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1. ABSTRACT 
 

Microglia respond rapidly to injury of peripheral 
nerve axons (axotomy). This response is integrated into the 
responses of the injured neurons, i.e. processes for neuron 
survival, axon regeneration and restoration of target 
contact. The microglial response is also integrated in 
changes in presynaptic terminals on axotomized motor or 
autonomic neurons and in changes in the central terminals 
of peripherally axotomized sensory neurons. Microglia also 
has an established role in interacting with astrocytes to 
shape their response to peripheral axotomy. Axotomy 
models in mice have demonstrated a role for microglia in 
regulating the entry of lymphocytes into motor nuclei or 
sensory areas following peripheral axotomy. Whether this 
is a universal component of peripheral nerve injury remains 
to be determined. Under certain circumstances, microglia 
activated by axotomy are major contributors to CNS 
pathology, e.g. in models of neuropathic pain. However, 
the general roles played by microglia after peripheral nerve 
injury are still incompletely understood. Early proposals 
that the microglial reaction to peripheral nerve injury is 
preparatory for the eventuality of neuron degeneration may 
still have relevance.       

 
 
 
 
 
2. INTRODUCTION 
 

The aim of this review is to describe and discuss 
the response of microglia and its functional implications 
after peripheral axons are interrupted by crush or 
transection (axotomy) of peripheral nerves in adult 
mammals. Following these injuries the affected neurons 
undergo a marked shift in gene expression (reviewed in 1, 
2). In simple terms, this shift brings the neurons from a 
“transmitting” to a “growing” mode, a shift which provides 
the neuron-intrinsic structural and molecular basis for 
regeneration of the injured axon and restoration of 
peripheral target contact. This process is associated with 
alterations in the synaptic network of the axotomized 
neurons, as well as with prominent changes in adjacent 
astrocytes and microglial cells, and under certain 
circumstances, an infiltration of hematogenous cells.  

 
Based on experimental and clinical research 

during the recent two decades microglia is now considered 
to have a central and dual role in most neurodegenerative 
disorders, including traumatic brain injury, stroke, 
Alzheimer’s disease, Parkinson’s disease and amyotrophic 
lateral sclerosis. Dual in the way that microglia may help 
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tissue repair through targeted phagocytosis and release of 
growth factors, whereas other aspects of microglia directly 
or indirectly may drive the neurodegenerative process (3). 
Compared to the disorders mentioned the microglial 
responses to peripheral nerve injury are unique in the sense 
that they occur at a considerable distance from the injury.  

 
Historically, responses by microglia to peripheral 

nerve injury were first recognized in the vicinity of 
axotomized motor neurons. Later studies showed that that 
injury to peripheral sensory axons also led to a prompt 
microglial response in the central projection territories of 
peripherally axotomized sensory ganglion cells. Motor 
axon injuries in experimental animals have served and still 
serve as important models for exploring general 
mechanisms and functional implications of interactions 
between neurons and non-neuronal cells. Understanding the 
role of microglia is obviously relevant in the context of 
achieving efficient and optimal functional recovery 
following peripheral nerve injury. This objective has 
recently received particular attention in relation to sensory 
nerve injury, since there is strong evidence that microglia 
play a pivotal role in the emergence and maintenance of 
injury-induced neuropathic pain. These aspects have been 
discussed in a number of recent reviews (see e.g. ref 4-8) 
and will not be in the focus here. 

 
In order to understand the implications of 

microglial responses following peripheral nerve injury the 
overall context of these responses will first be briefly 
described. 

 
3. PERIPHERAL NERVE AXOTOMY 
 
3.1. The neuron-glia network and the dynamic functions 
of brain and spinal cord  

In the intact CNS, nerve cell bodies and dendrites 
are covered by synaptic terminals and intervening thin 
astroglial lamellae, a structural arrangement which serves 
to regulate local chemical homeostasis and secure optimal 
synaptic function. Activity in neuronal circuits is also 
modified by signals carried through local networks of 
astrocytes that communicate via gap junctions or through 
extracellular mediators (9). Microglia in the intact CNS are 
highly ramified and continuously extend and retract their 
processes (10, 11), sweeping them close to synapses in a 
manner which appears to be activity dependent (12) and 
then most likely also along astroglial cell surfaces. In view 
of these close interrelationships in the intact CNS, it should 
be anticipated that interruption of normal impulse 
propagation from motor neurons to muscle and sensory end 
organ to the CNS, respectively, will have a major impact on 
glial cells surrounding axotomized neurons.  
 
