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1. ABSTRACT 

Oocyte quality influences early 

embryonic survival, establishment and 

maintenance of pregnancy, fetal development and 

adult diseases. The developmental competence of 

oocytes is acquired gradually and increases with 

follicular development. The ability of an oocyte to 

develop into an embryo depends on, having 

enough specific information in the form of mRNA 

or proteins. If this information is insufficient, 

defects in nuclear or cytoplasmic maturation, or in 

both processes, may arise and thus affect the in 

vitro development of fertilized oocytes. The greater 

developmental competence of oocytes aspirated 

from larger follicles is reported as compared with 

smaller follicles. Oocyte developmental 

competence is greatly correlated with the 

morphology of the cumulus oocyte complexes 

(COCs). Apart from morphological or biochemical 

markers, molecular markers have also been 

investigated. Until now, no specific markers of 

oocyte developmental competence could be 

described for the oocyte developmental 

competence. To, utilize female germplasm to its 

maximum, there is a need to enhance 

developmental competence of lesser competent 

oocytes derived from the follicles which are not 

fully grown. The oocyte pre-maturation and 

maturation conditions affect gene expression not 

only in the oocyte but till the blastocyst stages too. 

Strategies have been discussed in this review 

would be useful to enhance the developmental 

competence of oocytes. 
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2. INTRODUCTION 

In recent past, in vitro embryo production 

(IVEP) technique has gained significant impetus in 

relation to genetic improvement and reproductive 

management of domestic animals as well as in 

enhancing our understandings about the regulation 

of embryo development. Even after substantial 

improvements in IVEP technique with improved 

protocols, only 30–40% of such oocytes reach the 

blastocyst stage, for future uses, either to be 

transferred to a recipient or frozen. Most of the 

embryos are arrested at 8-16 cell stage of embryonic 

development; it becomes obvious that post-

fertilization embryo culture is the most critical period 

of the process in terms of determining the blastocyst 

yield. However, it is not only the reason of poor 

developmental competence in fact outcome of IVEP 

is rather dependent on the quality and origin of the 

oocytes (1) therefore, within certain limits culture 

conditions may not have a major influence on the 

capacity of the immature oocyte to form a blastocyst. 

Oocytes retrieved from bovine ovaries collected from 

slaughterhouse or ovum-pick-up are used as a major 

source for IVEP. However, these oocytes are 

extremely heterogeneous in developmental 

competence and ultimately reduce the efficiency of 

nuclear transfer, blastocyst yield, embryo transfer 

and the pregnancy outcomes. The poor 

developmental competence of in vitro matured 

oocytes has been proposed due to failure of the 

timely onset of embryonic genome activation 

resulting from incomplete cytoplasmic maturation of 

these oocytes (2). Once the oocyte is removed from 

the follicle its ability to develop to the blastocyst stage 

is more or less determined. Thus, the oocyte 

developmental competence has become a crucial 

concern in assisted reproductive approaches both in 

human and livestock species. 

Oocyte developmental competence is 

defined as the ability of the oocyte to complete 

maturation, undergo successful fertilization and 

reach the blastocyst stage. The in vitro meiotic and 

developmental competence of oocytes is related to 

follicle size, estrous cycle stage and the level of 

atresia influenced by other follicles, mainly the 

dominant follicle. Larger follicles yielded significantly 

more oocytes (3-5) with many layers of granulosa 

cells and a higher proportion of in vitro produced 

blastocysts, suggesting that larger follicles may 

contain several growth factors enhancing 

morphological and functional status of the COCs and 

embryo yield (6). To improve developmental potential 

in vitro, oocytes which have received enough 

follicular instructions before they are collected and 

matured should be used. Oocytes with high degree 

of competence capable of undergoing nuclear and 

cytoplasmic maturation is an essential feature for 

high blastocyst yield (7). Temporarily inhibiting 

resumption of meiosis to allow cytoplasmic 

maturation to proceed in vitro, thereby improving 

development, or modifications of maturation media, 

blastocyst yields in vitro using oocytes recovered 

from slaughtered heifers and cows rarely exceed 

40% on a consistent basis. In order to improve IVEP 

outcomes there is still a need to understand 

molecular mechanisms taking place during follicular 

growth, develop assays for screening of competent 

oocytes, and methods to enhance the cytoplasmic 

maturation.  

