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1. ABSTRACT 
 

Quantitative changes in Hsp60 during the 
development of some tumors suggest that this chaperonin 
plays a role in carcinogenesis. A description of the specific 
role(s) of Hsp60 in tumor-cell growth and proliferation is 
still incomplete, but it is already evident that monitoring its 
levels and distribution in tissues and fluids has potential for 
diagnosis and staging, and for assessing prognosis and 
response to treatment. Although Hsp60 is considered an 
intramitochondrial protein, it has been demonstrated in the 
cytosol, cell membrane, vesicles, cell surface, extracellular 
space, and blood. The knowledge that Hsp60 occurs at all 
these locations opens new avenues for basic and applied 
research. It is clear that elucidating the mechanisms by 
which the chaperonin arrives at these various locations, and 
characterizing its functions in each of them will provide 
information useful for understanding carcinogenesis and for 
developing diagnostic and therapeutic tools for clinical 
oncology. Some of these issues pertinent to colorectal 
cancer (CRC) are discussed in this article. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

The chaperoning system is composed of several 
groups of molecular chaperones and their cochaperones and 
cofactors, and other functionally associated molecules (1). 
This system, essentially involved in maintaining protein 
homeostasis and in anti-stress mechanisms, is conserved 
throughout evolution and is present in prokaryotes (bacteria 
and archaea) and eukaryotes (2). 

 
The chaperoning system can be viewed as the 

predecessor of the immune system, which is present only in 
multicelullar eukaryotes. The immune system is also 
involved in defence mechanisms against foreign invaders 
and as such it has points of contact with the chaperoning 
system. In fact, it is now known that the chaperoning and 
the immune system interact at various levels (1, 3). 

 
Many chaperones but not all are heat-shock 

proteins (Hsp). Conversely, many but not all Hsps are 
chaperones. This distinction is generally ignored in the 
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literature, hence we will use in this article the terms Hsp 
and chaperones interchangeably. 

 
In the last two decades, new roles distinct from 

participation in protein folding, refolding, translocation, 
and degradation, have been ascribed to Hsp-chaperones, for 
example, in regulation of the innate immune system, gene 
expression, cell differentiation, DNA replication, and signal 
transduction, and participation in programmed cell death, 
cellular senescence, and carcinogenesis (4-7). In addition, 
also in the last few years it has become evident that 
defective chaperones can cause diseases, and a new area of 
medicine and pathology has been defined to encompass the 
pathologic conditions, the chaperonopathies, in which 
chaperone malfunction is an etiologic factor (8). 

 
Among chaperonopathies are some types of 

neoplasms in which chaperones are not defective but are 
“collaborating” with the tumour rather than with the host. 
For this reason, these neoplasms have been called 
“chaperonopathies by collaborationism” or “by mistake” 
(9). In these tumours, the cellular levels and expression of 
some Hsp-chaperones are higher than in normal tissues, a 
fact that may be of some diagnostic and prognostic 
potential, as well as of value for assessing response to 
treatment (10, 11). 

 
Last but not least, because of the Hsp-chaperones 

involvement in carcinogenesis, a modern approach to fight 
cancer is to develop strategies directed to these molecules, 
either to inhibit or eliminate them if they are involved in 
promoting tumor growth, or the reverse, to augment them if 
they enhance apoptosis (i.e., death) in tumor cells (12, 13). 
In this regard, anti-chaperone antibodies may be useful 
tools for identification of tumor cells with chaperones in 
their surface, and for targeting these tumor cells to deliver 
to them therapeutic compounds (11). 

 
In this minireview, we focus our attention on the 

role of Hsp60 in normal cells and during human 
carcinogenesis, particularly in regard to colorectal cancer 
(CRC). Many studies performed in various laboratories, 
among which ours have tested the hypothesis that Hsp60 is 
a major player in the development of CRC, one of the most 
frequent malignancies in the Western World (14-20). In 
this paper, we discuss briefly some recent data while 
opening a debate on the central role of Hsp60, and other 
Hsp-chaperones, in carcinogensis and tumor management 
from diagnosis to treatment, including assessing prognosis 
and response to medication. 