3.2. Neuronal responses to peripheral axon injury – 
implications for glial activation 

The intrinsic neuronal responses to peripheral 
axotomy are initiated and maintained through several 
independent mechanisms, which are likely to be 
fundamentally the same in motor and sensory neurons (2, 
13, 14). The early changes in gene expression appear to be 
induced by the electrical discharge caused by the injury 

(”injury potential”). These are followed by i) influx at the 
injury site of extracellular mediators and their retrograde 
transport to the nerve cell body, ii) depletion of trophic 
factors produced in the target tissue, which are normally 
conveyed by retrograde transport to the nerve cell body, 
and iii) retrograde transport of post-translationally modified 
molecules from the end of the proximal axon stump.  

 
Peripheral axotomy will have markedly different 

consequences on motor and sensory neurons, which relate 
to their distinct differences in morphology, location and 
function. Furthermore, motor and sensory neurons at the 
spinal and brainstem level have different developmental 
origin, and at both sites there are multiple morphologically 
and functionally different subtypes. Thus, there may be 
details in the neuronal response to axotomy among 
subpopulations of motor and sensory neurons that will have 
an impact on the associated microglial response.   
 
3.3. Central responses to peripheral axotomy – general 
aspects 

The microglial response to peripheral axotomy 
has an early phase which includes immediate changes in 
their motility, shortly followed by their proliferation, 
migration and activation. From a functional point of view, 
the activation phase is clearly the most important one, and 
the one which most strongly correlates with the severity of 
the injury: crushing the nerve results in a less intense and 
more time-limited microglial response compared to 
transection. In the activation phase, microglia will also be 
engaged in complex interactions with astrocytes, and, at 
least under certain circumstances, with infiltrating 
hematogenous cells that will influence the outcome in 
terms of neuronal survival and functional repair. 

 
Our current information on neuronal and glial 

cell responses to peripheral axotomy, particularly as it 
comes to their molecular aspects and outcome, emanate 
almost exclusively from studies on rat and mouse. The 
basic morphological features from these studies appear to 
be reproducible in larger animal species, including humans 
(15), but important differences occur. E.g., observations in 
the cat indicate that motor nerve axotomy and synaptic 
stripping are not necessarily associated with microglial 
proliferation (16-19). Furthermore, extensive infiltration of 
T-cells following motor nerve axotomy is limited or absent 
in the rat, but a characteristic and functionally important 
feature in the mouse (20). In the absence of detailed 
comparative studies at the molecular level some caution is 
warranted in translating these findings to humans. 
 
4. MOTOR NEURON AXOTOMY 
 
4.1. Anatomical aspects on models of motor neuron 
axotomy 

The predominating experimental models for 
studies on microglial response around motor neurons are 
the facial motor nucleus following injury to the facial 
nerve, and the lateral motor column at the lumbar spinal 
level following sciatic nerve or ventral root injury. To a 
lesser extent, the hypoglossal or the preganglionic 
parasympathetic dorsal motor nucleus of the vagus nerve 
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has been used. Facial nerve, hypoglossal nerve and ventral 
root injuries are pure motor axotomies, still different in the 
sense that the facial nerve is injured outside, the ventral 
root within the subarachnoid space, thereby influencing e.g. 
the local properties of the cerebrospinal fluid.  

 
Sciatic nerve and vagus nerve injury affect not 

only the motor components of these nerves, but also 
sensory input to the motor neurons indirectly via 
interneurons in the spinal cord dorsal horn and nucleus of 
the solitary tract, respectively. Sciatic nerve injury also 
directly affects a small fraction of the synaptic input to 
motor neurons by injuring muscle spindle afferent axons 
with monosynaptic motor neuron connections. A distinct 
feature of the spinal motor neuron circuitry in contrast to 
the brainstem motor nuclei mentioned above is the presence 
of γ-motor neurons and the recurrent inhibition by Renshaw 
cells, which are driven by the activity of the α-motor 
neurons themselves. 

