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1. ABSTRACT 

Our group recently developed a response-surface 
modeling paradigm (White et al: Curr Drug Metab 2, 399-
409, 2003) and tested its application to both mixtures of 
anticancer agents and antifungals. This new model is a Hill-
type equation, with the slope and potency parameters being 
functions of the normalized drug ratios, using polynomial 
expressions. Response surface methods allow one to model 
and interpret all of the information present in the full 
concentration-effect data set, to visualize local regions of 
synergy, additivity and antagonism, and even to quantify 
the degree of synergy or antagonism, both globally, and 
across local regions of the response surface. In the present 
article, we study the effect of changes in the different 
parameters of the polynomial expressions for two-drug and 
three-drug mixtures, on the geometrical shapes of several 
2-dimensional representations of the 3-dimensional 
concentration-effect surface. A secondary goal of this 
report is to compare the mathematical characteristics of the 
rival White and  (Minto et al: Anesthesiol 92, 1603-1616, 
2000) modeling paradigms. 

 

 

 

 

 

 

 

2. INTRODUCTION 

In the past, many varied approaches to the 
assessment of synergy, additivity and antagonism have 
been developed and applied to real data (1). They include 
older numerical (e.g., 2) and graphical (e.g., 3) methods 
and older statistical response surface methods (e.g., 4). The 
older response surface methods are mostly limited to two-
agent interactions (e.g., 4) or have other limitations, but 
some newer response surface methods can be used for 
three-agent and higher order combinations (e.g., 5-8). 

 
Response surface methods allow one to model 

and interpret all of the information present in the full 
concentration-effect data set, to visualize local regions of 
synergy, additivity and antagonism, and even to quantify 
the degree of synergy or antagonism, both globally, and 
across local regions of the response surface. 

 
Such information from in-vitro studies can be 

useful to pinpoint which drug combinations may be good 
candidates for further in-vivo studies, and subsequent 
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clinical studies. In addition, this information may also help 
to suggest optimal proportions of the agents. 

 
In this article we use Loewe additivity [defined in 

(1)] as the standard for defining “no interaction” among 
several drugs. The response surface model studied here 
reduces to Loewe additivity in the complete absence of 
synergy or antagonism. The model has already been 
presented in the literature for use with both combinations of 
anticancer drugs (5-6) and antifungals (7). This new model 
is a Hill-type equation, with the steepness and potency 
parameters being functions of the normalized drug ratios, 
using polynomial expressions. For examples of how our 
main model (equation 1 described in Section 3) has been fit 
to real laboratory data, and how we have dealt with the 
statistical complexities of experimental design, curve 
fitting, model building, and results interpretation, the reader 
is encouraged to peruse our three published applications (5-
7). The current article showcases the mathematical 
characteristics of the model, in order to provide the 
potential user with a good geometrical understanding of the 
model structure and parameters. This type of geometrical 
understanding is critical for a deep biological 
understanding of results from fitting real data with the 
model. 

 
Minto et al. (8) published an interaction model three 

years before we independently, without knowledge of the 
former work, published the White model (5). The two models 
have many similarities; we will compare and contrast the 
Minto and White models. 

 
Both the Minto (8) and White (5) drug combination 

models have advantages over older drug combination response 
surface models (e.g., 1, 4). Both of these newer modeling 
paradigms allow: (a) local regions of synergism and 
antagonism throughout the multidimensional surface; (b) 
extreme antagonism; (c) more than 2 drugs to be modeled 
simultaneously; (d) complex patterns of other concentration-
effect parameters (Econ, B%, m; explained below in equation 
1). The disadvantages of the two newer models is that their 
increased complexities require larger experiments, more 
complex model-building routines, and more complex 
explanations of the results. 

 
A secondary goal of this report is to compare the 

mathematical characteristics of the rival Minto (8) and White 
(5) modeling paradigms. 

 
3. MAIN MATHEMATICAL MODEL 
 

The overall response surface model that we will 
study is essentially a 4-parameter Hill model with 
polynomial expressions replacing the steepness m and 
potency CI50 parameters: 

 
(equation 1) 
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With  
 
E: the measured endpoint (or effect or response or output or 
dependent variable). 
Econ: the measured endpoint at zero drug concentration 
(control). 
B%: the measured endpoint at infinite concentration(s) (the 
background endpoint, expressed as a percentage of Econ). 
m: the steepness function (expression). 
CI50: combination index expression (normalized potency 
expression) at the 50% level. 
X represents the vector of normalized fractions of each 
drug. For example, for drug A 
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 (equation 2) 
 
in which IC50,A represents the median effective dose (or 
concentration) of drug A, 
 
and T represents the total normalized amount of drug in the 
mixture 
 
 
(equation 3) 
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(as an example for a three drug mixture). 