 
3. HSP60: MOLECULAR ANATOMY AND 
PHYSIOLOGY 
 

Hsp60, also called chaperonin 60 (Cpn60), is 
classically considered an intramitochondrial molecule, 
residing in the matrix in which it works together with its 
co-chaperonin, Hsp10 (Cpn10) (21, 22). Hsp60 is a 60 kDa 
protein constituted of three domains: apical, intermediate, 
and equatorial. Inside mitochondria, it forms a heptamer 
with the shape of a ring (23, 24). Two rings join together at 
their equatorial domains and form a barrel with a central 

cavity inside which the folding of client polypeptides 
occurs. Hsp10, a 10 kDa molecule, also forms a heptameric 
ring, which joins the Hsp60 double-ringed barrel, at the 
apical domain, to occlude the barrel and, thereby, create 
a closed chamber for polypeptide folding. The binding 
of the homodecatetrameric barrel with the 
homoheptameric Hsp10 ring and with seven ATP 
molecules is crucial for the chaperoning machine to 
assemble correctly and function, so the end result is the 
release of mature client proteins, with their correct 
tridimensional structure, i.e., native, functional 
conformation (23, 24). In human cells, Hsp60 can also 
function as a single homoheptameric ring (25-27). 
Furthermore, the Hs10 ring, the barrel lid, does not seem 
to be required for the folding of many proteins since 
their maturation is not affected by inhibition of Hsp10 
(28). 

 
In human cells, both the Hsp60 (HSPD1) and 

Hsp10 (HSPE1) genes are in chromosome 2, head-to-
head, with a common promoter between them (29). The 
products of the two genes, Hsp60 and Hsp10, are 
translocated to mitochondria. The Hsp60 amino-acid 
sequence has a mitochondrial signal sequence that is 
cleaved when the chaperonin molecules enters the 
organelle (30). Since both these proteins are highly 
conserved during evolution (e.g., they are present in all 
bacteria and some archaea), and since, according to the 
endosymbiotic theory, mitochondria derive from 
bacteria, it has been postulated that the fragment of 
DNA containing the hsp60 and hsp10 genes “migrated” 
from bacterium/mitochondrion to nucleus in an ancestral 
era (31). Thus, the genes’ products developed the 
capability of reaching the organelle navigating through 
the crowded cytosol. In this process, evolutionarily very 
significant, Hsp60 and Hsp10 most likely acquired new 
functions, for instance, interaction with molecules 
involved in apoptotic pathways, and with other 
mechanisms such as those involved in cytoprotection. It 
is, therefore, not surprising that Hsp60 and Hsp10 are 
found in extramitochondrial sites, such as cytosol, 
peroxisomes, other vesicles, cell membrane, etc (22, 32, 
33). 

 
The presence of Hsp60 in the cytosol may be due 

to mitochondrial release, after a pro-apoptotic stress for 
example, or to cytosolic accumulation due to gene 
overexpression (34, 35). The two possibilities are not 
mutually exclusive, and cytosolic Hsp60 molecules 
released from mitochondria can in principle be 
distinguished from those that never went into the organelle 
because the latter have the mitochondrial localization signal 
whereas the other do not. 

 
The presence of Hsp60 in the cell membrane and 

in cellular vesicles probably indicates that the chaperonin is 
on its way to be released into the extracellular space and, 
from there in some cases it reaches the bloodstream (36-
38). Hsp60 may be secreted alone or bound to other 
molecules, and it may also have an extracellular function 
(1, 3, 39, 40). It has been postulated that the presence of 
Hsp60 in extracellular fluids represents an alarm signal for 
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Figure 1. Effect of protein-secretion inhibitors on Hsp60 secretion by tumor cells.  A) Hsp60 and Hsp70 detected by Western 
blotting in: (a) immunoprecipitates from conditioned media from untreated (Unt) and inhibitor-treated H292 tumor cells; and (b) 
whole-cell lysates from H292 cells. The inhibitors are listed on top of the respective lanes. Histograms to the right represent the 
levels of the Hsps in immunoprecipitates determined in three separate experiments as mean percentages +/- SD of arbitrary units 
(AU) obtained with NIH image J 1.40 analysis software. * and **, significantly different from untreated control, p<0.005 and 
p<0.001, respectively. The two inhibitors (listed below the bars) significantly decreased secretion of Hsp60 and Hsp70. Also, the 
data from whole-cell lysates show that the protein-secretion inhibitors had no detectable effect on Hsp levels inside the cells. B) 
Hsp60 levels secreted by the H292 tumor cells before and after exposure for 1 hour, followed by a 4 hours recovery period, to 
protein-secretion inhibitors measured by ELISA in: (a) conditioned media; and (b) exosomes. Histograms represent Hsp60 levels 
expressed as pg of protein normalized for mL normalized for 106 cells. Data represent mean +/- SD of three different experiments 
in duplicate. * Significantly different from untreated control, p< 0.005. The results, which are in agreement with those obtained 
by Western blotting, show that the inhibitors tested significantly reduced secretion of Hsp60 by the H292 tumor cells. 
(Reproduced with permission from 38). 

 
the immune system, both the innate and the adaptive, which 
are thus stimulated to mount a proinflammatory response. 