 
Given these anatomical and functional 

differences, some caution is necessary in extrapolating 
information between different peripheral motor systems.    
 
4.2. Cellular and molecular changes in axotomized 
motor neurons 

In parallel with up-regulation of the expression 
of a set of growth-associated proteins, prominent molecular 
and structural modifications occur at the motor neuron 
interface with surrounding glia. Components of 
neurotransmitter receptors for e.g. glutamate and glycine 
are down-regulated (21, 22). Down-regulation of 
microtubule-associated protein (MAP)-2, a major structural 
protein of dendritic microtubules (23) is accompanied by 
extensive shrinkage of the dendritic tree (24, 25). Down-
regulation of drebrin (26), a spine-asosciated protein, is 
likely to further impair normal dendritic functionality. In 
the other pole of the axotomized neuron, down-regulation 
of neurofilament proteins, the major structural proteins of 
myelinated axons is accompanied by extensive reduction of 
axon caliber, myelin sheath thickness and conduction 
velocity proximal to the injury (27). Thus, not only is the 
normal communication between motor neuron and target 
muscles interrupted, the conditions for local motor neuron 
network operations are also markedly altered.   

 
These intrinsic events in the injured neurons are 

accompanied by the removal of a large number of synaptic 
terminals located on soma and dendrites, a process often 
referred to as “synaptic stripping” (28-30), an increased 
perineuronal occupation by fine lamellar processes from 
neighboring astrocytes, and proliferation, migration and 
molecular phenotypic transformation of microglia (31, 32).  
 
4.3. Microglial responses to motor neuron axotomy 

The mechanisms that initiate the microglial 
response after motor neuron axotomy are incompletely 
understood. Critical roles are probably played by the 
massive efflux of potassium ions from the injury discharge, 
closely followed or accompanied by the release of ATP 
from the microvasculature and perineuronal astrocytes. 
This notion is strengthened by previous findings 

implicating potassium channels (33-36) and purine 
receptors (37) in various stages of microglial activation. 
The sensitivity of microglia to alterations in CNS 
homeostasis is evidenced by their response along waves of 
spreading depression, a phenomenon of neuronal 
depolarization, which can be induced in intact brain regions 
as a result of distant functional pathology (38-40). In vivo 
imaging studies have shown that cortical injury induces 
rapid and targeted extensions of microglial processes 
towards the lesion site (10, 11). Likewise, hypoxia prolongs 
the time periods of contact between sweeping microglial 
processes and synapses (12).  
 

Following this initial response, microglia 
withdraw their processes, proliferate, and migrate towards 
the axotomized motor neuron cell bodies This activation is 
easily recognized by labeling for the complement receptor 
3 (CD11b) (Figure 1). Concomitantly, microglia begin to 
express a range of immune system related molecules, 
including complement components (41, 42), 
trombospondin (43), interleukin (IL)-1beta, IL-6, tumor 
necrosis factor (TNF)-alpha, interferon-gamma, the co-
stimulatory factor B7.2, as well as major histocompatibility 
complex glycoproteins (44-46). Activated microglia has the 
potential also to release and respond to a wide range of 
other cytokines and chemokines, depending on the state of 
activation (47, 48).  

 
In rodents and mice microglial cells begin to 

proliferate within one-two days after peripheral nerve 
injury with a peak around four days and reaching baseline 
levels around seven to ten days after injury (49, 50). The 
signal(s) initiating this response is not yet precisely 
identified. Results from studies in vitro indicate that 
microglial proliferation can occur by autocrine factors (50). 
One of these factors is likely to be colony-stimulating 
factor (CSF)-1. CSF-1 can be produced by microglia and 
mice with a mutation in the gene for macrophage colony-
stimulating factor (CSF)-1 (op/op mice) show a markedly 
reduced proliferation (52).  

 
Microglia migrate towards axotomized motor 

neurons while still proliferating. An interesting feature of 
this migration is that although dendrites provide the 
overwhelming part of the motor neuron surface, the nerve 
cell body appears to be the main target for this process (cf. 
Figure 2). The precise structural interrelationship between 
microglia and axotomized motor neurons has been the 
subject of some controversy. Although microglial cells and 
their processes are in the immediate vicinity of these motor 
neurons, electron microscopic images often show the 
presence of fine astroglial processes intervening between 
microglia and the neuronal membrane (53, 54). 
Proliferating microglia occur also outside the motor neuron 
nucleus proper. Thus, proliferating microglia were 
observed along the intramedullary portion of the 
hypoglossal nerve, presumably in the vicinity of nodes of 
Ranvier (50).  

