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1. ABSTRACT 

 
L-Tryptophan is a nutritionally essential amino 

acid for monogastric animals and preweaning ruminants 
because it cannot be synthesized in the body.  Besides 
serving as a building block for proteins, tryptophan is a 
critical nutrient for the functions of nervous and immune 
systems.  Over the past decades, much attention has been 
directed to study the role of tryptophan as a limiting amino 
acid in mammalian and avian nutrition.  However, 
emerging evidence from recent studies shows that 
tryptophan and its metabolites [e.g., serotonin 
(5-hydroxytryptamine, 5-HT) and melatonin)] can regulate 
feed intake, reproduction, immunity, neurological function, 
and anti-stress responses. Additionally, tryptophan may 
modulate gene expression and nutrient metabolism to 
impact whole-body homeostasis in organisms. Thus, 
adequate intake of this amino acid from the diet is crucial 
for growth, development, and health of animals and 
humans. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

L-Tryptophan (TRP; 
L-α-aminoindole-3-propionic acid) is a nutritionally 
essential amino acid for monogastric animals (e.g., humans, 
pigs, dogs, rats, mice, and chickens) and preweaning 
ruminants (e.g., calves and lambs) due to the lack of 
endogenous synthesis (1).  It is a white powder and a 
neutral amino acid with the pI value of 5.96 [pKa (α-COOH) 
= 2.46; pKa (α-NH3

+ = 9.41).  TRP was first isolated from 
casein in 1902 by F.G. Hopkins using base hydrolysis.  
Like some amino acids (e.g., homocysteine and cysteine), 
TRP binds non-covalently with serum albumin. The primary 
function of TRP is to serve as a building block in protein 
biosynthesis.  However, TRP’s metabolites are key 
neurotransmitters, thereby regulating immune responses 
and the function of the nervous system (1).  Thus, TRP 
plays an important role in metabolism, physiology, growth 
and development of organisms (2). The aim of this review is 
to highlight recent developments in TRP metabolism and 
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nutrition, with particular reference to the regulation of feed 
intake, reproduction, immunity, growth, neurological 
function, and anti-stress response. 
 
3. METABOLISM AND NUTRITION OF TRP IN 
ANIMALS 
 
3.1. Pathways of TRP metabolism 

Two sources contribute to the free TRP pool in 
plasma: the diet and intracellular protein degradation.  
They provide approximately 1/3 and 2/3 of the TRP’s 
whole-body flux, respectively. Because TRP is not 
synthesized by animal cells, the diet is the ultimate source 
of this amino acid in the body. In monogastric animals, 
microbes in the lumen of the large intestine can ferment 
undigested foods and produce TRP.  However, this 
synthetic event provides little TRP to the host because the 
amount is quantitatively small and the absorption of TRP by 
colonocytes is limited.  Thus, monogastric animals cannot 
grow or maintain a positive nitrogen balance when fed a 
TRP-free diet (1). TRP is metabolized via three pathways in 
mammals: (a) hydroxylation and decarboxylation of TRP to 
generate serotonin (5-hydroxytryptamine, 5-HT); (b) 
deamination and decarboxylation of TRP to yield 
indoleacetic acid; and (3) degradation of TRP to niacin, 
pyruvate and acetyl-CoA through kunurenine formation 
(Figure 1). Nicotinamide, serotonin and melatonin 
(N-acetyl- 5-methoxytryptamine) are important bioactive 
compounds derived from TRP (2). In healthy adult 
mammals, over 95% of the ingested TRP is catabolized 
primarily in the liver via the kynurenine (KYN) pathway.  
However, only 1–2% and 2-3% of dietary TRP are 
converted into serotonin (mainly in the small intestine but, 
to a much lesser extent, other tissues including the lactating 
mammary gland) and indoleacetic acid (mainly in the 
gastrointestinal tract and liver), respectively (3-5). The 
gastrointestinal tract contains 80-90% of serotonin in the 
body. 

