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1. ABSTRACT 

 
Retina is very rich in membranes containing 

polyunsaturated fatty acids. Reactive oxygen species 
initiates chain reactions of lipid peroxidation which injure 
the retina, especially the membranes that play important 
roles in visual function. Furthermore, biomolecules such as 
proteins or amino lipids can be covalently modified by lipid 
decomposition products. In retinal membranes, 
peroxidation of lipids is also usually accompanied by 
oxidation of membrane proteins. In consequence, lipid 
peroxidation may alter the arrangement of proteins in 
bilayers and by that interfere with their physiological role 
on the membrane function. Here, we review several studies 
on the lipid peroxidation of membrane phospholipids in 
retina. Particular emphasis is placed on the molecular 
changes of very long chain polyunsaturated fatty acids 
associated with protein modifications during peroxidation 
of photoreceptor membranes. Furthermore we use 
liposomes to analyze peroxidation of retinal lipids. 
Conjugated dienes formed from oxidized PUFAs, and 
TBARS products derived from the breakdown of these fatty 
acids located in phospholipids can be analyzed during lipid 
peroxidation of liposomes made of retinal lipids using Fe2+ 
and Fe3+ as initiators. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 

 
Peroxidation of polyunsaturated fatty acids 

(PUFAs) in lipid bilayer membranes causes loss of 
fluidity, a fall in membrane potential, increased 
permeability to protons and calcium ions, and eventually, 
breakdown of cell membranes because of cellular 
deformities. The structural and functional integrity of the 
cell membranes is necessary for signal transduction, 
molecular recognition and transport, cellular metabolism, 
etc. The damage inflicted upon biological systems by 
reactive oxygen species have been implicated in 
numerous disease processes including inflammation, 
degenerative diseases tumor formation and involved in 
physiological phenomena such as aging. Initiation is the 
most important phase of lipid peroxidation especially in a 
cellular context; preventive therapy of lipid 
peroxidation-associated disease would target the 
initiation process. Indeed, many ocular disorders 
including glaucoma, cataracts, diabetic retinopathy and 
retinal degeneration have been attributed to lipid 
peroxidation processes. Because of intense exposure to 
light and oxygen and their high PUFA content which is 
prone to lipid peroxidation, the retina is highly 
susceptible to oxidative stress. 
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Figure 1. Schematic diagram of rhodopsin in the membrane 
of the photoreceptor cell. 
 
3. PHOSPHOLIPID SPECIES IN THE RETINA 

 
Lipids represent approximately 20% of dry 

weight of bovine retina, of which about two-thirds are 
phospholipids. Although existing data are sparse, nonpolar 
lipids (i.e. acyl glycerides, sterols, and free fatty acids) 
account for about one-fourth of total retinal lipids. In 
general, ratio (wt/wt) of nonpolar lipid to phospholipids is 
in the range 0.3-0.5. Phosphatidylcholine (40-50 %) and 
phosphatidylethanolamine (30-35 %) account for the 
majority of phospholipids, with lesser amounts of 
phosphatidylserine (5-10 %), phosphatidylinositol (3-6 %) 
and sphingomyelin (2-8 %). Phosphatidic acid and 
cardiolipin are very minor phospholipid constituents (1).  
 
3.1. Very long chain polyunsaturated fatty acids in the 
retina 

The major fatty acids (wt %) of bovine retinas 
are 16:0 (≈25 %), 18:0 (≈17 %), 18:1 (≈17 %), and a 22-
carbon polyunsaturated acid (≈23 %) which was later 
identified as all-cis docosahexaenoic acid (22:6 n3) by 
Hands and Bartley (2). Over 50 % of total bovine retina 
fatty acids are unsaturated, of which polyunsaturated acids 
account for at least 60 %.  Lipids containing the very long 
chain polyunsaturated fatty acid docosahexaenoic (DHA 
22:6n3) are found at high concentrations in brain 
synaptosomes and the retina. They are essential for the 
development of the human brain (3). 