 
The possibility for microglia to move into a close 

relationship with the neurons may depend on microglia 
mediated down-regulation of tenascin-R in the perineuronal
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Figure 1.  Microglia labeled with antibodies to CD11b in 
the ventral horn seven days following unilateral transection 
of the sciatic nerve in the rat. Op = operated side; Unop = 
unoperated side.  
 

 
 
Figure 2. Microglia labeled with antibodies to CD11b 
strongly associate with motor neuron cell bodies in the 
spinal cord ventral horn seven days following transection of 
the sciatic nerve in the rat.  
 
nets (55, 56). Deletion of cathepsin-S, a 
lysosomal/endosomal protease in cells of the mononuclear 
lineage, reduces migratory capacity of microglia towards 
axotomized facial motor neurons (56). Migration of 
microglia is associated with induction of Annexin III, 
which translocates to the actin cytoskeleton at the 
microglial cell membrane (57). These intracellular 
modifications of microglia cytoskeleton are accompanied 
by changes in the expression of integrin family cell 
adhesion molecules (58) and in the expression level of the 
non-integrin laminin receptor 37-LRP (59). Recent in vitro 
findings indicate that glutamate exerts a chemotaxic effect 
on microglia (60). Thus, migration of microglia after 
peripheral nerve injury is likely to be mediated by the 
combination of cell-cell interactions and diffusible 
molecules. Among the latter, synaptic signaling molecules 
may require more interest than has hitherto been the case. 

 
The rate, extent and persistence of the early 

microglial responses are influenced by chemokines. 
Already six hours after facial or hypoglossal nerve injury in 
the mouse, affected motor neurons increase their synthesis 
of chemokine monocyte chemoattractant protein (MCP)-1 
(CCL2) (61). Its corresponding receptor CCR2 is expressed 
by microglia and other cells of the monocyte lineage, and 
MCP-1 is critical for recruiting these cells to sites of injury. 
Mice with deletion of MCP-1 display a delayed microglial 
response in the lateral geniculate nucleus following visual 
cortex lesion (62). Surprisingly, mice with deletion of 
CCR2 showed similar microglia response as wildtype mice. 

The chemokine fractalkine (CX3CL3) is produced and 
secreted by or shed from the surface of axotomized 
neurons, binds to its receptor CX3CR1 on microglia and 
induces cytokine production (63). However, fractalkine 
appears to be dispensable for axotomy-induced 
proliferation, migration and phenotypic alteration of 
microglia (64). The chemokine CCL21 is neuronally 
transported released from injured neurons and appears to 
have a critical role in several brain pathologies (65), but the 
possible implication of CCL21 in the context of peripheral 
axotomy is presently unknown.    
 
4.4. Functional consequences of microglial responses to 
motor neuron axotomy 

The microglial responses to motor neuron 
axotomy have since long been viewed in the context of 
motor neuron survival, motor axon regeneration, and 
displacement of presynaptic terminals. More recently, 
microglia has also been associated with influencing the 
properties of astrocytes and with promoting infiltration of 
T-cells into the axotomized motor nucleus.  
 
4.4.1. Role of microglia for survival of axotomized 

motor neurons 
It is now well established that activated microglia 

can take on a predominantly cytoprotective or cytotoxic 
role. In both situations, microglia are able to clear the tissue 
from degenerating elements, but in the first instance 
microglia produce and secrete growth supporting factors, 
whereas in the second instance agents that contribute to cell 
death are released. The complex mechanisms underlying 
these distinctive consequences of microglial activation are 
demonstrated by experiments on one hand showing that the 
presence of activated microglia is deleterious for neuron 
survival, on the other hand showing that elimination of 
microglial activation promotes neuron survival (3).  

