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1. ABSTRACT 
 

Lamin A and lamin C (A-type lamins, both 
encoded by the LMNA gene) are major components of the 
mammalian nuclear lamina, a complex proteinaceous 
structure that acts as a scaffold for protein complexes that 
regulate nuclear structure and function. Abnormal 
accumulation of farnesylated-progerin, a mutant form of 
prelamin A, plays a key role in the pathogenesis of the 
Hutchinson-Gilford progeria syndrome (HGPS), a 
devastating disorder that causes the death of affected 
children at an average age of 13.5 years, predominantly 
from premature atherosclerosis and myocardial infarction 
or stroke. Remarkably, progerin is also present in normal 
cells and appears to progressively accumulate during aging 
of non-HGPS cells. Therefore, understanding how this 
mutant form of lamin A provokes HGPS may shed 
significant insight into physiological aging. In this review, 
we discuss recent advances into the pathogenic 
mechanisms underlying HGPS, the main murine models of 
the disease, and the therapeutic strategies developed in 
cellular and animal models with the aim of reducing the 
accumulation of farnesylated-progerin, as well as their use 
in clinical trials of HGPS.  

 
 
 
 
 
 
 
 
 
 
 
 
2. THE NUCLEAR LAMINA  
 

The nuclear envelope in eukaryotic cells 
separates the nucleoplasm from the cytoplasm (Figure 1). 
This structure is composed of the outer and inner nuclear 
membranes (ONM and INM, respectively), the nuclear 
pore complexes (NPCs) and the nuclear lamina. The ONM 
is continuous with the endoplasmic reticulum, while the 
INM is connected to the nuclear lamina. The ONM and 
INM are separated by a luminal space of 30 to 50 nm and 
are joined at the NPCs, which control the transport of 
macromolecules between the nucleus and the cytoplasm (1, 
2). The nuclear lamina is a filamentous protein layer that 
provides mechanical stability to the INM and has important 
functions in a variety of cellular processes, such as nuclear 
positioning (3, 4), chromatin structure and NPC 
organization (5-10), nuclear envelope breakdown and 
reassembly during mitosis (11), DNA replication (12, 13), 
DNA damage response, cell cycle progression, cell 
differentiation (14-16), cell polarization during cell 
migration (17) and transcriptional control (10, 18). The 
main components of the nuclear lamina are type-V 
intermediate filament proteins called lamins, which have a 
central α-helical rod flanked by two globular domains, a 
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Figure 1. The mammalian nuclear envelope. A representation of the nucleus showing the location of lamins and other lamin-
interacting proteins. BAF: Barrier to autointegration factor; LAP1/2: Lamin-associated polypeptide 1/2; SUN: Sad1p/UNC-84 
domains; LBR: Lamin B receptor. 

 
short N-terminal “head” and a long C-terminal “tail” (19, 
20). Lamins form coiled-coil dimers that associate 
longitudinally to form head-to-tail polymers (21).  
 

Lamins are classified as A-type or B-type based 
upon their primary sequence and their biological properties. 
For example, A-type lamins are basic and B-type lamins 
acidic, as revealed by isoelectric focusing and conventional 
two dimensional SDS-PAGE (22, 23). Human B-type 
lamins are encoded by the LMNB1 gene (protein lamin B1) 
located at chromosome 5q23.3-q31.1 (24) and the LMNB2 
gene (proteins lamin B2 and lamin B3) located at 
chromosome 19p13.3 (25). B-type lamins are expressed 
throughout development, with lamins B1 and B2 expressed 
in most cells (26-28) and lamin B3 only in spermatocytes 
(29). A-type lamins are encoded by the LMNA gene, which 
has 12 exons and maps to chromosome 1q21.2-q21.3. The 
main products of LMNA are the proteins lamin A (664 
aminoacid residues in the non-processed form) and lamin C 
(572 residues), but the gene also encodes lamin A∆10 and 
lamin C2 (30-32). The mRNA sequence of lamin A 
coincides with that of lamin C up to codon 566, after which 