 
The ms and CI50s are modeled as functions of 

drug fractions, using the following constrained 
polynomials. When dealing with two-drug mixtures: 

 
For m  (equation 4) 
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For CI50:     (equation 5) 
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When dealing with three-drug mixtures: 
For m  (equation 6) 
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Table 1. Polynomial coefficients for complex CI50 patterns with two drugs 
 Curve Label 
Parameter A1 A2 A3 A4 A5 A6 
αD1 -10 -3 -3 -10 -40 -40 
αD2 -3 -10 -10 -3 -40 -40 
βD12 0 0 0 0 150 150 
γD12 50 -50 -80 80 80 -80 
 B1 B2 B3 B4 B5 B6 
αD1 10 3 3 10 40 40 
αD2 3 10 10 3 40 40 
βD12 0 0 0 0 -150 -150 
γD12 -50 50 80 -80 -80 80 
 C1 C2 C3 C4 D1 D2 D3 D4 
αD1 -30 7 30 -7 40 -40 -20 20 
αD2 7 -30 -7 30 20 -20 -40 40 
βD12 40 40 -40 -40 -150 150 150 -150 
γD12 30 -30 -30 30 -60 60 -60 60 
 E1 E2 
αD1 40 -40 
αD2 40 -40 
βD12 -195 195 
γD12 0 0 

The table lists the polynomial coefficients used for simulating the CI50s in Figure 13 through Figure 22 with equation 5. Labels 
A1 to E2 are for the different curves in the figures. 
 
Table 2. Polynomial coefficients for complex m patterns with two drugs 

 Curve Label 
Parameter A1 A2 A3 A4 B1 B2 B3 B4 
αm1 -2 -2 -0.5 -0.5 -2 -2 -0.5 -0.5 
αm2 -0.5 -0.5 -2 -2 -0.5 -0.5 -2 -2 
βm12 -9 3.5 -9 4.5 2.5 -2.5 2.5 -2.5 
γm12 6 -2 6 -2 2 2 -2 -2 

The table lists the polynomial coefficients used for simulating the ms in Figure 25 (curves A1 to A4) and Figure 26 (B1 to B4) 
with equation 4. Labels A1 to B4 are for the different curves in the figures. 
 

For CI50:     
 (equation 7) 
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All of the α, β, γ and δ terms are polynomial 

coefficients (estimatible parameters). 
 
We will particularly focus on the patterns that m 

and CI50 functions can take depending on the values of the 
polynomial coefficients α, β, γ and δ. For each specific 
group of drugs, α, β, γ and δ form the vector θ referenced 
in equation 1. 
 
4. RESULTS AND DISCUSSION 
 

In this section, we will discuss patterns obtained 
by changing the various polynomial coefficients α, β, γ and 
δ, first by varying each single polynomial coefficient by a 
systematic increment, while fixing the other coefficients at 
zero; and second by varying two or more coefficients 
simultaneously. 

 
For two-drug mixtures, Figures 1, 3, 5, 7, 9, 11, 

13, 15, 17, 19 and 21 include plots of CI50 versus fraction of 
drug A, and Figures 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 and 22 
are corresponding plots, which are traditional isobolograms 

at the 50% effect level. Figures 1 to 8 show the effect of 
varying each of the polynomial coefficients, one at a time, 
with typical small to moderate effects on CI50 and isobols. 
Figures 9 to 12 represent more extreme patterns in CI50 and 
isobols caused by changes in only one polynomial 
coefficient. Figures 13 to 22 show complex profiles for CI50 
and isobols, using sets of polynomial coefficients listed in 
Table 1. 

Figures 23 and 24 show the effects of various 
values of βm12 and γm12 on m. Figures 25 and 26 are 
examples of complex patterns for m, using sets of 
polynomial coefficients listed in Table 2. 