 
The extent of motor neuron degeneration after 

axotomy is highly dependent on the type of injury. Injuries 
with favorable conditions for rapid regeneration show no or 
minimal loss of motor neurons, whereas injuries in which 
contact between proximal and distal nerve stumps is 
prevented in general are associated with significant motor 
neuron degeneration (66, 67). The latter situation is 
typically associated with a greater and more prolonged 
microglial response. Studies on the influence of activated 
microglia in brain disorder have reported divergent results. 
E.g., selective ablation of proliferating microglia was found 
to exacerbate ischemic brain injury (68), whereas 
interfering with receptor-mediated microglial activation 
improved neuron survival (69, 70).  

 
Earlier studies in the rat indicated that 

elimination of microglia from the axotomized rat 
hypoglossal nucleus did not reduce motor neuron survival 
(71). Thus, communication between the injured neuron and 
the environment in the distal stump of the injured 
peripheral nerve appears to be the main determinant for the 
extent of motor neuron degeneration. In this context, the 
more prominent microglial response after nerve 
transection-resection may just be secondary to the more 
extensive neurodegeneration. Such an interpretation would 
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be in line with previous observations of a correlation 
between the microglial response and neuron phagocytosis 
(72) and the extensive neuron loss and concomitant 
microglia response, including their transformation to cells 
positive for the phagocytosis marker ED1 following motor 
neuron axotomy in neonatal compared to adult animals 
(73).  Moreover, modifying the microglial immune 
properties did not influence the extent of motor neuron 
degeneration in the axotomized facial motor nucleus (74) 

 
However, results from recent studies in 

genetically manipulated mice have shown that interfering 
with microglial response after motor neuron axotomy may 
compromise motor neuron survival. Deletion of cathepsin-
S limits microglial migration and spreading on axotomized 
facial motor neurons and reduces motor neuron survival 
(56). The chemokine receptor CCR5 is up-regulated in 
microglia, and its ligands regulated on activation normal T-
cell-expressed and secreted (RANTES/CCL5), macrophage 
inflammatory protein (MIP)-1 in motor neurons after 
axotomy. CCR5-/- mice show increased motor neuron 
death after hypoglossal nerve injury (75). Microglia-
mediated infiltration of Th2 cells into the facial nucleus 
protects loss of axotomized facial motor neuron in the 
mouse (76, 77). Taken together, these findings may reflect 
important species differences or a situation where 
functionally deficient microglial cells provide a more 
unfavorable environment for axotomized motor neurons 
than a complete absence of microglia. This interpretation 
may be in line with genetic analysis of rats and mice with 
diffent extent of motor neuron loss following ventral root 
avulsion. Data from these studies indicate that variations in 
genes associated with inflammatory mechanisms determine 
susceptibility to neurodegeneration (78, 79).   

 
4.4.2. Role of microglia for axon regeneration 

A role for activated microglia in axon 
regeneration could be expected since they are a potential 
source of growth factors such as brain-derived neurotrophic 
factor, insulin-like growth factor and transforming growth 
factor-beta, all of which are known to have beneficial 
effects on motor neurons in vitro and in vivo. Furthermore, 
activated macrophages which could potentially be derived 
from microglia are able to promote growth of adjacent 
intraspinal axons, albeit at the expense of simultaneously 
increased neurotoxicity (80). Complete elimination of 
microglia from the axotomized hypoglossal nucleus did not 
affect the rate or extent of motor axon regeneration and 
tongue muscle re-innervation (81). However, growth of 
injured axons from intrinsic CNS neurons into a peripheral 
nerve graft were found to be correlated with a perineuronal 
microglial response (82), indicating that microglia are able 
to promote axon regeneration, although this may not be 
required when conditions for this process are anyway 
favorable, such as after peripheral nerve crush.  
  
4.4.3. Role of microglia for synapse removal 

Synaptic stripping was first described on 
axotomized rat facial motor neurons and found to occur in 
the vicinity of activated microglia (28). Synaptic stripping 
has since been shown to be a general feature after motor 
neuron axotomy, in some instances affecting as many as 

70% of the presynaptic terminals, preferentially those 
located on motor neuron dendrites (29, 30) and 
predominantly those of excitatory synapses. After muscle 
reinnervation, only a partial restoration of presynaptic 
terminals takes place. Thus axtomy-induced synapse 
remodeling occurs on a large scale and most likely has 
significant consequences for post-injury recovery of motor 
function. In fact, recent findings indicate that reducing the 
amount of synaptic stripping on motor neurons promotes 
functional recovery after sciatic nerve injury (83).   