lamin C, which results from an alternate splice, lacks part 
of exon 10 and all of exons 11 and 12 (32). Lamin A, like 
lamin B but unlike lamin C, possesses a C-terminal CAAX 
motif, which directs farnesylation of the protein (33, 34); in 
contrast, lamin C displays a unique six amino-acid 
sequence, VSGSRR, at its C-terminal end (32). Lamin C2, 
a germline-specific product of LMNA, contains a specific 
amino-terminal hexapeptide GNAEGR (31); and lamin 
A∆10, which is expressed in tumor cell lines and several 
normal cell types, lacks exon 10 (30). A-type lamins (lamin 
A and lamin C) are expressed in a developmentally 
regulated manner (33, 34). In general, lamin A and C are 
mainly expressed in differentiated cells and not in highly 
proliferating tissues (35), and have therefore been 
suggested as early markers of cellular differentiation (36). 
 
3. SYNTHESIS AND POST-TRANSLATIONAL 
PROCESSING OF LAMIN A AND C  
 

Lamin A and lamin B contain a CAAX motif at 
their C-terminal end. CAAX boxes are consensus 
sequences for protein isoprenylation which occurs through 
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Figure 2. Defective pre-lamin A processing in HGPS, and nuclear abnormalities induced by progerin accumulation. (A) In cells 
carrying a normal LMNA gene, prelamin A undergoes a series of post-translational modifications. First, the cysteine in the C-
terminal CSIM moiety is farnesylated by the action of farnesyl transferase (FTase). Subsequently, the three terminal amino acids 
are cleaved by the endoprotease Rce1 and the newly accessible cysteine is methylated by the carboxyl methyltransferase ICMT. 
Finally, the fifteen C-terminal residues, including the isoprenylated and carbosymethylated C-terminal cysteine, are cleaved by 
the endoprotease Zmpste24/FACE-1. In many HGPS patients, a single de novo silent base pair mutation in codon 608 of LMNA 
(GGC to GGT, G608G) activates a cryptic splice site, causing the in-frame deletion of a sequence encoding a fifty amino acid 
stretch that contains the Zmpste24 cleavage site. Therefore the last processing step cannot occur and cells produce progerin, a 
mutant form of farnesylated pre-lamin A whose accumulation produces nuclear abnormalities. (B) Top: Confocal microscopy 
images showing lamin A/C distribution in the nuclei of human fibroblasts from a healthy subject (left) and a HGPS patient 
(right). The arrow marks a site of nuclear blebbing. Middle: Western-blot analysis of cell extracts from control subjects and 
HGPS patients showing the presence of lamin A/C and progerin. Bottom: Confocal microscopy images showing the subcellular 
distributions of HA-lamin A, HA-progerin and chromatin in transfected U2OS cells. The arrow marks a site of nuclear blebbing. 

 
the covalent attachment to the cysteine residue of 
isoprenoid moieties, either the 15 carbon isoprenoid 
farnesyl or the 20 carbon geranylgeranyl. The CAAX 
motifs of lamin A and lamin B —CSIM and CAIM, 
respectively— direct farnesylation of the protein. 
Isoprenylation is the first of a series of modifications which 
confer hydrophobicity to the C-terminal end of proteins, 
and is thought to facilitate their interactions with 
membranes (37, 38). Farnesylation of the cysteine at the 
CAAX motif occurs through the formation of a thioether 
linkage catalyzed by farnesyltransferase (FTase), an 
enzyme which uses farnesyldiphosphate as substrate. This 
step is required for subsequent processing of the protein by 

two enzymes that recognize the prenyl moiety: an 
endoprotease called Rce1 (39, 40) that cleaves the 3 
terminal amino acids, and Icmt, a carboxyl 
methyltransferase (41, 42) that methylates the newly 
accessible cysteine. In lamin B, these modifications are 
thought to favor its interaction with the INM. Although 
isoprenylation is stable throughout the life-span of the 
protein, lamin B has been proposed to undergo a 
methylation-demethylation cycle during mitosis (43). 