3. UNDERSTANDING OOCYTE 

DEVELOPMENTAL COMPETENCE  

3.1. Oocyte growth and acquisition of 

competence 

During growth, oocyte accumulates several 

molecules in it, which later on contribute for its 

maturation, fertilization and early embryo 

development. These key molecules govern several 

important events occurring both in the nucleus as well 

as in cytoplasm during oocyte growth and maturation. 

The storage of pool of these molecules is referred as 

molecular maturation (8) or cytoplasmic maturation 

(9). During this process oocyte accumulates 

sufficient amount of mRNAs, ribosomes, proteins, 

and cytoplasmic organelles (like mitochondria, 

microtubules etc.) to be used later post fertilization 

(10). During the process volume of oocyte increases 

about 300 fold. In mammals, a direct and positive 

correlation has been reported between oocyte 

diameter and its developmental competence (11-13). 

This may be the fact why only a few oocytes amongst 

the morphologically looking similar oocytes develop 

into viable blastocysts. Further, it could also be the 

reason why in vivo developed oocytes have better 
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competence than oocytes derived from in vitro 

cultured preantral follicles (14). The transcriptional 

activity of oocyte is increased significantly during 

growth of the bovine oocyte and decreases around 

the beginning of the antral stage when the oocytes 

achieve a diameter of about 110 μm (15, 16) and 

oocyte is able to store these mRNAs for longer time 

without degradation. Translational activity of bovine 

oocyte is maximum at its germinal breakdown 

(GVBD) stage and decreasing again at metaphaseII 

(MII) stage (17). Extensive remodeling and 

repositioning of intracellular organelles takes place at 

GVBD, throughout the transitions to metaphase I 

(MI), polar body extrusion (PBE) and MII, including 

movements of vesicles, mitochondria, Golgi and 

endoplasmic reticulum (18) (Figure 1) and this could 

impact on the cryosurvivability of oocytes derived 

from different meiotic stages (19-22). Other proteins 

are also accumulated around the GVBD such as 

ribosomal and mitochondrial proteins, histones, the 

zona pellucid (ZP) glycoproteins, and kinases (23, 

24). Other aspect associated with the cytoplasmic 

maturation is the mitochondrialgenesis and their 

distribution between endoplasmic reticulum and the 

oolema (25) as no new mitochondria are generated 

in the embryo till blastocyst stage. Additionally, the 

Golgi apparatus is associated with lipid vesicles and 

moves to the subcortical region of the oocyte where 

it forms cortical granules required at the time of zona 

reaction. 

3.2. Signaling pathways involved in 

competence stimulation 

Understanding the molecular mechanisms 

(signaling pathways) playing role between cumulus 

cells and oocyte is the ultimate key to explore the 

mechanism of acquisition of oocyte developmental 

competence and may be helpful in enhancing 

developmental competence during different in vitro or 

in vivo treatments. The appropriate interplay between 

oocyte and follicular cells is indispensable for proper 

oocyte development, folliculogenesis, and 

progression to ovulation (26, 27). This bidirectional 

communication in cumulus–oocyte complexes 

(COCs) is mediated through gap junctions (27, 28) 

and is crucial for the promotion of cell growth (29), 

cell survival (30), suppression of luteinization (31) 

and maintenance of cumulus cells (CCs) metabolism 

(27, 32). Oocyte secreted factors (OSFs) are 

amongst the important mediators of bidirectional 

communication, which regulates gene expression in 

CCs that are associated with oocyte maturation and 

subsequent embryo development. Major OSFs that 

regulate oocyte developmental competence are 

growth differentiation factor 9 (GDF9) and bone 

morphogenetic protein 15 (BMP15) (33, 34). It is 

possible that BMP15 and GDF9, in combination, 

activate SMAD1/5/8 and SMAD2/3 pathways and 

enhance the expression of hyaluronan synthase 2 

(HSA2), gremlin 1(GREM1), tumor necrosis factor-

induced protein 6 (TNFAIP6), epidermal growth 

factor receptor (EGFR) and prostaglandin-

endoperoxide synthase 2 (PTGS2) etc in CCs which 

through paracrine action act on oocyte and further 

enhance the oocyte competence (Figure 2). This 

vicious cyclic mechanism goes on and helps in the 

acquisition of oocyte developmental competence 

(13). Activation of these pathways is important for 

oocyte development in mono-ovulatory large animals 

(34). BMP15/GDF9 supplementation during in vitro 

maturation (IVM) is likely to promote the uniform 

distribution of active mitochondria, thereby improving 

functional competence (31) and in vitro embryo 

development (4).  