 
Based on the morphological coincidence between 

synapse removal and the perineuronal location of 
microglia, a causal relationship between these two events 
was suggested (28). Observations in later studies showed 
that astrocytes rather than microglia displayed the closest 
structural relationship with axotomized motor neurons 
during the process of synapse elimination (53, 54, 84). 
Using infrared gradient contrast live microscopy of slices 
containing axotomized facial motor neurons, microglial 
cells were found to move closely along motor neuron 
dendrites (85). These and observations in vivo showing that 
processes of microglia are sweeping close to synapses in 
the intact CNS and increasing this activity after injury (12) 
are compatible with an active role for microglia in synapse 
removal after motor neuron axotomy. However, synapse 
elimination was unaffected in the rat axotomized 
hypoglossal nucleus after complete elimination of 
microglia (54), indicating that microglia at least is not 
necessary for this process.   

 
Microglia has a well established role in neural 

development as effectors of targeted phagocytosis of 
apoptotic cells and clearance of inappropriate synapses 
(86). Recently, the MHC and complement systems emerged 
as important regulators of developmental synaptic plasticity 
and synaptic stripping of axotomized motor neurons. Mice 
with impaired surface expression of MHCI showed a 
significant and selective increased removal of presynaptic 
terminals from axotomized spinal motor neurons (87, 88). 
Complement C3 -/- mice showed a significantly reduced 
removal of presynaptic terminals, a reduction which 
preferentially included terminals of excitatory synapses 
(83). These remarkable effects were accompanied by 
evidence for a decreased and an increased rate of functional 
recovery in functionally MHCI deficient and C3 -/- mice, 
respectively.  

 
To what extent if at all, microglia is operative in 

these situations are unknown. MHCI is expressed on 
neurons and astrocytes, and although an up-regulation of 
C3 has been shown in microglia in the axotomized 
hypoglossal nucleus of the rat (41), C3 expression in the 
mouse spinal cord ventral horn appeared to be largely 
associated with astrocytes (79). Results from other studies 
have also emphasized a correlation between astroglial 
reactivity and the extent of presynaptic terminal removal 
(84, 89). Furthermore, the pronounced axotomy-induced 
changes in postsynaptic receptor expression and function 
(21, 22, 90, 91), the extensive shrinkage of the dendritic 
tree (29, 30), changes in the expression and conformation 
of synaptic adhesion molecules (92, 93), and in the 
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architecture of postsynaptic complexes (94) are also likely 
to have a direct influence on the distribution of motor 
neuron presynaptic terminals.    

 
4.4.4. Role of microglia for astroglial reactivity 

Astroglial responses are commonly assessed by 
the level of glial fibrillary acidic protein (GFAP) 
expression, the unique astroglial intermediate filament in the 
CNS. However, GFAP is part of the cytoskeletal core of 
astrocytes, whereas the actual functions of astrocytes are 
carried out in the distal lamellar processes, from which GFAP 
is absent. The levels of GFAP expression may therefore not be 
a sensitive measure of the functional activity of astrocytes.  

 
In the absence of microglia, up-regulation of GFAP 

mRNA and protein are attenuated in the axotomized 
hypoglossal nucleus (95). Similarly, in mice with a genetic 
deletion of interleukin-6 (IL-6), presumably derived from 
microglia, up-regulation of GFAP does not occur in the 
axotomized facial nucleus (96). Furthermore, the functional 
properties of astrocytes are modified by a number of other 
inflammatory cytokines (97). At the same time, astrocytes 
have a central role in buffering extracellular potassium, are 
highly sensitive to ATP and adenosine, are responsible for the 
main part of glutamate and GABA uptake, in addition to being 
directly responsive to various neurotransmitters. The way these 
factors contribute to altered astroglial reactivity and function 
after motor neuron axotomy is still largely unknown.  