 
Uniquely among isoprenylated proteins, lamin A 

undergoes a second proteolytic cleavage after the three 
initial processing steps described above (Figure 2). This 
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cleavage is carried out by the endoprotease FACE-1, a zinc 
metalloproteinase also known as Zmpste24 (zinc 
metallopeptidase STE24 homolog, S. cerevisiae), which 
recognizes farnesylated lamin A (44). Zmpste24 cleaves 
lamin A after Tyr 646, removing the 15 C-terminal 
residues, including the farnesylated and 
carboxylmethylated C-terminal cysteine. Therefore mature 
lamin A is not an isoprenylated protein. The farnesylated 
precursor, non-cleaved form is known as prelamin A 
(Figure 2A). Since farnesylation is required for recognition 
by Zmpste24, prelamin A, which appears as a higher 
molecular weight form in SDS-PAGE, accumulates in 
conditions under which isoprenylation is inhibited (45). 
Although Zmpste24 has been detected in the endoplasmic 
reticulum, several lines of evidence situate this enzymatic 
activity in the nucleus (46). The current belief is that 
isoprenylation facilitates the initial assembly of lamin A in 
the nuclear lamina (47), while subsequent removal of the 
isoprenoid moiety allows its solubilization, for instance 
during mitosis (48). However, additional work is required 
to clarify these questions under normal and pathological 
conditions. 

 
4. LAMINOPATHIES  
 

LMNA mutations or defective posttranslational 
processing of prelamin A cause the majority of human 
diseases and clinical syndromes termed laminopathies, 
which can be divided into systemic disorders and diseases 
whose effects are restricted to specific tissues (49-52). 
Systemic diseases include: 1) Hutchinson-Gilford progeria 
syndrome (HGPS), in which patients exhibit premature 
aging, alopecia, loss of subcutaneous fat, premature 
atherosclerosis and associated myocardial infarction and 
stroke; 2) atypical Werner’s syndrome, in which patients 
show premature aging, cataracts, sclerodermatous skin, 
premature atherosclerosis and hair graying; 3) Restrictive 
dermopathy (RD), a neonatal lethal form of HGPS 
characterized by intrauterine growth retardation, translucent 
and partly eroded skin, prominent superficial vasculature 
and epidermal hyperkeratosis, multiple joint contractures, 
facial deformities (small mouth, small pinched nose and 
micrognathia), skull defects, thin dysplastic clavicles, and 
pulmonary hypoplasia; and 4) Mandibuloacral dysplasia, in 
which patients exhibit mandibular and clavicular 
hypoplasia, acroosteolysis, delayed closure of the cranial 
suture, joint contractures and lipodystrophy, alopecia and 
insulin resistance (51, 52).  

 
Tissue-restricted laminopathies that affect striated 

muscles or adipose tissue distribution include: 1) Emery-
Dreifuss muscular dystrophy (EDMD), in which patients 
progressively develop contractures and muscle weakness, 
wasting of skeletal muscle and cardiomyopathy with 
conduction disturbance; 2) dilated cardiomyopathy, in 
which patients show ventricular dilatation, impaired 
systolic contractility, arrhythmias, and conduction defects; 
3) limb-girdle muscular dystrophy 1B, in which patients 
slowly develop progressive shoulder and pelvic muscle 
weakness and wasting, with later development of 
contractures and cardiac disturbances; 4) Charcot-Marie-
Tooth neuropathy type 2B1, characterized by lower-limb 

motor deficits, walking difficulty, secondary foot 
deformities and reduced or absent tendon reflexes in the 
second decade (51, 52); and 5) Dunningan-type familial 
partial lipodystropy, characterized by altered adipose tissue 
distribution, with loss of adipose tissue in the trunk and 
limbs and concomitant accumulation in the neck and face, 
often in association with insulin-resistant diabetes, 
hypertriglyceridemia and increased susceptibility to 
atherosclerosis (51, 52). EDMD, limb-girdle muscular 
dystrophy 1B and dilated cardiomyopathy are sometimes 
caused by the same LMNA mutations and occur in the same 
families, and can therefore be considered variants of the 
same disease (53). 
 