4. METHODS OF OOCYTE COMPETENCE 

ASSESSMENT 

4.1. Morphological basis of assessment 

Morphological assessment is based on 

number of layers and compactness of cumulus, 

homogeneity of the ooplasm, and extrusion of first 

polar body (35, 36). However, these morphological 

evaluations are not reliable enough to act as the sole 

criteria for the evaluation of oocyte competence; 

therefore, other alternative selection criteria are 

needed for selecting the most viable oocytes for 

IVEP. Positive correlation between follicle size while 

oocyte retrieval and blastocyst rate has been 

observed in sheep, depicting the oocyte diameter as 

a determining factor in acquiring meiotic competence 

in various species, including buffalo (4, 5). Despite 

this morphological similarity, there was a 

transcriptomic difference in the cumulus cells from 

small and large follicles. In particular, the cumulus 

cells from large follicles were enriched in transcripts 
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that regulate metabolism, cell differentiation and 

adhesion (37). 

4.2. Biochemical assay 

During the growth phase, oocytes 

synthesize a variety of proteins, including glucose-6-

phosphate dehydrogenase (G6PDH), more G6PDH 

activity is reported in growing oocytes (38), and its 

activity decreases in oocytes having completed 

growth phase and are likely to have achieved 

developmental competence (39). Brilliant Cresyl Blue 

(BCB) staining is known to be a noninvasive method, 

as it allows the selection of competent oocytes 

among a heterogeneous pool. BCB screening is 

based on the ability of G6PDH to reduce the BCB 

stain present in oocyte. Growing oocytes, having 

higher G6PDH activity reduce BCB relatively in a 

quicker mode and become colorless, whereas fully 

grown oocytes with lesser G6PDH activity remain 

blue (40). BCB+ COCs have been reported to have 

significantly better developmental competence than 

BCB- COCs (5, 13). 

4.3. Molecular markers 

Morphological assessment based on 

thickness and compactness of cumulus, 

homogeneity of the ooplasm and extrusion of 1st 

polar body has been used as convenient ways of 

evaluating oocyte quality (35). However, these 

morphological evaluations are not reliable enough to 

act as the sole criteria for the evaluation of oocyte 

competence, therefore, the selection criteria are 

needed for selecting the most viable oocytes for 

embryo production. Studies on oocyte gene 

expression have revealed the specific molecular 

markers to characterize successful oocyte 

maturation, a good number of genes have been 

identified as potential predictors of oocyte 

competence both in cattle and buffaloes (1, 13, 41). 

Since these transcripts are indicators of the oocyte 

cytoplasmic maturation status, identification of the 

same may provide new knowledge and powerful 

tool/s to assess oocyte competence individually by 

analyzing its cumulus component. 

Several transcripts were found associated 

with cumulus cells but only few of them have been 

found to influence oocyte competence (42). The 

cumulus genes involved in oocyte competence 

reported were HAS2, inhibin A (INHBA), EGFR, 

GREM1, betacellulin (BTC), cluster of differentiation 

(CD44), TNFAIP6, and PTGS2 etc (13, 42). These 

differentially expressed genes may be important 

markers of the oocyte’s ability to reach the blastocyst 

stage. In human, interleukin 7 (IL7) has been 

identified as a maturation-specific OSF, may be a 

potential candidate for the development of a 

screening test of egg quality (43).  

 
 

Figure 1. Schematic representation of oocyte growth and attainment of developmental competence. With the growth of follicle, oocyte also 

grows in size reaching about 100 μm at GV stage and 110 μ m at GVBD. Simultaneously, numbers of mitochondria also increase in number 

and upon GVBD mitochondria move towards periphery. At GV stage chromosomes are condensed and at GVBD, chromosomes decondense 

and chromosomes divide, first PB extruded and chromosomes are aligned at metaphase plate. Golgi body at GV stage is dispersed throughout 

the cytoplasm in form of continuous filament and upon GVBD it gets fragmented and make cortical granules which are dispersed in the 

periphery of the ooplasm. GV= germinal vesicle, GVBD= germinal vesicle breakdown, PB = polar body. 
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4.4. Zona birefringence  

Zona pellucida (ZP) birefringence is 

another morphological criterion to select high-quality 

oocytes. For an optimal competence of oocyte, 

cytoplasmic oocyte maturation must undergo in 

synchrony with nuclear maturation. The zona 

pellucida is a unique extracellular coat surrounding 

the oocyte and its thickness increases with oocyte 

growth and it plays very important role during 

ovulation, fertilization and early embryonic 

development (44). The ZP is composed of filaments, 

which are forming a three-dimensional network 

structure that shows a high birefringence (45, 46). ZP 

birefringence measures ZP thickness and uniformity. 