 
The first and rate-controlling step in this pathway 

(namely the conversion of TRP to KYN) is catalyzed by 
either the ubiquitous indoleamine 2, 3-dioxygenase (IDO) 
(4, 5) or TRP 2, 3-dioxygenase (TDO) which is primarily 
localized to the liver (6). Notably, tetrahydrobiopterin is an 
essential cofactor for IDO, TDO, and TRP hydroxylase.  
The expression of IDO is strongly influenced by the state of 
the immune system in that IDO activity is potently induced 
by inflammatory cytokines (e.g., interferon-γ) and 
endotoxin.  In contrast, TDO activity is increased by TRP 
and its analogues via an allosteric binding site, but is 
competitively inhibited by some common indoleamines, 
including tryptamine (6). 

 
Metabolism through the KYN pathway primarily 

results in the formation of quinolinic acid, particularly via 
the production of 3-hydroxykynurenine and 
3-hydroxyanthranilic acid. Quinolinic acid may be 
metabolized further to nicotinamide or nicotinic acid (7). 
The kynurenine pathway also produces kynurenic acid, 
picolinic acid, 5-hydroxyanthranilic acid, and xanthurenic 
acid, leading to the generation of pyruvate and acetyl-CoA. 
The KYN- and serotonin-synthetic pathways share TRP as 

the common nitrogenous substrate.  Therefore, competition 
for TRP exists between nicotinic acid and serotonin 
synthesis in animals.  Proinflammatory cytokines can 
induce IDO under stressful or disease conditions, activate 
the KYN pathway, and reduce 5-HT synthesis (8).  
 
3.2. TRP metabolites  

Nitrogenous products of TRP catabolism include 
serotonin, N-acetylserotonin, melatonin, anthranilic acid, 
and ammonia (1). Serotonin is a biogenic amine which 
functions as: (a) a neurotransmitter; (b) a regulator of 
gastrointestinal secretion, motility, and sensation; (c) a 
modulator of cognition, sleep, mood, and appetite; and (d) a 
mediator of a number of neurological diseases [e.g., mental 
disorders (2,9-11)].  At elevated concentrations, serotonin 
is capable of promoting oxidative stress in cellular systems 
or tissues (12).  There is also evidence that an increase in 
serotonin synthesis can be a sensitive biomarker of 
oxidative stress and the generation of reactive 
oxygen/nitrogen species (11,12). Serotonin can also act 
through specific membrane receptors involved in numerous 
physiological functions (1,2). Interestingly, exogenous 
serotonin can increase fecal pellet output in rats and cause 
diarrhea in mice (13). 

 
Melatonin is a versatile and ubiquitous hormonal 

molecule (14).  It is widely distributed throughout the body, 
especially in the gastrointestinal tract (15) where melatonin 
is produced by mucosal enteroendocrine cells. Melatonin 
exerts strong anti-inflammatory effects due to an inhibition 
of NF-kB and TNF-α expression (16). Melatonin and TRP 
show strong protective efforts on the gastric mucosa and 
accelerate ulcer healing, while stimulating pancreatic 
exocrine function via mechanisms involving 
enteropancreatic reflexes and cholecystokinin (CCK) (17).  
Additionally, melatonin and TRP may limit or reverse some 
of the changes that occur in age-related sleep-wake rhythms 
and body temperatures (18).  

 
Metabolites of the KYN pathway have either 

neurotoxic or neuroprotective activities depending on 
products, in that 3-hydroxykynurenine and quinolinic acid 
are neurotoxic whereas kynurenic acid is neuroprotective 
(8).  For example, quinolinic acid, as one of the 
metabolites of TRP produced along an alternative branch of 
the KYN pathway, has excitotoxic properties in the brain 
and the peripheral nervous system due to: (a) potent action 
on NR2A and NR2B; (b) activation of N-methyl-D-aspartic 
acid (NMDA) receptor subtypes; and (c) an ability to 
generate free radicals independently of receptor-mediated 
mechanisms (19).  Of particular note, physiological 
concentrations of kynurenic acid acts as an antagonist of 
ionotropic glutamate receptors (20,21) and an NMDA 
receptor antagonist through its competitive blockade of the 
glycine co-agonist site (19). However, pathological levels of 
kynurenic acid contribute to the pathogenesis of 
neurological diseases by interfering with membrane 
receptors and cell signaling (22-25).  