5. HGPS AND RD 
 

In many HGPS patients, a single de novo silent 
base pair mutation in codon 608 of LMNA (GGC to GGT, 
G608G) activates a cryptic splice site in exon 11, causing 
in-frame deletion of a sequence encoding a 50 amino acid 
stretch that contains the Zmpste24 cleavage site (54, 55). 
Therefore the last processing step leading to mature lamin 
A protein cannot occur and mutant prelamin A remains 
farnesylated throughout its life-span (Figure 2A). This 
anomalous protein, known as progerin, displays an 
apparent molecular weight on SDS-PAGE intermediate 
between prelamin A and the mature protein (56) (Figure 
2B). RD patients either carry the G608G LMNA mutation 
or exhibit homozygous loss of FACE-1/ZMPSTE24. The 
absence of Zmpste24 function in RD patients causes 
accumulation of farnesylated-prelamin A, lack of lamin A, 
and misshapen nuclei with numerous folds and blebs (57-
59). 

 
Several lines of evidence demonstrate the key 

role played by the accumulation of progerin in the 
pathogenesis of HGPS. Transfection of either progerin or a 
non-cleavable form of prelamin A, both of which are 
tightly associated with the nuclear membrane, induces 
nuclear abnormalities in cells (60, 61). Similarly, antisense 
oligonucleotides against exon 11 sequences downstream 
from the exon 11 splice donor site promote alternate 
splicing in both wild-type and HGPS fibroblasts, and cause 
increased synthesis of progerin and the same nuclear shape 
and gene-expression perturbations observed in HGPS 
fibroblasts (62). During mitosis, this abnormal association 
of progerin appears to delay the onset and progression of 
cytokinesis, and may also impair the targeting of lamina 
components to the nuclei of daughter cells and alter entry 
into S-phase mediated by hyperphosphorylation of the 
retinoblastoma gene product (pRB) (48). Progerin may also 
promote DNA-damage (51, 63), alterations in DNA repair 
and genome instability (64, 65), and appears to interfere 
with nuclear architecture by various mechanisms. Cells 
expressing progerin contain low levels of wild-type lamin 
A, which accumulates at the nuclear periphery (66). The 
deleterious effect of progerin accumulation thus seems to 
dominate over the function of wild-type lamin A. 
Interestingly, progerin is also present in small amounts in 
normal cells due to sporadic use in healthy subjects of the 
same splice site that produces HPGS, and this has been 
proposed to play a role in physiological aging (61, 66-69). 
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Very recently, Olive et al. found that progerin-positive cells 
reside in non-HGPS arteries and that vascular progerin 
accumulates in vivo with age (70). Moreover, accumulation 
of pre-lamin A, possibly due to age-dependent 
downregulation of Zmpste24/FACE-1, has been identified 
as a novel biomarker of vascular smooth muscle cell aging 
and atherosclerosis that acts to accelerate senescence (71). 
Thus, accumulation of prelamin A and progerin in the 
vessel wall may be a potential new element causing age-
dependent vascular alterations.  

 
6. MOUSE MODELS OF HGPS AND RD 
 

The development of mouse models has greatly 
increased knowledge about the etiopathogenesis of 
laminopathies. Disruption of the gene encoding Zmpste24 
in mice causes defective lamin A processing, the 
accumulation of prelamin A at the nuclear envelope, and 
muscular and adipocyte alterations that resemble those 
associated with some laminopathies (44, 72). This mouse 
model shows nuclear envelope abnormalities (44), 
hyperactivation of p53-dependent signaling (73), cellular 
senescence (73), stem cell dysfunction (74, 75), and the 
development of a progeroid-like phenotype characterized 
by a marked shortening of life expectancy (76). 