 
Finally, we simulated examples for three-drug 

mixtures. Figure 27 includes several ternary plots for CI50 
for various δD123 values. Figure 28 has different examples 
of complex ternary plots for CI50, for the corresponding sets 
of polynomial coefficients listed in Table 3. And, Figure 29 
includes several ternary plots for m for various δm123 
values. 
 
4.1. Two-drug mixtures 
4.1.1. Characterization of CI50 

First we changed the values of αD1, from -10 to 
10 in increments of 1, with the other polynomial 
coefficients in Equation 5 fixed at zero. In Figure 1, one 
can see the resulting plot of CI50 (log scale) versus fraction 
of drug A, and in Figure 2, one can see the corresponding 
traditional isobol plot. The CI50 plots and isobols are purely 
synergistic for negative values of αD1 (below the CI50 = 1 
additivity line) and purely antagonistic for positive values.
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Table 3. Polynomial coefficients for complex CI50 patterns 
with three drugs 

 Ternary Plot Label 
Parameter Ex. A Ex. B Ex. C Ex. D Ex. E 
αD1 0 0 -2 -3 6 
αD2 0 0 -5 -1 3 
αD3 0 0 -4 -2 5 
δD123 -130 130 230 -80 -270 

The table lists the polynomial coefficients used for 
simulating the CI50s in Figure 28 with equation 7. Labels 
ex. A to ex. E are for the different ternary plots in the 
figure.β and γ coefficients are always fixed at 0 for these 
examples 

 
 
Figure 1. The effect of changing αD1 on CI50. CI50 values 
(log scaled) versus normalized fraction of drug A. CI50 
values are obtained by simulating CI50 with equation 5 for 
various values of αD1 (value indicated in the middle of the 
respective simulated curve). Other polynomial coefficients 
are fixed at zero. The uninterrupted horizontal black 
straight line is the additivity line (αD1 =  0; CI50 = 1). 

 

Figure 2.  The effect of changing αD1 on CI50. Isobologram 
at the 50% effect level corresponding to the CI50 plot in 
Figure 1. The diagonal black straight line from 1 to 1 is the 
additivity line (αD1 =  0). 
 
When αD1 is at -10, -1, 1 and 10, the most extreme CI50 will 
be at 0.23, 0.86, 1.16 and 4.40, respectively. The most 

extreme CI50s all occur at a fraction of drug A of 0.67. The 
plots are asymmetrical (skewed toward higher proportions 
of drug A) relative to a vertical axis at a fraction of drug A 
of 0.5 for the top panel, and relative to the NE to SW 
diagonal line for the isobol. Note that the isobol plots are 
not symmetrical, and that the shape of the synergistic 
isobols (below the NW to SE diagonal line from (0,1) to 
(1,0)) differs from that of the antagonistic isobols (above 
the line of additivity). 

 
If we change αD2 (Figures 3-4), from -10 to 10 in 

increments of 1, with the other polynomial coefficients in 
Equation 5 fixed at zero, we get the mirror images of 
Figures 1-2.  

 
When we change  βD12 (Figures 5-6) from -10 to 

10 in increments of 1, with the other polynomial 
coefficients in Equation 5 fixed at zero, we obtain a 
symmetric figure (relative to a vertical axis at a fraction of 
drug A of 0.5) or a symmetric isobol (relative to the NE to 
SW diagonal). As with the previous polynomial 
coefficients, the CI50 plots and isobols are purely 
synergistic for negative values of βD12 (below the CI50 = 
1 additivity line) and purely antagonistic for positive 
values. When βD12 is at -10, -1, 1 and 10, the most 
extreme CI50 will be at 0.54, 0.94, 1.06 and 1.87, 
respectively. The most extreme CI50s all occur at a 
fraction of drug A of 0.5. Note that the shape of the 
synergistic isobols (below the NW to SE diagonal line 
from (0,1) to (1,0)) is not the same as the antagonistic 
isobols (above the line of additivity). 