 
4.4.5. Role of microglia for lymphocyte infiltration 

Although there is a report of T-lymphocytes 
entering the axotomized rat facial nucleus (98), this 
phenomenon appears not to be typical for axotomized 
motor neurons in this species. However, facial nerve 
axotomy in the mouse produces extensive infiltration of 
lymphocytes (20). Initially, this invasion was considered to 
correlate with the extensive delayed motor neuron loss that 
occurs in the mouse compared to the rat following 
axotomy. However, results from recent studies indicate that 
T-cell infiltration may benefit motor neuron survival (99). 
These findings may lead to identification of survival 
promoting factors that can be helpful in other conditions of 
neuron degeneration and in other species. It is important to 
explore lymphocyte infiltration into the CNS after motor 
neuron axotomy in other mammals, including humans, to 
evaluate the generality of this phenomenon.  
 
5. SENSORY NEURON AXOTOMY 
 
5.1. Anatomical aspects on sensory neuron axotomy 

Sensory neurons in dorsal root and cranial nerve 
ganglia are heterogeneous in terms of morphology, 
molecular phenotype, modality, impulse propagation 
properties and central projections. On stimulation they 
probably all release glutamate from their central terminals. 
In addition, many sensory neurons contain one or more 
peptides, e.g. substance P (SP) and calcitonin gene-related 
peptide (CGRP) which are also released following 
stimulation.  

 
Here, we will discuss the role of microglia in the 

same injury models as for motor neuron axotomy, crush or 

transection with or without permitted peripheral 
regeneration. These experiments have been made on spinal 
nerves or the trigeminal nerve, with the sciatic nerve as by 
far the most popular one. Microglial proliferation and 
activation in the dorsal horn following sensory nerve injury 
were first demonstrated in the spinal cord dorsal horn 
following spinal nerve injury (100-102). Later studies have 
revealed that this is a general response following peripheral 
sensory axon injury (see. e.g. 103). Microglial responses in 
sensory areas of the dorsal horn and trigeminal nucleus 
have been the subject of intense research within the context 
of injury-induced neuropathic pain. Peripheral nerve 
injuries such as partial chronic constriction (CCI), spinal 
nerve ligation (SNL), spared nerve injury (SNI) and toxin-
induced diabetic neuropathy results in sensory 
hypersensitivity and/or allodynia in experimental animals, 
which are interpreted as reflecting aspects of injury-
induced neuropathic pain in humans. The central role of 
microglia in these conditions has been extensively 
reviewed (4-8)).   
 
5.2. Cellular and molecular changes in axotomized 
sensory neurons 

The expression pattern of regeneration-associated 
genes in the cell bodies of peripherally axotomized sensory 
neurons in dorsal root or cranial nerve ganglia is 
analogous to those occurring in axotomized motor 
neurons. These changes are primarily directed towards 
rebuilding the peripheral axon and restoring target 
contact. Associated with these changes are changes in 
the molecular phenotype of many sensory neurons. E.g., 
substance P and CGRP are down-regulated in the 
axotomized dorsal root ganglion cells, whereas e.g. 
galanin, pituitary adenylase cyclase activating 
polypeptide (PACAP) and neuropeptide Y (NPY) are 
up-regulated (2).  

 
Furthermore, central terminals of peripherally 

axotomized sensory neurons display signs of 
degeneration or are lost by an unknown process (104-
106), leading to a substantial deafferentation of 
postsynaptic neurons. Concomitantly, existing 
connections are modified and novel connections may 
appear (107). The loss of terminals from peripherally 
injured sensory neurons has some analogy to the 
synaptic stripping from axotomized motor neurons; in 
both cases leading to altered input to the neuron which 
is postsynaptic to the lost/retracted terminals. At the 
same time, evidence of regenerative processes occurs, 
as evidenced by an increase in the growth-associated 
protein GAP-43 in central primary sensory terminals, 
and the formation of novel synaptic connections (108, 
109). Thus, the functional properties of the circuitries 
in the dorsal horn and cranial nerve sensory nuclei are 
dramatically altered following peripheral sensory 
axotomy.   