 
The retina contains very high levels of 22:6n-3 

representing the highest concentration of PUFAs of any 
vertebrate tissue (4). In fact, 50% of all acyl chains in the 
outer segments of photoreceptors phospholipids (both sn-1 
and sn-2) are 22:6n-3 (in PC, PE, and PS). Minor 
phospholipids, like phosphatidylinositol and phosphatidic 
acid, contain predominantly 20:4n-6 (5). Thus, rod outer 
segments represent an excellent model to define the role of 
22:6n-3 in membrane structure and function. It have been 
suggested that polyunsaturation alters membrane properties 
that are critical for activity of integral receptor proteins (6). 

Therefore, exploring the structure of polyunsaturated 
bilayers is a prerequisite for understanding how neural 
membranes function. It has been demonstrated that 
distribution of saturated and polyunsaturated hydrocarbon 
chains differs significantly, supporting the hypothesis that 
DHA-containing membranes are under considerable elastic 
stress that may influence the function of integral membrane 
proteins (7).  

 
The rod outer segment (ROSg) membranes are 

essentially lipoprotein complexes. Rhodopsin, the major 
integral protein of ROSg, is surrounded by phospholipids 
highly enriched in docosahexaenoic acid (C22:6 n3), Figure 
1.  

 
This fluid environment plays an important role 

for conformational changes after photoactivation. Thus, 
ROSg membranes are highly susceptible to oxidative 
damage. The most careful studies on the effects of DHA-
enriched diets have been performed on the visual system 
because DHA is a major constituent of photoreceptor 
membranes (8, 9). In retina, a slight reduction in DHA 
content in membrane phospholipids has a critical effect on 
the renewal of new photoreceptor discs (10). To produce 
gross DHA deficiency, it is necessary to deprive rats of n-3 
fatty acids during development and throughout life for 
more than two generations. Supplementation of rats with an 
n-3 fatty acid enriched diet results in normalization of 
retinal and occipital cortex DHA contents. These changes 
are reflected in alterations in the electroretinogram and 
visual acuity tests in human and nonhuman primates (11). 
Thus DHA induced changes in neural membrane fatty acid 
composition may lead to restoration of many membrane 
properties such as membrane fluidity, receptor affinities, 
ion fluxes, and activities of membrane-bound enzymes. 
 
 3.2. Rod outer segments of retina are susceptible to 
lipid peroxidation because of their high content of 
docosahexaenoic acid 

Oxidative stress has been proposed as a possible 
cause of the progression of AMD. (12–19). The retina is 
particularly susceptible to oxidative stress because of its 
high metabolic activity, oxygen tension, and concentration 
of easily oxidized polyunsaturated fatty acids (PUFAs), as 
well as the presence of retinal pigments that generate 
reactive oxygen species when illuminated by light (20). 

 
Rod outer segments (ROSg) of retina are 

susceptible to lipid peroxidation because of their high 
content of PUFAs, mainly docosahexaenoic acid (C22:6 
n3) (21). It has been suggested that lipid peroxidation 
participates in the oxidative damage leading to retinal 
degeneration. The lipid peroxidation process proceeds via 
radical chain reaction resulting in the formation of lipid 
hydroperoxides (LOOH). Lipid peroxidation is a complex 
system where the generation of the initiator molecule is 
followed by chain initiation, propagation, branching and 
termination reactions, Figure 2.  Numerous studies have 
implicated the hydroxyl radical in the initiation of lipid 
peroxidation However; there are reports that, in some 
experimental systems, the hydroxyl radical is not involved 
in the initiation step. The short-lived nature of the hydroxyl
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Figure 2. Chemical diagram of the steps in lipid peroxidation of phospholipids containing docosahexaenoic acid (22:6 n-3), R1 = 
fatty acid, R2 = fragmentation products of fatty acid oxidation. 
 
radical makes it unlikely that it could migrate from the site 
of generation to the hydrophobic membrane interior where 
peroxidation must be initiated. Lipid hydroperoxides 
derived from unsaturated phospholipids, glycolipids and 
cholesterol are prominent nonradical intermediaries of lipid 
peroxidation and perturb membrane structure and function 
with cytopathological consequences. Because of their 
increased polarity and long lifetime compared with free 

radical precursors, long-chain fatty acid hydroperoxides 
may be able to migrate from points of origin to more 
sensitive sites. Such movements might be spontaneous or 
facilitated by lipid transfer proteins (22). The retina can 
generate lipid hydroperoxides through enzymatic oxidation 
of endogenous PUFAs, which are intermediaries in the 
reactions to form docosanoids (23).  As demonstrated by 
De La Paz and Anderson, the hydroxyl radical is unlike to 
be the initiator of the LPO in ROSg membrane (24). These  
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authors postulate that endogenous hydroperoxides form 
more stable free-radical species in comparison with the 
hydroxyl radical. There is resultant facilitated entry of these 
species into the interior of the bilayer to initiate 
peroxidation of long fatty acyl chains. 