 
Finally, we change γD12 (Figures 7-8) from -10 

to 10 in increments of 1, with the other polynomial 
coefficients in Equation 5 fixed at zero. The CI50 plots 
and isobols are first antagonistic (above the CI50 = 1 
additivity line) then synergistic (below the CI50 = 1 
additivity line) for negative values of γD12; and first 
synergistic then antagonistic for positive values. The 
switching point between antagonism and synergy is 
always for a fraction of drug A of 0.5. The absolute 
value of the vertical distance between the highest point 
of the curve (upper panel) and the horizontal additivity 
line (CI50 = 1) is always the same as the absolute 
vertical distance between the lowest point and the 
horizontal additivity line. When γD12 is at -10/10, and     
-1/1, the most extreme CI50 will be at 0.98/1.02 and 
0.84/1.20, respectively. The most extreme CI50s all 
occur at fractions of drug A of 0.28 and 0.72. Note that 
the isobol plots are not symmetrical, and that the shape 
of the synergistic isobols (below the NW to SE diagonal 
line from (0,1) to (1,0)) differs from that of the 
antagonistic isobols (above the line of additivity). 

 
Figures 9-10 and Figures 11-12 show patterns for 

extreme antagonism or extreme synergy respectively, using 
large values of each of the polynomial coefficients, one at a 
time, while the other polynomial coefficients are fixed at 
zero. We wanted to show CI50s around 100 or 0.01as 
representative examples of extreme antagonism or synergy. 
For extreme antagonism, we had to raise αD1 to 31, or αD2



Characterization of a 3-drug synergy model 

458 

 
 

Figure 3. The effect of changing αD2 on CI50. Details are 
the same as or analogous to those in Figure 1 

 
 

Figure 4.  The effect of changing αD2 on CI50. Isobologram 
at the 50% effect level corresponding to the CI50 plot in 
Figure 3 

 
 

 
Figure 5. The effect of changing βD12 on CI50. Details are 
the same as or analogous to those in Figure 1. 
 
to 31, or βD12 to 73, or γD12 to 255 (or lower to -255). For 
extreme synergy, we had to lower αD1 to -31, or αD2 to -31, 
or βD12 to -73, or γD12 to -255 (or raise to 255). 

 

Figure 13 to Figure 22 show examples of 
complex profiles, the lists for the sets of polynomial 
coefficients used are in Table 1. Figures 13-14 (curves A1 
to A6) show examples of synergy with two local peaks of 
synergy. To obtain such profiles, we assigned negative 
values to αD1 and αD2, and large values to γD12 (the sign of 
γD12 did not matter). 

 
Figures 15-16 (curves B1 to B6) are the 

complements of Figures 14-15 for antagonism.  
 
Figures 17-18 (curves C1 to C4) show composite 

profiles, with both asymmetrical local synergy and 
antagonism. The values of the parameters, αD1, αD2. βD12 
and γD12, that generated curves C1 to C4 are listed in Table 
1.  

 
Figures 19-20 (curves D1 to D4) show seesaw 

patterns, with antagonism, then synergy, then antagonism 
(D1 and D4), or synergy, then antagonism, and then 
synergy (D2 and D3). The values of the parameters, αD1, 
αD2. βD12 and γD12, that generated curves D1 toD4 are listed 
in Table 1.  

 
Figures 21-22 (curves E1 and E2) also show a 

seesaw pattern, but a symmetrical one (relative to a vertical 
axis at a fraction of drug A of 0.5 for the CI50 plot, and 
relative to the NE to SW diagonal line for the isobol), in 
contrast with Figures 19-20. αD1 and αD2 were always of 
the same sign, βD12 was of the opposite sign, and γD12 was 
fixed at zero. 

 
We could not obtain patterns that resulted in the 

CI50 line crossing the additivity line three times or more. If 
such a pattern would be needed to model real data, then it 
would be necessary to modify or augment the polynomials. 

 
4.1.2. Characterization of m 

αm1 and αm2 are simply the m’s for drug A alone 
and drug B alone. 

 
Figure 23 shows m versus the fraction of drug A 

for αm1 and αm2 fixed at -2, γm12 fixed at 0, and βm12 ranging 
from -10 to 7 in increments of 1. Each resulting curve is 
symmetrical relative to a vertical line at a fraction of drug 
A of 0.5, and the curves with negative βm12 values are 
symmetrical to the curves with positive βm12 values, 
relative to a horizontal line at an m value of –2: curves with 
positive βm12 values are above the m = -2 line, curves with 
negative βm12 values are below the m=-2 line. If βm12 is 
equal to -10, the extreme value for m is -4.5; if βm12 is 
equal to 7, the extreme value for m is -0.25. The extreme 
values for m are observed at a fraction of drug A of 0.5. If 
βm12 is higher than 7, the highest value of m would be 
positive, which is incompatible with the kind of real data 
that we want to model. 