Observation of ZP birefringence intensity with a 

polarized microscope has been reported to identify 

oocyte developmental competence and thus to 

improve subsequent IVEP outcomes. A high ZP 

birefringence is associated with better embryo quality 

and implantation and pregnancy rates (47-49). A high 

ZP birefringence reflects a healthy oocyte with full 

nuclear and cytoplasmic maturation (47). This quality 

indicator may be used to reinforce the selection 

parameters already in use. 

4.5. Di-electrophoretic migration 

Selecting developmentally competent 

oocytes and zygotes based on their morphology 

are more often influenced by personal judgments 

and lack universal standards. Di-electrophoresis 

(DEP), the motion of neutral particles due to the 

application of an external nonuniform electric field, 

has been a useful non-invasive technique for the 

extensive manipulation of living cells and DNA 

(50). Recently, di-electrophoretic approach was 

investigated as a potential, noninvasive method of 

competence prediction that measures the speed of 

oocyte/zygote migration in an electric field (14 

peak-to-peak volts; frequency of 4 MHz). The 

faster oocytes were developmentally more 

competent than the slower ones (51). Oocytes and 

zygotes with different cytoplasmic contents can 

possess different tendencies of polarization and 

speed of migration in the electric field. Di-

electrophoretically separated oocytes and zygotes 

showed difference in the rate of blastocyst 

development accompanied by difference in 

transcriptional abundances (51). Based on the 

same principle a device has been developed for 

the faster separation of competent oocytes/ 

embryos (52). 

The above mentioned methods of oocyte 

developmental competence assessment in vitro has 

been summarized in Table 1. 

5. STRATEGIES TO ENHANCE 

DEVELOPMENTAL COMPETENCE 

5.1. Coasting to induce competence in large 

mammals 

Coasting refers to the arrest of gonadotropin 

support in presence of endogenous luteinizing hormone 

(LH) to stimulate follicular differentiation and oocyte 

competence (53). Introduction of follicle-stimulating 

hormone (FSH) coasting – FSH withdrawal – introduced 

a few years ago in cow (53). Maximal oocyte 

competence acquisition occurs in large animals, 

including cows, between the FSH surge and the pre-

ovulation LH surge (8). Gonadotropin starvation exerts 

a selective pressure that eliminates the smaller follicles 

and increases the proportion of medium-to-large 

 
 

Figure 2. Acquisition of oocyte developmental competence. 

Developing oocyte secretes some factors GDF9/BMP15/etc (oocyte 

quality regulators) which act on surrounding cumulus cells through 

SMAD2/3, SMAD1/5/8, and others pathways and enhance the gene 

expression of GREM1/HAS2/EGFR/PTGS2 etc (oocyte quality 

predictors) and in turn these molecules act on the oocyte to enhance 

the expression of GDF9/BMP15. This cycle continues and oocyte 

gets competence. 
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follicles (53, 54). Moreover, this coasting may induce 

slight atresia in the cumulus outer layers, which is 

favourable to grade 3 COCs formation and therefore 

improved developmental competence (55). These 

findings were confirmed by the high rates of cleavage 

(90%) and blastocyst (80%) following 48h of coasting in 

the cow (53). Accelerated coasting in case of human 

ovarian hyperstimulation syndrome (OHSS) through 

treatment with GnRH-antagonist after pituitary 

suppression with GnRH agonist offered a novel 

approach to reduce estradiol level, avoid cycle 

cancellation, and maintain excellent oocyte maturation 

rate and thus high pregnancy rate with prevention of 

OHSS (56). Nivet et al. (57) demonstrated that the 

optimal period between FSH surge and transvaginal 

aspiration is 54±7 h and well-defined competence 

window is crucial to obtain optimal oocyte quality in 

ovarian stimulated milking cows. The coasting strategy 

following superovulation improves oocyte competence, 

blastocyst yield and pregnancy outcome when used in 

ovum pickup-in vitro production programs (58); 

therefore, it is a useful tool to improve oocyte 

competence through the contribution in the increase of 

the potential pool of oocytes to be selected. 