 
Studies with the lamin C-only mouse 

(LmnaLCO/LCO), which produces lamin C but not lamin A or 
prelamin A, show that lamin A is dispensable in mice (77). 
Moreover, the presence of a single LmnaLCO allele 
eliminated the nuclear shape abnormalities and progeria-
like disease phenotypes of Zmpste24-/- mice (Zmpste24-/- 
LmnaLCO/+) (77). Analogous reversion of the nuclear 
abnormalities and pathological manifestations of the 
disease occurred with the absence of an allele of lamin A/C 
in the Lmna+/− Zmpste24-/- mice (73). On the other hand, 
heterozygous mice carrying a gene-targeted HGPS allele 
(LmnaHG/+) show several progeria-related phenotypes, 
including bone alterations, reduction in subcutaneous fat 
and premature death (78). Knock-in mice expressing 
nonfarnesylated progerin (LmnanHG/+) have a milder 
phenotype and live longer than LmnaHG/+ mice, and the 
nuclei of LmnanHG/+ embryonic fibroblasts are less 
misshapen (79). Mice expressing geranylgeranylated 
progerin (LmnaggHG/+) exhibit milder bone disease and 
survive longer than LmnaHG/+ mice, but also show a 
progeroid phenotype (80). Transgenic mice that carry a 
human bacterial artificial chromosome that contains the 
LMNA G608G mutation show progressive loss of vascular 
smooth muscle cells in large arteries —a common feature 
of HGPS— without the external phenotype seen in human 
progeria (81). Surprisingly, although the substitution of 
proline for leucine at residue 530 in lamin A causes 
autosomal-dominant EDMD in humans, homozygous 
LmnaL530P/L530P mice show phenotypes markedly 
reminiscent of symptoms observed in progeria patients, 
including severe growth retardation and pathologies in 
bone, muscle and skin (82); nevertheless, these mice show 
no obvious defects in large vessels. 

 
Other authors have developed mouse models 

expressing progerin in specific tissues. Using the keratin 14 

promoter, Wang et al (83) generated a transgenic mouse 
line that expresses progerin in the epidermis. Although the 
skin keratinocytes of these mice show abnormalities in 
nuclear morphology, both hair growth and wound healing 
are normal. In contrast, Sagelius et al (84) reported 
abnormalities in the skin and teeth of transgenic mice 
carrying the HGPS-causing LmnaG608G mutant under the 
control of the tetracycline-regulated (tet-off) keratin 5 
promoter.  

 
Recently, Davis et al (85) suggested that lamin C 

synthesis is dispensable in mice and that the failure to 
convert prelamin A to mature lamin A causes 
cardiomyopathy (at least in the absence of lamin C), but not 
progeria. These conclusions are based on the observation 
that knock-in mice harboring a mutant Lmna allele 
(LmnanPLAO) that yields exclusively nonfarnesylated 
prelamin A (and no lamin C) have no evidence of progeria 
but died from cardiomyopathy, and that this phenotype 
could not be ascribed to an absence of lamin C because 
mice expressing an otherwise identical knock-in allele 
yielding only wild-type prelamin A (and no lamin C) 
appeared normal.  

 
7. STUDIES WITH CELLS FROM HGPS AND RD 
PATIENTS 
 

As a consequence of accumulation of progerin or 
prelamin A, the nuclei of cells from HGPS and RD patients 
are lobed and show nuclear lamina thickening, loss of 
peripheral heterochromatin and clustering of nuclear pores 
(59, 66, 86, 87). HGPS and RD cells also accumulate 
double-strand breaks that produce genome instability (64, 
88), and fibroblasts from these patients exhibit alterations 
in DNA repair pathways and in the recruitment of repair 
factors (64, 88, 89). Accumulation of DNA damage causes 
cellular senescence (90, 91), a feature of HGPS cells with 
progerin accumulation (92). Cellular senescence is also 
increased by treatment with inhibitors of the human 
immunodeficiency virus protease that also inhibit 
Zmpste24, resulting in accumulation of farnesylated 
prelamin A (93). DNA damage induces p53 activation, a 
characteristic of cells from RD and HGPS patients (94). 
Moreover, preventing progerin accumulation associated to 
physiological aging reverts overexpression of p53 target 
genes in aged individuals (95). The activation of p53 might 
explain the absence of cancer in HGPS patients (96).  