 
Figure 24 represents m versus the fraction of drug 

A for αm1 and αm2 fixed at 2, βm12 fixed at 0, and γm12 
ranging from -10 to 10 in increments of 1. The plots are 
first below the  m=-2 horizontal line, then above for
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Figure 6.  The effect of changing βD12 on CI50. 
Isobologram at the 50% effect level corresponding to the 
CI50 plot in Figure 5 

 
 
Figure 7. The effect of changing γD12 on CI50. Details are 
the same as or analogous to those in Figure 1 

 
 
Figure 8.  The effect of changing γD12 on CI50. Isobologram 
at the 50% effect level corresponding to the CI50 plot in 
Figure 7. 
 
positive values of γm12; and first above then below for 
negative γm12 values. The switching point between above 

and below the m=-2 line is always for a fraction of drug 
A of 0.5. The absolute vertical distance between the 
highest point and the horizontal m=-2 line is always the 
same as the absolute vertical distance between the lowest 
point and the horizontal m=-2 line. The extreme values 
of m are reached for fractions of drug A at 0.21 and 0.79. 
If γm12 is equal to 10 or -10, the extreme values for m are 
-1.04 and -2.96. 

 
Figure 25 and Figure 26 are examples of 

complex m profiles; the values of the polynomial 
coefficients used are listed in Table 2. 

 
Figure 25 (curves A1 to A4) includes examples 

of profiles for m ranging to more extreme values than 
either m for the individual drugs alone. Drug A has a 
steepness parameter (m) of -0.5 and drug B has an m of   
-2 for profiles A1 and A2; A1 has as a minimum below         
-2 and A2 a maximum above -0.5. Drug A has a slope of 
-2 and drug B a slope of -0.5 for profiles A3 and A4; A3 
has as a minimum below -2 and A4 a maximum above    
-0.5. βm12 and γm12 are always of opposite signs, and βm12 
is negative for the two curves with minimums below -2 
(A1 and A3) but positive for the two curves with 
maximums above -0.5 (A2 and A4). 

 
Figure 26 (curves B1 to B4) includes examples of 

curves where the m shifts rapidly from the slope of one 
drug alone to the slope of the other drug alone. 
 
4.2. Three-drug mixtures 
4.2.1. Characterization of CI50 

To represent the different values of CI50 for 
various values of polynomial coefficients for 3-drug 
mixtures, we used ternary plots. In these plots, each axis 
represents a normalized fraction of the drug in the 
mixture. The colors represent the simulated values for 
the CI50s; the log-scaled color scheme is shown on the 
left side: red indicates synergy, yellow indicates 
additivity, and blue indicates antagonism. 

 
Figure 27 shows an example of the effect of 

various δD123 values on CI50. The other polynomial 
coefficients are fixed at the following values: αD1 =-3, 
αD2 =12, αD3 =-8, βD12 =3, βD13 =2, βD23 =-15, γD12 =20, 
γD13 =-34, γD23 =8. δD123 was varied from -80 to 80 in 
increments of 40. The fixed polynomial coefficients have 
been chosen so that, on the “edges” of the ternary plots, 
we would have the following patterns: 

 
• For the mixture of drug A and drug B, mostly 

antagonism, with small synergy for high fractions 
of drug A. 

• For the mixture of drug A and drug C, pure 
synergy, but with an irregular isobol. 

• For the mixture of drug B and drug C, first 
synergy (for low proportions of drug B) then 
antagonism (for high proportions of drug B), 
crossing the additivity line at the fraction of drug 
B of 0.5. 
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Figure 9. Extreme profiles of CI50 part A.  CI50 values (log 
scaled) versus normalized fraction of drug A. The values of 
the polynomial coefficients are indicated on each single 
curve, unmentioned polynomial coefficients are by default 
fixed at zero. The uninterrupted horizontal black straight 
line is the additivity line (CI50 = 1). 
 

 
 
Figure 10.  Extreme profiles of CI50 part A.  Isobologram 
at the 50% effect level corresponding to the CI50 plot in 
Figure 9. The diagonal black straight line from 1 to 1 is the 
additivity line. 
 

 
 
Figure 11. Extreme profiles of CI50 part B. Details are the 
same as or analogous to those in Figure 9. 
 