 
We have previously found that the peroxidation 

of ROS by the ascorbate/iron system is greatly enhanced in 
the presence of PUFA hydroperoxides and that the ability 
of these lipids to stimulate chemiluminescence strongly 
depends on the degree of unsaturation and concentration. 
Our results suggest that lipid hydroperoxides in the retina 
can serve as a source of lipid free radicals and promote 
peroxidation of the long-chain PUFAs (25) 
 
3.3. Peroxidation of lipids in retina is accompanied by 
oxidation of membrane proteins 

Lipids containing polyunsaturated fatty acids are 
susceptible to free radical–initiated oxidation and can 
contribute in chain reactions that amplify damage to 
biomolecules as described above. Lipid peroxidation often 
occurs in response to oxidative stress, and a great diversity 
of aldehydes is formed when lipid hydroperoxides break 
down in biological systems. Some of these aldehydes are 
highly reactive and may be considered as second toxic 
messengers, which disseminate and augment initial free 
radical events. The aldehydes most intensively studied up 
to now are 4-hydroxy-2-nonenal, 4-hydroxy-2-hexenal, and 
malondialdehyde. 4-hydroxy-2-nonenal (HNE) is known to 
be the main aldehyde formed during lipid peroxidation of 
n-6 polyunsaturated fatty acids, such as linoleic acid C18:2 
n-6 and arachidonic acid C20: 4 n-6, (26). 

 
  On the other hand, lipid peroxidation of n-3 

polyunsaturated fatty acids such as α-linolenic acid C18:3 
n-3 and docosahexaenoic acid C22:6 n-3 generates a 
closely related compound, 4-hydroxy-2-hexenal (HHE), 
which is a potential mediator of mitochondrial permeability 
transition (27). 4-hydroxy-2-alkenals represent the most 
prominent aldehyde substances generated during lipid 
peroxidation. Among them, 4-hydroxy-2-nonenal (HNE) is 
known to be the main aldehyde formed during lipid 
peroxidation of n-6 polyunsaturated fatty acids, such as 
linoleic acid and arachidonic acid, Figure 3.  

 
 4-hydroxynonenal (HNE) was identified three 

decades ago as a cytotoxic aldehyde formed during the 
NADPH-Fe++ induced peroxidation of liver microsomal 
lipids (28). Since then, a vast number of reports have been 
available, which sustain a function for this compound in a 
diversity of disease processes. HNE is considered as an 
indicator of oxidative stress and a probable contributing 
agent of several diseases.  

 
Guajardo et al (21) have studied the changes in 

the ROSg membranes isolated from bovine retina 
submitted to nonenzymatic lipid peroxidation, during 
different periods of time. Oxidative stress was monitored 
by increase in the chemiluminescence and fatty acid 
alterations. In addition they studied the in vitro protective 
effect of 5 mM melatonin. The total cpm originated from 
light emission (chemiluminescence) was found to be lower 

in those membranes incubated in the presence of melatonin, 
Figure 4.  

 
The docosahexaenoic acid content decreased 

considerably when the membranes were exposed to 
oxidative damage and this was viewed by changes in the 
unsaturation index UI at different intervals of lipid 
peroxidation. The reduction of C22:6n3 was from 35.5 +/-
2.9% in the native membranes to 12.65 +/-1.86% in those 
peroxidized during 180 min. In the presence of 5 mm 
melatonin it was observed a content preservation of 22:6 n3 
(23.85 +/-2.77%) at the same time of peroxidation. 
Simultaneously the alterations of membrane proteins under 
oxidative stress were studied using sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE). Loss of 
protein sulfhydryl groups and increased incorporation of 
carbonyl groups were utilized as biomarkers of protein 
oxidation. In membranes exposed to Fe 2+ -ascorbate, they 
observed a decrease of protein thiols from 50.9 +/-3.38 in 
native membranes to 1.72 +/-2.81 nmol/mg of protein after 
180 min of lipid peroxidation associated with increased 
incorporation of carbonyl groups into proteins from 7.20 
+/-2.50 to 12.50 +/- 1.12 nmol/mg of protein. In the SDS-
PAGE a decrease in the content of all the proteins was 
observed, mainly rhodopsin, as a consequence of 
peroxidation Figure 5.  
 