 
Niacin is a component of nicotinamide adenine 

dinucleotide (NAD) and nicotinamide adenine dinucleotide 
phosphate (NADP) (1).  Nicotinic acid (nicotinate) is the form 
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Figure 1.  L-Tryptophan catabolism in animals.  Degradation of L-tryptophan is initiated by indoleamine 2, 3-dioxygenase, 
tryptophan 2, 3-dioxygenase, and tryptophan hydroxylase.  Important products include NAD, serotonin, melatonin, kynurenine, 
indoles, and acetyl-CoA.  L-tryptophan is both a ketogenic and glucogenic amino acid. 

 
of niacin required for the synthesis of NAD and NADP by 
enzymes present in the cytosol of most cells.  NAD and NADP 
are coenzymes for many oxidoreductase enzymes involved 
in the metabolism of nutrients (e.g., carbohydrate, fatty acids, 
and amino acids) and exogenous substances (e.g., alcohol).  
In addition, NAD is as a substrate for poly(ADP-ribose) 
polymerase which catalyzes the attachment of ADP-ribose 
to various chromosomal proteins, thereby participating in 
the post-translational modifications of a variety of proteins.  
Thus, nicotinamide is essential for normal physiological 
function through the formation of NAD(P) and redox 
reactions in all cells.   

 

3.3. TRP and immunity 
A new, exciting development in TRP research is 

that TRP metabolism is altered markedly in immune cells 
and many of other cell types (e.g., neurons) in response to 
proinflammatory cytokines. This new knowledge may help 
explain the etiological and pathophysiological mechanisms 
responsible for impaired immunity and depression in 
subjects under stressful conditions (8). Most of indolic 
compounds in living organisms are derived from TRP.  
These TRP products are not sensitive to nitric oxide, oxygen 
or superoxide anion, but react directly with other reactive 
oxygen and reactive nitrogen species, yielding various 
derivatives (26-28). Additionally, TRP metabolites may 
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contribute to pathological alterations in diabetes (27) and 
the KYN pathway has been identified as a potential source 
of biomarkers for the irritable bowel syndrome (28). 

 
As noted previously, IDO can affect serotonergic 

and glutamatergic functions through immune activation, 
including infection and autoimmunity (29). This enzyme 
also has a complex role in pregnancy, transplantation, and 
neoplasia (15,30-32). For example, exerting a fine control 
over inflammatory and adaptive antifungal responses can 
suppress the growth of intracellular bacteria, viruses, and 
parasites (5, 33, 34), as well as mediate the 
inflammatory–anti-inflammatory state of dendritic cells in 
response to Candida and Aspergillus infection (35,36). The 
IFN-γ–IDO axis may also accommodate fungal persistence 
in the host (37). Moreover, the expression of IDO is 
regulated by factors produced in the immune system, with 
IFNγ and TNFα being the main inducers. Interestingly, IDO 
is expressed in nearly all human cells in response to 
stimulation by these cytokines.  Furthermore, IDO 
expression is regulated by other immunologically active 
molecules such as prostaglandins (38) and the surface 
proteins CTLA4 (39), CD40 (40), and toll-like receptors 
(TLR) (41). Activation of IDO results in a decreased 
availability of TRP, which can inhibit T-cell proliferation 
(42).  A particularly high IDO activity can lead to a nearly 
complete depletion of TRP at the site of infection, which 
arrests the growth of several TRP-dependent 
microorganisms (43,44). Histochemical studies revealed the 
presence of IDO in female reproductive organs and 
alterations of its expression during pregnancy, a 
physiological event that is associated with immunological 
activation in the placenta and uterus (45).    Interestingly, 
concentrations of KYN and TRP in plasma reflect poorly 
IDO expression in the conceptus during early gestation, but 
a closer relationship was detected during the last month of 
pregnancy in humans (45-48).  This is likely due to 
multiple factors that regulate TRP absorption and 
catabolism, intracellular protein turnover, and excretion of 
KYN from the body.      