When δD123 is negative and decreases, the 
antagonistic area (blue region) increases while the 
synergistic area (red region) decreases; on the contrary, 
when δD123 is positive and increases, the antagonistic area 
decreases while the synergistic area increases. 

 
Figure 28 includes five examples of representative patterns 
for CI50. The values of the sets of various polynomial 
coefficients are summarized in Table 3. β and γ coefficients 
were fixed at 0 for these examples. 
 

Example A shows additivity for the three two-
drug mixtures and synergy for the three-drug mixture. We 
can model this with α parameters fixed at zero, and a 
negative δD123. 

 
Example B shows additivity for the three two-

drug mixtures and antagonism for the three-drug mixture. 
We can model this with α parameters fixed at zero, and a 
positive δD123. 

 
Example C shows synergy for the three two-drug 

mixtures and antagonism for the three-drug mixture. We 
can model this with negative α parameters, and a positive 
δD123, higher than in example B. 

 
Example D shows synergy for the three two-drug 

mixtures and even more intense synergy for the three-drug 
mixture. We can model this with negative α parameters, 
and a negative δD123, lower than in example A. 

 
Example E shows antagonism for the three two-

drug mixtures and synergy for the three-drug mixture. We 
can model this with positive α parameters, and a negative 
δD123. 
 
4.2.2. Characterization of m 

Figure 29 shows examples of the effect of various 
δm123 values on m. δm123 was varied from -40 to 40 in 
increments of 20.The other polynomial coefficients were 
fixed at the following values: αm1=-0.5,  
αm2=-2, αm3=-5, βm12=-2.5, βm13=2.5, βm23=-10, γm12=-2, 
γm13=6, γm23=6. Yellow colors indicate slopes around -2; 
red colors are for slopes increasing toward -0.5, and blue 
colors indicate values of -5 and below -5. 

 
The fixed polynomial coefficients have been 

chosen so that the m of drug A alone would be –0.5, m of 
drug B alone would be –2, m of drug C alone would be -5, 
and on the “edges” of the ternary plots, we would have the 
following patterns: 

 
• For the mixture of drug A and drug B, m plateaus at 

–2 (m of drug B alone) for low and medium 
fractions of drug A, and changes to –0.5 (m of drug 
A alone) abruptly, only for high fractions of drug A. 

• For the mixture of drug A and drug C, m changes 
progressively from –5 (m of drug C alone) to –0.5 
(m of drug A alone) with increasing fraction of drug 
A, but also dips to around –0.3 before coming back 
to –0.5. 
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Figure 12.  Extreme profiles of CI50 part B.  Isobologram 
at the 50% effect level corresponding to the CI50 plot in 
Figure 11. 
 

 
 
Figure 13. Complex profiles of CI50 part A. CI50 values 
(log scaled) versus normalized fraction of drug A. Each 
curve is named A1 through A6 in the figure. The 
polynomial coefficients are detailed in Table 1 for each 
curve. The uninterrupted horizontal black straight line is 
the additivity line (CI50 = 1). 
 

 
 
Figure 14. Complex profiles of CI50 part A.  Isobologram 
at the 50% effect level corresponding to the CI50 plot in 
Figure 13. The diagonal black straight line from 1 to 1 is 
the additivity line.. 

• For the mixture of drug B and drug C, m changes 
rapidly from -5 (m of drug C alone) to –6.5, and 
then dips slowly to -2 (m of drug B alone). 

 
When δm123 is negative and decreases, the region 

with extreme ms (blue, ms below -5) increases, while when 
δm123 is positive and increases, the region with ms closer to 
zero (red) increases. 
 
4.3. Comparison with the Minto model 

For our comparison, we considered the following 
polynomial equations from Minto et al. (8): 

For m  (Equation 8) 
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For CI50:  (Equation 9) 
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Here mA and mB are the slopes for drug A and 

drug B alone respectively, and β2,m, β3,m, β4,m, β2,D, β3,D, 
and β4,D are the polynomial parameters. 

 
For our simulations, we fixed mA and mB to -2, 

and we changed the six polynomial parameters mentioned 
above from -10 to 10 in increments of 1 when doable (we 
had to have negative values for m, and positive values for 
CI50). The simulations are shown in Figure 30 (changing 
β2,m), Figure 31 (changing β3,m), Figure 32 (changing β4,m), 
Figure 33 (changing β2,D), Figure 34 (changing β3,D), and 
Figure 35 (changing β4,D) respectively. 