 
4. INVOLVEMENT OF HSP60 IN PATHOGENESIS 
 

Organisms with a defective Hsp60 (e.g., due to an 
hsp60 gene mutation), are prone to develop degenerative 
diseases since quantitative and qualitative mitochondrial 
protein deficiencies are deleterious and can cause cell death 
(41-45). 

 

If we recall a well known axiom of cell biology 
that states that the more numerous are the functions of a 
molecule, the higher is the risk that its impairment will 
determine cellular alterations and, thus, the onset of a 
disease, we fully realize the potential extent of the 
pathological alterations that a defective Hsp60 will 
originate. Thus, a prize paid by Hsp60 acquiring a broad 
range of functions during evolution is that the variety of 
diseases it may cause if structurally-functionally deficient 
is extensive. 

 
It has been postulated that cellular stress can 

cause post-translational modifications in cytosolic Hsp60 
(46). These modifications can be responsible of Hsp60 
localization in the cell membrane that, in turn, determines 
its internalization via lipid rafts, accumulation in 
multivesicular bodies, and release into the extracellular 
space via the exosomal pathway (38, 46, 47). We have 

found that Hsp60 is released into the extracellular space by 
cell lines in vitro and this release involves lipid rafts and 
exosomes, Figure 1 (38). We hypothesize that exosomal 
Hsp60 is accompanied by other biological active molecules 
to be destined to other cells. Therefore, Hsp60-containing 
exosomes may be considered vectors for intercellular 
communication. This mechanism could have a role in 
cancer progression, and in the pathogenesis of other 
conditions such as inflammatory, autoimmune, and 
degenerative diseases. 

 
It is also pertinent to recall that many microbes, 

pathogens and non-pathogenes in the human body, produce 
Hsp60, which can be released and thus can reach the blood 
and be recognized as foreign antigens by the immune 
system. The microbial Hsp60 (named GroEL) is 
structurally very similar to the human ortholog, so 
antibodies made against the bacterial GroEL almost 
always crossreact with human Hsp60. This cross-
reaction is most likely at the basis of several diseases 
with autoimmune components, including autoaggression 
on cells bearing the chaperonin on their plasma 
membrane (48). The phenomenon of structural, and 
therefore antigenic, similarity between the prokaryotic 
and the eukaryotic Hsp60 is a form of what is known as 
“molecular mimicry,” a phenomenon that has been 
postulated to be involved in the development of some 
autoimmune diseases (49). 
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Table 1. Human tumors with increased Hsp601 
System Tumor Methods2 References 
Nervous Astroglyoma RT-PCR 53 

Acute myeloid leukaemia Flow cytometry 54, 55 Haematopoietic 
Hodgkin’s lymphoma IHC, WB 56 
Oral liken planus IHC 57 
Oesophageal squamous carcinoma IHC 58 
Gastric MALToma IHC 59, 60 
Large bowel adenocarcinoma IHC, WB, cDNA microarray, ELISA, proteomics 14, 16, 17, 19, 20 

Digestive 

HCV-hepatocellular carcinoma 2D-gel electrophoresis 61 
Male reproductive Prostate adenocarcinoma IHC 62-64 

Exocervical carcinoma IHC, WB 65-67 
Ovarian carcinoma IHC 68, 69 

Female reproductive 

Breast ductal invasive carcinoma 2D-gel electrophoresis 70 
Endocrine Adrenal Cushing tumor IHC 71 
Skeletal Osteosarcoma IHC, ELISA 72-74 

1Based on (11),  2Abbreviations: RT-PCR; real-time PCR; IHC, immunohistochemistry; WB, Western blotting; ELISA, enzyme-
linked immunosorbent assay. 
 
Table 2. Human tumors with increased Hsp101 

System Tumor Methods2 References 
Haematopoietic Mantle cell lymphoma Microarray, IHC, WB 75 
Digestive Large bowel adenocarcinoma IHC, WB 15, 16 
Male reproductive Prostate IHC 76 
Female reproductive Ovarian serum cancer IHC, WB 77, 78 
 Exocervical cancer IHC; WB 15 

1Based on (11),  2Abbreviations: see footnote to Table 1. 
 