 
5.3. Microglial responses to sensory neuron axotomy 
and their functional consequences 

The microglial response to sensory neuron 
axotomy clearly resembles that around motor neurons in 
terms of their proliferation and activation as determined by
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Figure 3. Microglia labeled with antibodies to CD11b in 
the dorsal horn seven days following unilateral transection 
of the sciatic nerve in the rat. Op = operated side; Unop = 
unoperated side. 

 
their molecular expression pattern, including up-regulation 
of CD11b (Figure 3). As in motor neuron axotomy the 
immediate release of potassium, ATP and neurotransmitters 
are likely to underlie the initial activation of the local 
microglial population. In the subsequent enhancement and 
maintenance of the microglial response, chemokine CCL2 
(MIP-1)/CCR2 and CXCL3 (fraktalkine)/CXCR3 signaling 
between neurons and microglia appear to be involved (4-8). 
However, it is unclear whether there is a distinct wave of 
migration after sensory neuron atotomy. Although, no 
detailed studies appear to exist on this issue, microglial 
cells appear to proliferate and become activated essentially 
at the same site. Electron microscopic images show these 
cells to be interspersed in the neuropil of the dorsal horn 
after spinal nerve injury and in the trigeminal sensory 
nuclei after trigeminal nerve injury without distinct 
relationship to nerve cell bodies (100, 110, 111).  

 
Engulfment and presumed phagocytosis of 

degenerating axons or axon terminals were described after 
sensory neuron axotomy in the dorsal horn (99) and 
trigeminal nuclei (110, 111). However, the majority of 
microglia in sensory projection areas do not associate with 
neural degeneration. E.g., numerous markedly abnormal 
axons without any association with microglia are found in 
the gracile nucleus following sciatic nerve injury in the rat 
(112). Thus, apart from the reasonable assumption that an 
extended monitoring of the local CNS environment is 
called for, there is no defined physiological role for 
activated microglia after sensory neuron axotomy. The 
recent findings on the role of the MHC and complement 
systems for synapse elimination on axotomized motor 
neurons should prompt studies on whether related 
mechanisms are involved in synapse loss in sensory 
projection areas after sensory neuron axotomy.  

 
Since the original reports of microglial 

proliferation and activation in the dorsal horn following 
sensory nerve injury microglial responses in sensory areas 
of the dorsal horn and trigeminal nucleus have been the 
subject of intense research within the context of injury-
induced neuropathic pain. This research exploits somewhat 
different models than those commonly used for issues of 

neuron-glial interactions in nerve regeneration or neuron 
degeneration. Partial chronic constriction (CCI), spinal 
nerve ligation (SNL), spared nerve injury (SNI) and various 
forms of inflammation or toxin-induced nerve injury results 
in sensory hypersensitivity and/or allodynia in experimental 
animals, which are interpreted as reflecting relevant aspects 
of injury-induced neuropathic pain in humans. The central 
role of microglia in these conditions has been extensively 
documented and the subject of numerous recent reviews 
(see e.g. 4-8). 

 
Intuitively, one would like to view the microglial 

response to peripheral nerve injury, a presumably 
evolutionary well conserved response pattern, as a 
potentially beneficial response, or at least not harmful. An 
enigmatic issue in relation to apparently critical role of 
microglia in the development of neuropathic pain is why 
microglia takes on these properties in certain types of 
peripheral nerve injuries or after peripheral nerve injury in 
certain individuals. Genetic predisposition appears to play a 
major role, but its links to neuropathic pain behavior is still 
largely unclear (113).     

  
6. SUMMARY AND PERSPECTIVES 
 

Microglial proliferation, migration and 
phenotypic activation is a hallmark of peripheral nerve 
injury (axotomy), both in association with axotomized 
motor and autonomic neuron cell bodies and in association 
with central terminals of peripherally axotomized sensory 
neurons. Recent studies with live imaging and on 
transgenic mice have provided important and novel 
information on the mechanisms underlying microglial 
responses following injury. Studies using injury models of 
neuropathic pain have highlighted a central role for 
activated microglia in this condition. However, there are 
still substantial gaps in our understanding of the 
significance and implications of these responses for 
survival of axotomized neurons, and their ability to 
regenerate the axon and restore function. Studies using 
conditional gene regulation and in vivo RNA silencing 
should help to clarify these issues. Studies with an 
evolutionary perspective should be helpful in our 
understanding possible evolutionary modifications and 
their functional significance in the microglial response to 
peripheral nerve injury. The limited information available 
on this issue indicates that the prime role of microglia is to 
promote tissue repair and functional restoration (114). 
Finally, translational research to mammalian models closer 
to humans is necessary in order to verify the generality and 
validity of the data obtained in mouse and rat models.    
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