 
First, it is to be noted that Minto et al. suggest 

using a polynomial function for the parameter 
characterizing the endpoint (effect) at infinite drug 
concentrations, that we called the background, B in this 
article. In our datasets, whether with antifungals (7) or 
anticancer drugs (6), we observed that a step function for B 
was more appropriate than a polynomial function. 

 
For both the m and the CI50 simulations of the 

Minto model, we could observe that the curves were 
systematically biased toward the left (lower proportions of 
drug A). It is not a big problem for two-drug combinations 
as inverting A and B as needed could take care of this, but 
it will be more problematic for three-drug mixtures. We 
observe also that no single parameter allows immediately 
“seesaw” patterns, with curves going from one side of the 
additivity line or the mA to mB line to the other. In our 
model, this was made possible by the gamma parameters, 
γD12 and.γm12. Finally, in the Minto et al. article (8), no 
specific parameter was mentioned for three-drug 
interactions, that could have been compared with our delta 
parameter. 

 
For the polynomials for the slope m, the first 

parameter β0,m had to be constrained to be equal to mA, like  
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Figure 15. Complex profiles of CI50 part B. Details are the 
same as or analogous to those in Figure 13. 
 

 
 
Figure 16. Complex profiles of CI50 part B.  Isobologram 
at the 50% effect level corresponding to the CI50 plot in 
Figure 15. 
 
 

 
Figure 17. Complex profiles of CI50 part C. Details are the 
same as or analogous to those in Figure 13. 

 

 
Figure 18. Complex profiles of CI50 part C.  Isobologram 
at the 50% effect level corresponding to the CI50 plot in 
Figure 17. 

 
Figure 19. Complex profiles of CI50 part D. Details are the 
same as or analogous to those in Figure 13. 
 
 

Figure 
20. Complex profiles of CI50 part D.  Isobologram at the 
50% effect level corresponding to the CI50 plot in Figure 
19. 
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Figure 21. Complex profiles of CI50 part E. Details are the 
same as or analogous to those in Figure 13. 

 
Figure 22. Complex profiles of CI50 part E.  Isobologram at 
the 50% effect level corresponding to the CI50 plot in 
Figure 21. 

 
 
Figure 23. The effect of changing βm12 on m. m versus 
normalized fractions of drug A. m values are obtained by 
simulating m with equation 4 for various values of βm12. 
αm1 = -2, αm2 = -2 and γm12 = 0. The value of βm12 is 
indicated on the simulated curve. 

 
 
Figure 24. The effect of changing γm12 on m. Details are 
the same as or analogous to those in Figure 23.  αm1 = -2, 
αm2 = -2 and βm12 = 0. 
 
 

 
 
Figure 25. Complex profiles of m part A. m versus 
normalized fractions of drug A. Each curve is named A1 
through A4 in the figure. The polynomial coefficients are 
detailed in Table 2 for each curve. 
 
 

 
 
Figure 26. Complex profiles of m part B. Details are the 
same as or analogous to those in Figure 25. 
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Figure 27. The effect of changing δD123 on CI50. Ternary plots represent the values of CI50 (according to the log-scaled color 
scale on the left side) versus normalized fractions of three drugs. CI50 values are obtained by simulating CI50 with equation 7, the 
various values of δD123 are indicated on the side of the ternary plots. αD1 =-3, αD2 =12, αD3 =-8, βD12 =3, βD13 =2, βD23 =-15, γD12 
=20, γD13 =-34, γD23 =8.  
 

 
 
Figure 28. Various examples of ternary plots for CI50. Ternary plots represent the values of CI50 (according to the log-scaled 
color scale on the left side) versus normalized fractions of three drugs. CI50 values are obtained by simulating CI50 with equation 
7. The polynomial coefficients are described in Table 3, each ternary plot having its label on the side. 
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Figure 29.The effect of changing δm123 on m. Ternary plots represent the values of m (according to the color scale on the left 
side) versus normalized fractions of three drugs. m values are obtained by simulating m with equation 6, the various values of 
δm123 are indicated on the side of the ternary plots. αm1 =-0.5, αm2 =-2, αm3 =-5, βm12 =-2.5, βm13 =2.5, βm23 =-10, γm12 =-2, γm13 
=6, γm23 =6. 
 
our parameter αm1. The second parameter β1,m, however, 
had to be constrained to be equal to mB-mA-β2,m-β3,m-
β4,m, and no parameter reflects directly mB as our 
parameter βm1 does, making it less intuitive than our 
polynomial equation for steepness (sigmoidicity). 