 
The expression of progerin affects the cell cycle 

through its abnormal association with membranes during 
mitosis, delaying the onset and progression of cytokinesis 
and impairing the targeting of nuclear envelope/lamina 
components to daughter cell nuclei in early G1-phase (48). 
Additionally, progerin delays the transition to S-phase by 
inhibiting the hyperphosphorylation of pRb by cyclin 
D1/cdk4 (48). Progerin accumulation also causes abnormal 
chromosome segregation and binucleation (61). Di Masi et 
al (97) found that the accumulation of unprocessed 
prelamin A in fibroblasts from mandibuloacral dysplasia 
patients induces DNA damage and reduces DNA repair 
after irradiation, resulting in alterations in the checkpoint 
response in the G1-to-S transition.  
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A-type lamins interact with peripheral chromatin 
(19), serving as a platform for genome organization (20). 
Accumulation of progerin or prelamin A in HGPS patients 
leads to chromatin disorganization (86), and prelamin A 
accumulation also alters histone methylation and epigenetic 
control (98, 99). It is also noteworthy that lamin A and C 
interact with several transcription factors and regulatory 
proteins, including pRb and MyoD (100-105), c-Fos (106, 
107), SREBP1 (108, 109), MOK2 (110, 111), MEL-18 
(112), and TonEBP (113). Lamin A and C also modulate 
the activity of several signaling molecules (reviewed in 
(10), including Wnt/β-catenin (74, 114, 115), ERK1/2 (107, 
116-118), Notch (75, 119), and transforming growth factor 
β (TGF-β) (16, 120), and progerin expression in 
mesenchymal stem cells causes defective signaling via 
Notch, a pathway that regulates stem cell differentiation 
(10). Although evidence is accumulating that these 
interactions play important roles in the regulation of signal 
transduction pathways and gene transcription in health and 
disease (reviewed in (10, 121), more work is needed to 
firmly establish whether the expression of lamin A mutants 
can provoke laminopathies at least in part though 
alterations in gene expression. 

 
8. GENE THERAPY STRATEGIES FOR THE 
TREATMENT OF PROGERIA 
 

Potential new approaches to reduce the 
pathological consequences of progerin accumulation 
include the use of a morpholino antisense oligonucleotide 
directed against the aberrant alternative splice donor site in 
LMNA exon 11 of HGPS patients. Transfection of this 
antisense oligonucleotide in HGPS fibroblasts reduces the 
levels of progerin mRNA and protein, reverses nuclear 
shape abnormalities and corrects alterations in gene 
expression associated with the disease (66). Similarly, 
reduced progerin expression and improved cellular 
phenotypes are achieved with a small-hairpin RNA against 
progerin, confirming that progerin downregulation can 
regress nuclear abnormalities (77). It will be of interest to 
test the effect of these approaches in mouse models of 
progeria. An important limitation of these gene therapy 
strategies is the small size of mRNA regions —the splice 
donor site or the exon 11-12 junction— that can be targeted 
by these approaches. As an alternative, the use of antisense 
strategies against the full transcript of prelamin A has been 
suggested (122), based on the observation that mature 
lamin A and prelamin A are apparently dispensable in 
mice, and also on experiments showing that RNA 
interference-mediated reduction of prelamin A transcript 
and protein improves nuclear morphology in Zmpste24-null 
fibroblasts (77). 
 
9. FARNESYLTRANSFERASE INHIBITORS AS 
THERAPEUTIC AGENTS FOR THE TREATMENT 
OF PROGERIA SYNDROMES 
 

Studies from several groups have demonstrated 
that reducing the expression of lamin A ameliorates the 
symptoms associated with progerin accumulation. For 
example disruption of one Lmna allele in Zmpste24-null 
mice protects against several disease phenotypes, including 

retarded growth (73, 77). Moreover, using a tetracycline-
regulated mouse model of progeria, Sagelius et al. 
demonstrated that the damage caused by progerin 
expression is not irreversible, at least in skin and teeth 
(123). 

