IMR Press / FBS / Volume 3 / Issue 2 / DOI: 10.2741/S179

Frontiers in Bioscience-Scholar (FBS) is published by IMR Press from Volume 13 Issue 1 (2021). Previous articles were published by another publisher on a subscription basis, and they are hosted by IMR Press on as a courtesy and upon agreement with Frontiers in Bioscience.

Studies of first phase insulin secretion using imposed plasma membrane depolarization
Show Less
1 Institute of Pharmacology and Toxicology, University of Braunschweig, D-38106 Braunschweig, Germany

*Author to whom correspondence should be addressed.

Academic Editor: Morten Pedersen

Front. Biosci. (Schol Ed) 2011, 3(2), 662–679;
Published: 1 January 2011
(This article belongs to the Special Issue New aspects of biphasic insulin secretion)

The first phase of glucose-induced insulin secretion is generally regarded to represent the release of a finite pool of secretion-ready granules, triggered by the depolarization-induced influx of Ca2+ through L-type Ca2+ channels. However, the experimental induction of insulin secretion by imposed plasma membrane depolarization may be more complicated than currently appreciated. A comparison of the effects of high K+ concentrations with those of KATP channel closure, which initiates the electrical activity of the beta cell, suggests that 40 mM K+, which is a popular tool to produce a first phase-like secretion, is of supraphysiological strength, whereas the 20 mV depolarization by 15 mM K+ is nearly inefficient. A major conceptual problem consists in the occurrence of action potentials during KATP channel closure, but not during K+ depolarization, which leaves the K+ channel conductance unchanged. Recent observations suggest that the signal function of the endogenously generated depolarization is not homogeneous, but may rather differ between the component mainly determined by KATP channel closure (slow waves) and that mainly determined by Ca2+ influx (action potentials).

Back to top