 
For the polynomials for CI50, the first 

parameter β0,D had to be constrained to be equal to 1, and 
the second parameter β1,D had to be constrained to be 
equal to -β2,D-β3,D-β4,D so that the profiles would be 
anchored at 1 for the drugs alone. Our use of the leading 
factor (1-XA)*(1-XB) and the power function provides 
this anchoring, without constraining any parameter. Also, 
it is to be noticed that Minto’s polynomial for CI50 is not 
logarithmic, in contrast to ours. By its inherent 
mathematical and statistical nature, the CI50 parameter is 
most probably deserving of a logarithmic transformation, 
before expressing it as a polynomial function. Finally, 
since CI50 has to have only positive values, this limits the 
values that the different parameters may take in the 
Minto model; whereas, the polynomial coefficients 
(parameters) from the White model have no such 
constraints.  
 
4.4. Conclusion 

In conclusion, our model was reasonably flexible. 
Regarding the potency parameter CI50, we could model 
simultaneous synergy and antagonism for the same two-
drug mixtures, and even more so for the three-drug 
mixtures, with different kind of patterns, with many local 

pockets of synergy and antagonism. For m, we could model 
many different relevant geometrical shapes. 

However, some limitations were found. In 
particular, for two agents, we could not obtain patterns that 
resulted in the CI50 curve crossing the additivity line three 
times or more. And for m, we could only barely approach a 
sharply changing profile. 

 
On the other hand, our group made a decision, based 

upon practical experience working with several complex 3-
agent datasets (5, 6), that the maximum practical complexity 
for the two critical polynomials should be equations 4,5 for 
two agents and equations 6,7 for three agents. 

 
The decision was based on problems in interpreting 

the meaning of each individual coefficient in a very large set of 
polynomial coefficients, and the lack of practical interest by 
biologists in an extremely complex, but mostly empirical 
model. Our compromise approach is to limit the maximum 
complexity of the two critical polynomials. Note that also 
when fitting the White model to real data, polynomial 
coefficients with 95% confidence intervals that initially include 
zero will be likely removed from the model for subsequent 
curve fittings. Thus, for example, the final model for a three-
drug mixture, may end up with less than the 10 total 
parameters illustrated in this article. 

 
Overall, equations 1-3,6-7 comprise a response surface 
concentration-effect model that has been shown to be 
adequate and useful for fitting three different examples
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Figure 30. The effect of changing β2,m on m. m values 
versus normalized fraction of drug A. m values are 
obtained by simulating m with equation 8 for various 
values of β2,m. Other polynomial coefficients are fixed at 
zero, mA and mB are fixed at -2. The value of β2,m is 
indicated on the simulated curve. 

 
 
Figure 31. The effect of changing β3,m on m. Details are 
the same as or analogous to those in Figure 30. 
 

 
 
Figure 32. The effect of changing β4,m on m. Details are 
the same as or analogous to those in Figure 30. 

 
 
Figure 33. The effect of changing β2,D on CI50. CI50 values 
versus normalized fraction of drug A. CI50 values are 
obtained by simulating CI50 with equation 9 for various 
values of β2,D. Other polynomial coefficients are fixed at 
zero. The value of β2,D is indicated on the simulated curve. 
The uninterrupted black line is the additivity line (CI50 = 1). 
 

 
 
Figure 34. The effect of changing β3,D on CI50. Details are 
the same as or analogous to those in Figure 33. 
 

 
 
Figure 35. The effect of changing β4,D on CI50. Details are 
the same as or analogous to those in Figure 33. 
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of very large, complex 3-agent data sets (5-7). The general 
modeling paradigm has enough flexibility to follow 
complex, observed patterns of sigmoidicity (m) and 
normalized potency (CI50) versus drug fraction. Compared 
to the Minto model (8), the White model appears to include 
material improvements. The White model should be useful 
for a wide spectrum of future applications. Like all models, 
this response surface model has the potential to be 
improved.  
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