 
Initial interest in the clinical potential of 

inhibiting FTase was aimed at suppressing the transforming 
activity of Ras oncogenes, farnesylated proteins that require 
this posttranslational modification for function (124). 
Given the implication of isoprenylated progerin in the 
nuclear abnormalities of progeroid syndromes, the 
hypothesis was raised that pharmacological inhibition of 
progerin farnesylation might also be beneficial in this 
setting. Available FTase inhibitors (FTIs) fall into distinct 
classes. CAAX peptides were initially developed as 
competitive inhibitors of FTase and were later followed by 
CAAX peptidomimetics. Also, competitive inhibitors of 
farnesyldiphosphate have been developed, and other small 
compounds have been identified through screening (125). 
Amelioration of the nuclear morphology by FTIs has been 
reported in various cellular models of progeroid 
laminopathies, including fibroblasts from HGPS or RD 
patients (60, 126, 127). The beneficial effect was associated 
with efficient blocking of protein farnesylation, as assessed 
by the accumulation of nonfarnesylated-prelamin A and the 
reduction in the incorporation of radioactive isoprenoids on 
progerin (128), although progerin levels were not reduced. 
Treatment of control human fibroblasts with the 
peptidomimetic inhibitor FTI-277 was recently shown to 
cluster heterochromatin-associated proteins and lamin-
associated polypeptide 2α (LAP2α) in the nuclear interior, 
suggesting that chromatin is an immediate target of this FTI 
(129). Interestingly, the effects of FTI-277 on chromatin 
are abolished upon the inhibition of prelamin A 
accumulation by treatement with 5-azadeoxycytidine. 
Moreover, FTI administration reversed the gene expression 
defects observed in the lamin A-pRb signaling network in 
fibroblasts from HGPS patients (130) and completely 
restored nucleolar antigen localization in treated progeria 
cells (131).  

 
Beneficial effects of FTI administration have also 

been observed in animal models. For example, FTIs reduce 
weight loss and bone and muscle alterations in Zmpste24-
knockout mice (77), and improve survival in LmnaHG/+ 
mice (132). Importantly,  a recent study supports the 
concept that the beneficial effects of FTIs are due to 
inhibition of progerin farnesylation, since ABT-100 
ameliorates disease in the LmnaHG/+ mouse model of HGPS 
but not in mice expressing a nonfarnesylated version of 
progerin (LmnanHG/+) (133). However, as judged from the 
accumulation of prelamin A, FTIs appear to be less 
effective at inhibiting lamin A farnesylation in animal 
models than in cells, perhaps due to alternative prenylation 
by geranylgeranylation when FTase is inhibited (125). 

 
Promising results obtained in cellular and animal 

models of cancer have led to several FTIs advancing to 
clinical trials, including the nonpeptidomimetic CAAX 
FTIs lonafarnib and tipifarnib. Clinical success of these 
compounds has been observed mainly with hematological 
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tumors; however, their efficacy in the treatment of solid 
tumors has been somewhat limited. Nevertheless, clinical 
trials have shown that FTIs are fairly well tolerated, with 
adverse effects often limited to the gastrointestinal tract, 
and that they induce the accumulation of prelamin A in 
patients (125). Based on these findings, a first clinical trial 
was set up in 2007 to test the effect of FTIs, in particular 
lonafarnib, on the symptoms of children with progeria. This 
trial and the Triple Drug Trial now in progress (see below) 
have been possible in part thanks to the efforts of the 
Progeria Research Foundation (www.progeriaresearch.org), 
which has sponsored and spurred research in this area in 
recent years.  