4. THE RETINA AS A MODEL TO STUDY LIPID 
PEROXIDATION  
 
4.1. Liposomes as a tool to analyze peroxidation of 
retinal lipids  

Biological membranes in retina are complex 
systems. In view of this complexity and in order to evade 
collateral consequences that may take place during lipid 
peroxidation of entire retinal membranes, we have tried to 
increase understanding of the mechanisms responsible for 
oxidation in simple model systems, made by dispersing 
retinal lipids in the form of liposomes. In such systems it is 
possible to check peroxidation under different conditions 
while varying the factors that govern the reaction in a 
convenient manner, one at a time. 

 
Relatively simple liposomal model membranes 

are still rather intricate, but unlike biological membranes, 
they facilitate evaluation of the effects of different 
prooxidantes, varying lipid composition and/or 
arrangement of membranes on consequences of lipid 
peroxidation. Liposomes, in which phospholipid 
composition, structure and dynamics can be completely 
controlled, are frequently accepted to be an appropriate 
model for in vitro studies of membrane structures and 
properties. They are surrounded by a lipid bilayer, 
structurally similar to cell membrane lipidic environment 
(29, 30). 

 
Phospholipid vesicles are often used as model 

systems to study the physical principles behind the 
activities of biological membranes. Conjugated dienes are 
formed from the double-bond reorganization of oxidized 
PUFAs, and TBARS are products resulting from the 
breakdown of these fatty acids located in phospholipids. 
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Figure 3. Schematic diagram of reactive hydroxy-alkenals generated during lipid peroxidation of n-3 and n-6 polyunsaturated 
fatty acids. 

 
We have investigated the performance of these 

compounds during evolution of lipid peroxidation of 
sonicated and non-sonicated liposomes made of retinal 
lipids in different aqueous media using Fe2+ and Fe3+ as 
initiators (31). This model system resembles the 
characteristics of a biological membrane better than simple 
chloroform lipid solutions as we employed in the past (32, 
33).  
 
As initiator of lipid peroxidation, we used Fe2+ or Fe3+, 
which produced free radical species in the presence of 
LOOHs. LOOH-dependent initiation has been proposed to 
occur by two pathways: LOOH breakdown by Fe3+ and 

subsequent hydrogen abstraction by LOO• (reactions 1 and 
2) 
 
Fe3+ + LOOH → Fe2+ + LOO• + H+ (1) 
LOO• + LH → L• + LOOH (2) 
 
or LOOH breakdown by Fe2+ to free radicals (reactions 3 
and 4) 
  
Fe2+ + LOOH → Fe3+ + LO• + OH− (3) 
LO• + LH → L• + LOH  (4) 
 
In compartmentalized systems such as liposomes, it is 
useful to assume that free radical inducers, such as Fe2+ and  
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Figure 4. A- Chemiluminescence as a function of time during Fe2+-ascorbate lipid peroxidation of ROSg membranes (0.5 mg of 
protein). Effect of melatonin. (-•-) control without ascorbate;  (-g-) peroxidized with 0.4mM ascorbate and  (-u-) peroxidized 
with 0.4 mM ascorbate plus 5 mM melatonin. B- Total chemiluminescence produced by ROSg membranes (0.5 mg of protein) 
recorded as cpm every 10 min during different intervals of time of peroxidation (30, 60, 90, 120, 150 and 180 min). Effect of 
melatonin (open bars) with 0.4 mM ascorbate, (closed bars) with 0.4 mM ascorbate plus 5 mM melatonin. Data are mean ± 
S.E.M. of three independent experiments. Statistically significant differences between peroxidized versus peroxidized + 
melatonin groups are indicated by aP <0.005 and bP<0.05. C- Percent inhibition of total chemiluminescence by 5 mM melatonin 
as a function of lipid peroxidation-time. The zero percent of inhibition was calculated by subtracting the total cpm originated by 
control without ascorbate to peroxidized ROSg membranes (with ascorbate). The percent of inhibition for each time was 
calculated by comparing the total cpm with the zero percent. Reproduced with permission from Guajardo et al, 2006. 
 