    Table 3. Human tumors with decreased Hsp60 and Hsp101 

Hsp System Tumor Methods2 References 
Hsp60 
 Nervous Glioblastoma Proteomics 79 
 Respiratory Bronchial adenocarcinoma IHC, WB 62, 80 
 Digestive Tongue carcinoma IHC 81 
 Urinary Bladder transitional cell carcinoma IHC 82, 83 
  Carcinosarcoma IHC 84 
Hsp10 
 Respiratory Bronchial adenocarcinoma IHC, WB 80 

1Based on (11),  2Abbreviations: see footnote to Table 1. 
 
5. HSP60 IN CANCER DEVELOPMENT 
 

The pattern of Hsp60 levels in cancer cells varies 
according to the type and stage of the tumor: in some cases 
there is no discernible change in the tumor cells in 
comparison with the normal cell counterparts, but in other 
cases there are clear modifications, which are typical of the 
cancer cell. For example, Hsp60 levels commonly increase 
during some types of organ carcinogenesis, (Table 1), and 
this is often related to a concomitant increase in the Hsp10 
levels (Table 2). In contrast, in other tumors, the levels of 
both Hsp60 and Hsp10 are lower than in normal tissue 
counterparts (Table 3). 

 
It has not been fully elucidated why and by what 

mechanism Hsp60 levels increase in some tumors, or 
decrease in others. We have postulated a positive 
correlation in lung, tongue, and bladder cancers between 
exposure to cigarette smoke and reduction of Hsp60 levels 
and an advanced tumor stage (unpublished). 

 
In what regards the effects of higher Hsp60 levels 

in dysplastic or neoplastic cells, we suggest that Hsp60

 
promotes, or at least parallels, tumor mass growth, since 
Hsp60 in tumor cells is commonly present at higher 
concentration in cytosol, vesicles, and cell membrane 
(38, 50). In the cytosol, Hsp60 can bind to pro-caspase 
3, blocking its activation after pro-apoptotic stimuli, 
thus having an antiapoptotic effect, Table 4 (34, 35, 50). 
Moreover, the chaperonin is secreted from tumor cells 
via lipid-rafts/exosomal pathways (38), with the 
potential of playing immunoregulatory roles in the 
peritumoral environment. 

 
Hsp60 in tumor cells is often localised to the cell 

membrane, exposed to the outside. This topology makes 
Hsp60 prone to be recognized by the immune system, e.g., 
anti-Hsp60 antibodies and/or cytotoxic T cells, which thus 
have the potential to eliminate tumor cells from the 
organism (48). Although this antitumor effect can be 
considered to be an advantageous “natural” antitumoral 
mechanism, it may also represent one of the ways in which 
more aggressive clones are selected by escaping antitumor 
immunity. This could explain why some tumors (in more 
advanced stages?) are Hsp60 negative
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Figure 2. Immunohistochemical assessment of Hsp60 
helps to diagnose CRC. A) Hsp60 in normal colon mucosa 
is under the threshold of detection. Some cells do present 
spots of positivity inside the cytoplasm suggesting 
mitochondrial localization of the molecule (inset, original 
magnification: 100X). B) Dysplastic cells of a low-grade 
polypoid adenoma, which typically have large nuclei and are 
tightly packed producing at low magnification the sort of 
image seen in the left side of the microphotograph, show a 
diffuse positivity for Hsp60, in contrast to hyperplastic cells 
(right upper corner), which are usually negative for the 
chaperonin. C) CRC (colon adenocarcinoma) cells also show a 
diffuse positivity for Hsp60. The diffuse positivity (here and in 
dysplastic cells in B) suggests extramitochondrial (cytosolic) 
localization of the chaperonin. D) Immunohistochemistry for 
Hsp60 helps to identify islets of tumor cells (right lower 
corner) underneath a normal mucosa (left upper corner). E) 
Hsp60 immunostaining show nerves invaded by tumor cells 
(red arrow) and thus it can distinguish invaded from non 
invaded (green arrow) nerves. F) Shown is a small colonic 
lymph node colonized by Hsp60-positive adenocarcinoma 
cells. G) Image of a hyperplastic follicle in a lymph node 
exempt from tumor invasion, negative for Hsp60. H) This 
picture shows a hyperplastic follicle in a lymph node invaded 
by tumor cells (not shown) that presents a number of 
lymphoblasts positive for Hsp60. This immunopositivity 
resembles the punctate pattern observed in normal 
epithelial cells (A, inset) suggestive of a mitochondrial 
positivity. Bars: 100 micron. 