 
10. ADDITIONAL THERAPEUTIC STRATEGIES TO 
TREAT HGPS 
 

Several studies demonstrate that FTI-277 reduces 
prelamin A farnesylation (134) and recovers the altered 
heterochromatin domains observed in HGPS cells (135). 
However, it has been recently suggested that drugs 
impairing prelamin A processing alter heterochromatin 
organization (129) and do not reduce the number of DNA 
double-strand breaks (94, 136). Moreover, although FTI 
treatment improves the phenotype of Zmpste24-deficient 
mice (137), it only reduces prelamin A processing by 5% 
(138), possibly due to alternative prenylation (geranyl-
geranylation) of lamin precursors bypassing the effect of 
FTIs (125, 139-141). It will also be important to determine 
the effect of FTIs on other farnesylated proteins, such as B-
type lamins (140). Possible negative effects of FTI 
treatment and the interest in using FTI in combination with 
other therapies suggest the need to identify alternative 
therapies for these devastating diseases. For these reasons, 
inhibitors of other steps in the maturation of lamin A, such 
as endoproteolytic processing or methylation, are also 
being tested for their ability to reverse the abnormal 
phenotype caused by progerin accumulation (56). 

 
Lastly, other direct or indirect inhibitors of 

protein prenylation that are already in clinical use have 
shown beneficial effects in mouse models of progeria. 
Statins are well known inhibitors of the cholesterol 
biosynthetic pathway and are widely used in the clinic to 
reduce hypercholesterolemia and associated disorders, such 
as atherosclerosis. Statins inhibit the synthesis of 
isoprenoid precursors involved in protein modification, 
thus reducing lamin A maturation (142-144),  The 
aminobisphosphonates are effective therapeutic agents 
against disorders with increased bone resorption, such as 
that occurring in bone metastasis or in post-menopausal 
women (38). Bisphosphonates  inhibit 
farnesylpyrophosphate synthase, thus reducing the 
synthesis of both geranyl-geranyl and farnesyl groups (145, 
146). Statins and aminobisphosphonates thus have potential 
in the treatment of progeria syndromes or of some of their 
symptoms, such as the vascular or bone defects. Indeed, 
combined administration of statins and 
aminobisphosphonates has recently been shown to 
efficiently inhibit the farnesylation and geranylgeranylation 
of progerin and pre-lamin A, and this effect is accompanied 
by an improvement in the phenotype of the Zmpste24-

knockout mice (141). Based in these promising animal 
studies, the Triple Drug Trial is now in place to test the 
therapeutic effect of a combination of a statin (pravastatin), 
a bisphosphonate (zoledronic acid) and an FTI (lonafarnib, 
SCH 66336) in HPGS patients (ClinicalTrials.gov 
identifier: NCT00879034, www.progeriaresearch.org). 
 
11. CONCLUDING REMARKS  
 

Recent years have witnessed important advances 
in the knowledge of the molecular basis of HGPS and other 
laminopathies. From various types of evidence it seems 
clear that an aberrant processing of prelamin A leading to 
the accumulation of progerin, a persistently farnesylated 
form of the protein, is critical for the pathogenesis of 
HGPS. This has made researchers to turn to FTIs in the 
search for a pathogenic treatment. These compounds have 
been shown to ameliorate HGPS manifestations in 
cellular and animal models of the disease, although with 
lesser efficacy in the latter. Importantly, the mechanisms 
leading to these potentially beneficial effects, as well as 
the limitations of FTI treatment, are not completely 
understood. On one hand, FTI could exert part of their 
beneficial effects through the inhibition of the 
farnesylation of targets other than progerin, or even 
through unrelated mechanisms of action. Moreover, 
inhibition of FTase could prove insufficient if 
alternative prenylation of progerin can occur. In 
addition, some evidence exists that even nonfarnesylated 
forms of progerin could be deleterious. In the light of 
these findings the search continues for alternative or 
complementary treatments, like the combination of 
several drugs with the ability to block isoprenylation, 
which may provide some hope for these devastating 
diseases. Moreover, additional mechanistic insight into 
the pathogenesis of progeroid syndromes and the 
mechanisms of drug action are essential to develop 
novel therapeutic strategies. Since progerin is present in 
normal cells and appears to progressively accumulate 
during normal aging, research in this field may also 
improve our understanding of the mechanisms 
underlying physiological ageing. 
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