 
3-Hydroxy-DL-kynurenine and α-picolinic acid 

may contribute to the anti-infectious activity of allografts by 
directly inhibiting the growth of microorganisms (49). The 
antimicrobial mechanism of 3-hydroxy-DL-kynurenine is 
unknown but may involve blockage of protein synthesis.  
In contrast, there is evidence that deprivation of iron by 
α-picolinic acid is attributable to its direct antimicrobial 
activity (50).  This raises an important question of whether 
TRP in the lumen of the gastrointestinal tract may be 
beneficial for controlling microbial population and 
numbers. 

 
In patients with multiple trauma, TRP deficiency 

has been found to be associated with the decline of 
lymphocyte numbers (51) as a result of IDO activation (52).  
Inflammatory conditions are associated with increased TRP 
catabolism and decreased TRP availability in cells (53).  
For example, Increases in IDO activity and TRP 
incorporation into acute phase proteins could explain TRP 
deficiency in pigs suffering from chronic lung inflammation 
(54). A moderate inflammatory response is evident in 

animals when the sanitary quality of environment is 
compromised. Additionally, poor sanitary conditions lead to 
alterations of TRP metabolism, therefore reducing that the 
amount of TRP available for growth and other metabolic 
functions in the host (55). Similarly, the induction of TRP 
degradation by inflammatory agents results in reduced 
growth of pathogens and cancer cells by depriving them of 
TRP (4).  TRP deficiency also occurs in people with 
wounds (56) due to elevated catabolism of TRP via the 
KYN pathway.  Thus, while KYN production plays an 
important role in mediating tolerance to infection (57), TRP 
supply from the diet may be augmented in response to 
immunological challenges.  

 
Oral administration of TRP (125 mg/kg body 

weight) enhanced the phagocytic activity of macrophages 
and detoxification of superoxide anion radicals derived 
from immune cells, possibly through the generation of 
immunoregulatory molecules, serotonin, and melatonin (58). 
In a porcine model of dextran sodium sulfate (DSS)-induced 
colitis, oral administration of TRP could reduce 
inflammation and enhance the rate of recovery from the 
disease (59).  The TRP treatment also decreased the 
expression of proinflammatory cytokines [including TNF-α, 
interleukin (IL)-6, interferon (IFN)-γ, IL-12p40, IL-1β,  
IL-17, and IL-8] and intracellular adhesion molecule-1 (59).  
These findings indicate that TRP may be an effective 
immunomodulatory agent for the treatment of the irritable 
bowel syndrome (59) 
 
3.4. TRP and neurological function  

Like other essential amino acids, TRP must be 
supplied in the diet to support the growth, development, and 
function of the brain and peripheral nervous organs (1). TRP 
is transported into neurons by neutral amino acid carriers 
which are also shared by other large neutral amino acids 
(phenylalanine, leucine, isoleucine, tyrosine and valine) 
(61). Through changes in serotonergic activity, TRP has 
been implicated in the regulation of synthesis of key 
neurotransmitters (1, 60).  Thus, TRP has been used to treat 
neurological disorders, including depression, schizophrenia, 
dysregulation of food intake, and other neuropsychiatric 
diseases (1). 