Some research has been performed to assess the 
prognostic value of Hsp60 levels in tumor cells, Table 5. 
The results are encouraging is some cases but are, for the 
most part inconclusive, due to the limited number of 
patients studied in depth. 
 
6. HSP60 AND CRC DEVELOPMENT 
 

Hsp60 is a good immunohistochemical marker of 
CRC (Figure 2). Hsp60 levels, as well as those of its co-
chaperonin Hsp10, increase gradually throughout the 
carcinogenetic steps of CRC, i.e., from normal mucosa 
through low-grade dysplasia and severe dysplasia to 
invasive cancer, as shown by immunohistochemistry and 
Western blotting (14-16). Our results have been confirmed 
by others (17, 18). HSPD1 overexpression in colon cancers 
was also recently shown and bioinformatics data indicated 
that this gene is one of the best markers for diagnosing 
these tumors (19). These findings support the potential 
utility of measuring Hsp60 at both, protein and gene-
expression levels, for diagnostic purposes and for assessing 
prognosis of pre-neoplastic and neoplastic lesions in 
routine surgical pathology (20). 

 
The histological immunolocalization of Hsp60 

and Hsp10 help to discriminate CRC staging, since it 
provides a means to assess the levels of tumor invasion and 
infiltration of vessels, nerves, and regional and distant 
lymph nodes, thus evidencing metastases. We found that 
higher levels of Hsp60 but not Hsp10 are correlated with 
higher tumor grade and, thereby with higher tumor 
aggressiveness. Lymph node metastases, even very small, 
are also positive to Hsp60, which suggests that testing for 
Hsp60 will help to detect micrometastasis. Normal 
parenchyma (especially cortical follicles) of infiltrated 
lymph nodes presents higher immunoreactivity for Hsp60 
than the normal parenchyma of hyperplastic lymph nodes 
without metastases (16). 

 
An intriguing observation was that CRC tumor-

cell lysates from fresh tissues showed in Western blotting 
two Hsp60 bands, one of them was slightly heavier than the 
canonical 60 kDa molecule (16). This could be interpreted 
as that the heavier band corresponds to the Hsp60 with its 
organelle-localizing sequence still in place, while the 
smaller molecule corresponds to the same molecule but 
without the signal sequence. These two types of Hsp60 
molecule in the cytosol could be targets of various distinct 
post-translational modifications, i.e., a mechanism for 
generating diverse Hsp60 molecules each with a particular 
function in the cell and/or outside the cell. One of these 
special, non-canonical Hsp60 locales is, in colon cancer, 
the cell membrane (51). 

 
Along the same lines, we recently observed 

Hsp60 in colon mucosa of patients with inflammatory 
bowel diseases (IBD), i.e., Crohn’s disease and ulcerative 
colitis (52). Both conditions are considered high risk for 
developing CRC. We found by immunohistochemistry that 
Hsp60 is increased in both diseases in comparison with 
normal controls in epithelium and lamina propria. It is 
likely that Hsp60 participates in the inflammatory
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Table 4. Effect of Hsp60 on apoptosis in tumor cells1 
Cells studied Hsp60 localisation Interacting molecule Stimulus Effect References 
Jurkat Mitochondria Pro-caspase 3 Staurosporine Pro- 85 
Jurkat Free / soluble Pro-caspase 3 Caspase-6 Pro- 86 
H292 Undetermined Pro-caspase 3 H2O2 Anti- 50 
PC3, LNCaP, MDAMB231, HCT116 Cytosol (with mitochondrial release) Pro-caspase 3 BMD-188 Pro- 34 
PC3, LNCaP, MDAMB231, HCT116 Cytosol (without mitochondrial 

release) 
Unknown BMD-188 Anti- 34 

MCF-7 Mitochondria Survivin Hsp60 knockdown Anti- 35 
MDAMB231, HCT116 Mitochondria, cytosol p53 Hsp60 knockdown Anti- 35 

1Based on (11) 
 
Table 5. Human Hsp60 levels and cancer prognosis1 

Tumor Hsp60 Prognosis References 
Acute myeloid leukaemia Increased Bad 55 
Oesophageal squamous carcinoma Increased Better five-year survival 57 
Ovarian carcinoma Increased Worse in patients treated with cisplatin-containing chemotherapy 68 
 Increased Better 69 
Vesical transitional cell carcinoma Decreased Bad outcome of local treatments 82 
 Decreased Poor response to neoadjuvant chemoradiotherapy 87 

1Based on (11) 
 

processes that determine mucosal remodelling and, as a 
consequence, the chaperonin takes part also in the process 
of carcinogenesis that often occurs in IBD mucosa, a 
possibility that is currently under investigation. 

