic-induced hepatic failure, diabetes, rheumatoid arthritis and 
graft-versus host disease (108,152). Gerdoni E and his 
colleagues injected intravenously MSCs to treat EAE, and a 
significantly milder disease and fewer relapses, with decreased 
number of inflammatory infiltrates, reduced demyelination, 
and axonal loss were observed. Moreover, proliferation of T 
cells from the lymph nodes and the spleen of MSC-treated 
mice was significantly impaired, and total antigen specific IgG 
production, as well as that of each IgG subclass, was 
significantly inhibited, suggesting that MSCs could effectively 
ameliorate relapsing-remitting EAE through the inhibition of 
pathogenic T- and B-cell responses directed against the 
immunizing antigen. MSCs entered the central nervous system 
but did not transdifferentiate into neural cells (142,153). In 
contrast, Kassis I and colleagues’ study demonstrated that the 
intravenously and intraventricularly injected MSCs were 
attracted to the areas of central nervous system inflammation 
and expressed neuronal, astrocytic, and oligodendrocytic 
markers, and the direct injection of MSCs into the ventricles 
of the brain led to a more pronounced reduction in 
infiltrating lesions, indicating an additional and possibly 
more important local in situ immunomodulatory effect 
(154). 

 
MSCs can also inhibit the activation of microglia 

and have a protective effect on the dopaminergic system 
through an anti-inflammatory mechanism. In co-cultures of 
LPS-stimulated microglia and MSCs using a Transwell 
culture chamber system to physically separate LPS-
stimulated microglia and MSCs in order to inhibit cell-cell 
contact, the MSC treatment significantly decreases LPS-
induced microglial activation, TNF-α, iNOS mRNA 
expression, and production of NO and TNF-α, while 
significantly increases expression of anti-inflammatory 
cytokines (IL-6, IL-10, and TGF-β). In the animal study, 
the MSCs treatment in rats via the tail vein reveals that 
tyrosine hydroxylase-immunopositive (TH-ip) neuronal 
loss induced by LPS stimulation is considerably decreased 
in the SN and is clearly accompanied by a decrease in 
microglial activation, as well as expression of TNF-a and 
iNOS mRNA and production of TNF-a (155). Additionally, 
intravenous transplantation of MSCs into the MPTP-
induced PD model can also lead to repairing of BBB, 
reduction of mannose-binding lectin (MBL) infiltration at 

SNpc and MBL expression in the liver, suppression of the 
activation of microglia, together with prevention of 
dopaminergic neuron death. But no MSCs are observed to 
differentiate into dopaminergic neurons, while the MSCs 
migrate into the SNpc and release TGF-β1 there (156). A 
common feature of these studies is that the therapeutic 
effect of MSCs does not seem to be associated with 
differentiation into neural cells but mainly to be the result 
of anti-inflammatory activity coupled with a protective 
effect on the surrounding neural tissue, suggesting that 
MSCs have a neuroprotective effect on dopaminergic 
neurons through anti-inflammatory actions mediated by the 
modulation of microglial activation. 

 
Taken together, several types of stem cells have 

shown to possess immunomodulatory properties, including 
NSCs, bone marrow stromal cells, hematopoietic stem 
cells, and embryonic stem cells (141). Although it is yet to 
be determined whether various types of stem cells share 
common immune characteristics, and the mechanisms by 
which these cells exert their immunosuppressive function 
are still unclear, it is likely that both cell-to-cell contact and 
soluble factors are involved in anti-inflammatory activity of 
stem cells (108). Therefore, the neuroprotective effect of 
stem cells in PD may be mediated not only by their 
differentiation into dopaminergic neurons and trophic 
factors secreted, but also by their ability of 
immunosuppression that may contribute to functional 
recovery. 

 
7. CONCLUSIONS AND PERSPECTIVES 
 

Reactive microgliosis and sustained, chronic 
neuroinflammation play an important role in the 
pathogenesis of PD, and activated microglia form a vicious 
self-perpetuating neuronal degeneration cycle resulting in 
the long-term progressive neurodegeneration. 
Neuroinflammation acts as double-edged swords, 
simultaneously beneficial and detrimental, on modulating 
neurogenesis and biology of endogenous / exogenous stem 
cells including cell survival, proliferation, homing, 
migration, differentiation and integration in response to 
brain pathology, and in return, stem cells display 
immunomodulatory functions which are beneficial for 
dopaminergic neurons via an anti-inflammatory action. In 
order to improve cell therapy and optimize immune 
modulatory treatments for PD, further works as followings 
should be done in the future. First, given the multiple 
functions of inflammatory and immune molecules, much 
more needs to be learned about their more detailed and 
special functions in PD and stem cell biology. Second, in 
order to promote the beneficial effects and reduce or inhibit 
the detrimental effects of inflammation on neurogenisis of 
stem cells, measures to direct and instruct instead of simply 
suppress the inflammatory machinery should be taken. 
Third, measures to enhance the immunomodulatory 
capacities of stem cells should be researched. 
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