An appropriate balance of dietary amino acids is 
important for neuronal TRP metabolism and thus the 
function of the nervous system.  For example, serotonin 
synthesis depends on extracellular concentrations of both 
TRP and other large neutral amino acids because they 
compete with TRP for transport across the blood-brain 
barrier. When serum TRP concentrations are elevated, the 
availability of TRP in the brain and other organs is increased, 
resulting in enhanced synthesis of serotonin in serotonergic 
neurons and pinealocytes of the pineal gland (62). Thus, 
oral administration of TRP enhances serotonin levels in 
both plasma and different brain regions (63). Conversely, 
dietary deficiency of TRP leads to low levels of brain 
serotonin (64) and altered neurological function (65).  
Acutely lowering serotonin synthesis by TRP depletion 
promoted the intake of sweet-tasting foods by overweight 
individuals due to serotonergic involvement in the control 
of food consumption (66). Hydrolyzed protein could 
augment brain TRP and serotonin levels, therefore 
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improving mood and cognitive reactivity to depression (67).  
Additionally, oral administration of TRP (150-300 mg/kg) 
to rats and chicks results in a rapid and dose-dependent 
elevation of melatonin in plasma (68, 69). Also, TRP 
supplementation may ameliorate poor appetite in human 
subjects (70).   

 
3.5. Dietary requirements of TRP 

Accurate data on dietary TRP requirements by 
animals and humans critically depend on accurate analysis 
of TRP in diets.  Unfortunately, many investigators did not 
determine TRP content in experimental diets for animals or 
humans due to its complete loss under conditions of acid 
hydrolysis.  Based on nitrogen balance studies, 
good-quality protein intake and TRP intake of healthy adult 
subjects (both men and women) could be recommended at 
0.8 g and 4 mg/day per kg body weight, respectively (67).  
There has been much research on TRP requirements by 
poultry, pigs, cattle and sheep because they are 
agriculturally important species worldwide (70-79). This 
work has made important contributions towards enhancing 
the efficiency of nutrient utilization by animals.  

 
TRP is considered as the third or fourth limiting 

amino acid in typical corn- and soybean meal-based diets 
for young pigs after lysine, methionine, and threonine (73). 
TRP deficiency reduces food intake, protein synthesis rate, 
RNA activity, and growth in undernourished early-weaned 
piglets (73,77). Interestingly, piglets are able to detect 
metabolic changes induced by TRP deficiency and respond 
with an aversion against the TRP-deficient diet (74). 
Feeding a TRP-supplemented diet to pigs increased feed 
intake, the amounts of Cl- and H+ secreted from the 
intestinal mucosa, efficiency of nutrient utilization for 
protein accretion, and growth performance, when compared 
with unsupplemented controls (74,77,78). The TRP 
supplementation may also reduce aggression and alleviate 
stress in many species, including pigs (78) and chickens 
(79).  Notably, oral ingestion of TRP enhanced plasma 
concentrations of ghrelin [a gastrointestinal hormone which 
regulates food intake in both piglets and lactating sows 
(71,80)] and serotonin (81) in pigs. 

 
The current NRC recommendations for the 

requirements of dietary TRP (total TRP in diets) by swine 
were based on a summary of studies published by various 
scientists (82-88). The values are 0.27, 0.24, 0.21, 0.17, 0.14, 
and 0.11% of diets for pigs weighing 3-5, 5-10, 10-20, 
20-50, 50-80, and 80-120 kg, respectively (82).  In the 
ideal protein, lysine is used as a reference amino acid 
relative to requirements of other amino acids.  A ratio of 
TRP to lysine between 0.17 and 0.18 appeared to be 
sufficient to yield high feed intake and high growth rates in 
young pigs fed a diet containing adequate amounts of lysine 
and other amino acids (83,84).  However, this ratio should 
be increased to 0.195 to maximize growth performance in 
young pigs fed wheat- and barley-based diets deficient in 
TRP (85,86). Dietary TRP requirements (total TRP in diets) 
for gestating and lactating pigs have been estimated to be 
0.11% and 0.15-0.19% of diets, respectively, depending on 
body weight change (82). The efficiency of crystalline TRP 
for growth or protein deposition may be lower than that of 

protein-bound TRP (89,90), but compelling evidence is 
required to test this hypothesis. Nonetheless, dietary 
supplementation with TRP is effective in increasing growth 
performance and feed efficiency in young pigs fed a 
TRP-deficient diet. 
 