 
7. CONCLUSIONS 
 

The field of chaperonology is now expanding 
since it is known that Hsp-chaperones are involved in the 
pathogenesis of a number of diseases, the 
chaperonopathies, among which some types of cancer. 
Chaperonotherapy is defined as the utilization of Hsp-
chaperones for treating chaperonopathies and other diseases 
(13). The possibility to restore a normal set of molecular 
chaperones inside neoplastic cells would be a way to limit the 
tumor growth if the chaperones have effects, like a pro-
apoptotic effect, in the tumor cell that do not favour its growth. 

 
Another aspect of chaperonotherapy is to use 

Hsp-chaperones as targets to direct anti-tumor reagents to 
tumor cells. Since Hsp-chaperones are in general strong 
immunogens, anti-chaperone antibodies are potentially 
useful reagents to kill tumor cells with one or more Hsp-
chaperones on its surface. 

 
As far as Hsp60 is concerned, it has been shown 

that its levels increase during the carcinogenetic steps in 
several types of neoplasm. Hsp60 levels determined by 
immunohistochemistry in tumor biopsies have been found 
in some cases to positively correlate with better prognosis 
as compared with the same type of tumors in which Hsp60 
levels did not increase. However, more extensive studies 
are necessary with many patients and matched controls to 
determine with precision the real diagnostic and prognostic 
value of Hsp60 levels in tumor cells. In addition, 
histological determinations should be accompanied by 
measurements of Hsp60 in the sera of patients, so as to 
obtain a more complete picture of the participation of this 
chaperonin in the clinico-pathological spectrum of signs 
and symptoms that characterize patients with cancer. 

 
In some of those cases in which Hsp60 levels are 

augmented in tumor cells it is likely that the chaperonin has

 
a pro-tumor effect. Therefore, chaperonotherapy should in 
this situation aim at eliminating or inhibiting Hsp60. The 
chaperonin would be the target for anti-chaperone agents. 

 
 Hsp60 accumulates in the cytosol of tumor cells 
and is secreted with involvement of lipid-rafts and 
exosomes. The latter exosomes represent a way to 
exchange “content” and thus “information” between cells. 
Hence, Hsp60 is probably involved in communication 
between tumor cells. It is not yet clear whether Hsp60-
loaded exosomes have pro- or anti-tumor effects; do they 
stimulate pro- or anti-inflammatory mechanisms in the 
peritumoral area and thus influence tumor growth? 
 
 Hsp60 has been found localised to the cell 
membrane of some tumors in vitro but this observation has 
not yet been confirmed in vivo. Moreover, we do not have 
enough information about the Hsp60 amino acids that are 
exposed on the membrane surface; this information would 
be key to generate anti-Hsp60 antibodies with a potential 
antitumor effect. We know that some normal cells, such as 
endothelial cells, under stress (e.g., hypertension) do 
expose Hsp60 on their membrane and are, therefore, prone 
to be recognized by anti-Hsp60 antibodies. 
 

In regard to the above, it is important to recall 
that human microbiota includes many organisms that 
release Hsp60 in various tissues, particularly during bacterial 
infections, and the circulating microbial chaperonin can induce 
an immune response with cells and antibodies that crossreact 
with the human ortholog. This mechanism of crossreactivity 
due to molecular mimicry has been implicated in the 
pathogenesis of a number of diseases with autoimmune 
components, such as arthritis, diabetes, thyroiditis, and others. 
The same type of phenomenon may cause also the “natural 
killing” of tumor (or pre-tumor) cells expressing Hsp60 on 
their membrane. However, molecular mimicry and 
crossreactive antibodies could also lead to selection of tumor 
cell clones that have no Hsp60 on the surface, which would 
thus escape the action of the immune system. 

 
In summary, we have gathered evidence in the 

laboratory and with human samples, and from the literature, 
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which strongly suggests that Hsp60 is involved in tumor 
development in humans. Hsp60 occurs in the mitochondria 
of tumor cells, as expected, but it is also present in the 
cytosol and on the surface of these cells. It is thus obvious 
that this chaperonin must occupy the central stage in future 
studies aimed at understanding the mechanisms of tumor 
cell growth, and in efforts dedicated to the development of 
antitumor agents. 
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