Fe3+ used in our study, located in the external medium 
should first achieve admittance to the unsaturated fatty acyl 
chains buried in the interior of the membrane bilayer to 
begin the chain reaction of lipid peroxidation. If this is the 
case, both the transition metal ions and oxygen must 
penetrate into the membrane bilayer and higher water 
permeability of the latter would surely aid this process. 
Numerous physical studies on the acyl chain structure of 
phospholipid bilayer vesicles propose that acyl chain 
packing depends in part on the radius of curvature of the 
vesicles (34, 35). 
 
5. LIPID PEROXIDATION PARTICIPATES IN THE 
OXIDATIVE DAMAGE LEADING TO RETINAL 
DEGENERATION 
 
          Retina is particularly susceptible to oxidative stress 
because not only it is attacked constantly by ROS-
producing UV and high-energy visible light (36), but also 
because retinal pigment epithelial (RPE) cells preserve and 
maintain the photoreceptors by phagocytosis and 
degradation of the photoreceptor outer segment membranes 
which are rich in polyunsaturated fatty acids (37-39). It has 
been suggested that LPO products contribute to retinal 
pigment epithelial dysfunction, initiating retinal 
degenerative disorders including age-related macular 
degeneration (ARMD) which is the principal cause of 
blindness in the developed world (40). 4-Hydroxy-2-trans-
nonenal (4-HNE), one of the major end products of lipid 
peroxidation, has been shown to induce apoptosis in a 
variety of cell lines. It appears to modulate signaling 

processes in more than one way because it has been 
suggested to have a role in signaling for differentiation and 
proliferation. Shrama et al studied the effects of 4-HNE on 
the expression and activation of p53 in RPE cells focusing 
on the p53-mediated intrinsic pathway for apoptosis (40). 
Glutathione S-transferase A4-4 (GSTA4-4)-mediated 
metabolism of 4-HNE is one of the major determinants of 
the intracellular concentration of 4-HNE [41-43]. 
Therefore, the authors examined the possible role of 
GSTA4-4 in regulation of 4-HNE-induced, p53-mediated 
apoptosis in RPE cells. For these studies, they have chosen 
RPE cells of human fetal origin and ARPE-19 cells 
developed from the retina of adult young male. Results of 
these studies indicate that in these cells 4-HNE causes 
activation, phosphorylation, and enhanced nuclear 
accumulation of p53, accompanied with activation of the 
signaling components involved in p53-mediated apoptosis. 
Over-expression of human GSTA4-4 or the corresponding 
murine isozyme mGsta4-4 as well as the silencing of 
cellular p53 blocks these effects of 4-HNE, these studies 
suggest that alterations in 4-HNE homeostasis can 
profoundly affect cell-cycle signaling events. 
 
6. PERSPECTIVE 
 

The addition of oxygen to lipids is an important 
process developed by biological systems to produce a broad 
spectrum of compounds both by enzymatic and non-
enzymatic mechanisms. The abundant content of 
polyunsaturated fatty acids in the retina makes this tissue 
particularly susceptible to peroxidation. Lipid peroxidation 
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Figure 5. SDS-PAGE of samples containing rod outer segment membranes peroxidized during different intervals of time. 
 

exerts a significant role in the origin of several 
retinopathies. Taken together; the evidence suggests that 
oxidative stress is involved in the pathogenesis of  
retinopathies possibly by oxidizing phospholipids in the 
photoreceptors as demonstrated in the arterial intima of 
patients with atherosclerosis. It is likely that controlling 
oxidation of phospholipids may be a potential treatment for 
eye diseases. Although strong evidence has accumulated 
that oxidative stress plays a key role in the pathogenesis of 
several retinopathies, it has not been directly demonstrated 
how the oxidative stress contributes to the development and 
progression of these diseases. Further studies are needed to 
determine the exact pharmacological role of lipid derived 
free radicals in eye diseases. 
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