3.6. Safety of oral TRP and its metabolites 

TRP is widely available on the market as a 
supplement for both animals and humans.  However, there 
have been concerns that excess administration of TRP may 
cause oxidative stress in the cerebral cortex (91), as well as 
other adverse effects, including ataxia, tremors, diaphoresis, 
blurred vision, dry mouth, muscle stiffness, palpitations, 
urticaria, and the “eosinophilia–myalgia syndrome” (EMS) 
(92-97). However, some of these side effects might have 
been caused by contaminated substance(s) in the former 
TRP preparations, but not TRP itself.  Two lines of 
evidence indicate that growing-finishing pigs (79-119 kg 
body weight) pigs can tolerate considerable excesses of TRP 
and that oral ingestion of TRP is safe for swine.  First, 
supplementing 0.1 or 1% TRP to a typical com- and 
soybean meal-based diet did not adversely affect growth 
performance or blood variables (leukocyte and eosinophil 
counts, as well as activities of aspartate transferase, creatine 
phosphokinase, and lactate dehydrogenase).  Second, 
mortality did not occur in pigs receiving acute intragastric 
administration of TRP at doses of 2 and 5.71 g/kg body 
weight.  TRP excretion and the ratio of anthranilic acid to 
kynurenic acid in urine could be useful indicators of 
excessive TRP intake (94). 

 
5-Hydroxy-L-tryptophan (5-HTP), an 

intermediate in the biochemical synthesis of serotonin from 
TRP, is a popular dietary supplement for humans.  This 
TRP metabolite may ameliorate depression, improve the 
debilitating symptoms of fibromyalgia, aid in weight loss, 
reduce blood pressure, prevent headaches, and treat 
insomnia (98-100).  Dietary supplementation with 5-HTP 
may be beneficial for subjects who could not tolerate a large 
dose of TRP. An important difference between TRP and 
5-HTP is that 5-HTP can act as an antioxidant whereas 
excess TRP can cause oxidative damage (98). Oral 5-HTP is 
well absorbed and can be taken with meals (99). 
Additionally, 5-HTP easily crosses the blood-brain barrier 
and is readily transported by neurons (99). There is no 
evidence to implicate 5-HTP as a cause of the EMS or 
related disorders (100). 
 
4. SUMMARY AND PERSPECTIVES 

 
Tryptophan plays versatile roles in nutrition and 

physiology, particularly food intake, neurological function 
and immunity (1,101,102).  Thus, there is growing interest 
in TRP requirements by mammalian, avian, and aquatic 
species (103-107). Diets for animals and humans must 
contain adequate TRP to maintain growth, nitrogen balance, 
and health, because this amino acid cannot be synthesized in 
the body (102).  Optimal amounts of TRP in diets likely 
depend on species, developmental stages, environmental 
factors, and health status.  Tryptophan is usually the fourth 
limiting amino acid in cereal-based diets for weanling and 
growing pigs under practical conditions (after lysine, 
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methionine, and threonine). Through reduction in syntheses 
of proteins and neurotransmitters, deficiency of TRP results 
in retarded growth and neurological dysfunction.  
Available evidence shows that dietary supplementation with 
up to 1% TRP is safe for swine (an excellent animal model 
for studying human nutrition).  Undoubtedly, research on 
TRP is exciting and fruitful.  At present, little is known 
about effects of TRP on (a) pregnancy or lactation, which 
are important events in the mammalian life (108-111); (b) 
cellular signaling, which is a major mechanism for 
metabolic control (112-119); or (c) gene expression 
(including epigenetics), a highly specific process in which a 
gene can be switched on or off in response to regulatory 
factors (120). With the recent developments of omics 
techniques (e.g., genomics, proteomics, and metabolomics) 
(121-128) and bioinformatics (126), researchers now have 
powerful tools to study regulatory roles for TRP in gene and 
protein expression. Such a revolutionary approach is 
expected to rapidly provide new and comprehensive 
information about TRP metabolism and nutrition in 
organisms under both physiological and pathophysiological 
conditions. 
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