5.2. Screening and culture of competent 

oocytes 

Morphological appearance of oocytes, 

which is generally used as marker for the selection of 

oocytes for IVEP, is not sufficient to accurately 

predict the competence of oocytes. Defined 

molecular signatures of oocyte competence acquired 

during maturation by the surrounding somatic cells 

would be useful to predict the developmental 

potential of oocytes. Brilliant Cresyl Blue (BCB) 

staining is known to be a noninvasive method, as it 

allows the selection of competent oocytes among a 

heterogeneous pool. BCB screening test could be 

effectively used for selecting competent oocytes (13, 

59) (Figure 2). BCB screening is based on the ability 

of G6PDH to reduce the BCB stain present in oocyte. 

Growing oocytes, having higher G6PDH activity 

reduce BCB relatively in a quicker mode and become 

colorless, whereas fully grown oocytes with lesser 

G6PDH activity remain blue (13, 40). BCB+ oocytes 

are significantly larger in diameter compared with 

BCB- oocytes as reported in various species i.e. 

cattle (59), buffalo (13), goats (60), and pigs (61). It 

has been reported that significantly more number of 

BCB+ oocytes were obtained when oocytes were 

retrieved from large follicles compared to small 

follicles in buffalo (5). In addition, BCB+ oocytes 

contain significantly higher levels of mtDNA copy 

number than BCB− oocytes (62, 63). BCB+ oocytes 

expressed significantly higher level of oocyte 

competence markers (13). A significantly higher 

blastocyst rate is recorded in BCB+ oocytes than 

BCB- oocytes (13, 60). 

Table 1. Methods of oocyte competence assessment 

S.No. Methods Description References 

1 Morphological 

basis of 

assessment 

based on number of layers and compactness of cumulus, homogeneity of the ooplasm, and 

extrusion of first polar body 

35, 36 

2 Biochemical assay BCB staining: Based on G6PDH activity, BCB+ COCs significantly more competence than 

BCB- COCs.  

5, 13, 40 

3 Molecular markers Cumulus cells expressed genes: HAS2, EGFR, GREM1, PTGS2, BTC, INHBA etc.  1, 13, 41, 42 

4 Zona birefringence ZP birefringence measures ZP thickness and uniformity; a high ZP birefringence is 

associated with better embryo quality and implantation and pregnancy rates. 

47-49 

5 Di-electrophoretic 

migration 

Measures the speed of oocyte/zygote migration in an electric field; faster oocytes are 

developmentally more competent. 

51, 52 

S.No.: Serial Number, G6PD= Glucose-6 Phosphate Dehydrogenase; BCB = Brilliant Cresyl Blue; COCs= Cumulus Oocyte Complexes; 

HAS2 = Hyaluronan Synthase 2; EGFR = Epidermal Growth Factor Receptor; GREM1= Gremlin 1; PTGS2= Prostaglandin-endoperoxide 

Synthase 2;  BTC= Betacellulin; IHBA= Inhibin βA.  

Specify what the S. No is  

What is the value of S. No in table 1 

Response: S.No. stands for serial number and it is standard practice, may understandable to everyone, otherwise this column  may be 

deleted. Pl. 
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5.3. Pre-maturation culture of oocytes to 

enhance cytoplasmic maturation 

The acquisition of developmental 

competence is a sequential process which occurs 

along with the follicular growth in ruminants. This 

developmental process includes both nuclear and 

cytoplasmic maturation (64). Thus, the fully matured 

oocytes having completed follicular information in the 

form of messenger RNA (mRNA) or proteins must be 

collected for improvement in bubaline in vitro culture 

(1). If oocytes are collected before the acquisition of 

adequate information, developmental potential of 

embryo decreases (65). There are some important 

events occurring in the oocyte during the late 

follicular growth, which are essential to achieve full 

developmental competence (66). This has already 

been proved as cumulus-oocyte complexes (COCs) 

derived from large follicle (LF >6 mm) have better 

cytoplasmic maturation and show higher 

developmental competence, whereas small follicle 

(SF <6 mm)-derived oocytes are less competent due 

to inadequate cytoplasmic maturation (5, 67). Hence, 

blastocyst rate can be improved either by selecting 

more competent LF oocytes or by ensuring 

cytoplasmic maturation of SF oocytes.  

In most of the mammals, oocytes are 

maintained at germinal vesicle (GV) stage until pre-

ovulatory luteinizing hormone (LH) surge. During this 

period of meiotic arrest, oocytes undergo 

morphological and biochemical changes to achieve 

developmental competence. However, when oocytes 

are removed from follicle, they spontaneously 

resume nuclear maturation with impaired oocyte 

capacitation and result in lower rate of embryo 

development. The proportion of bovine oocytes 

exhibiting developmental competence greatly 

increases in oocyte derived from follicles >8.0 mm 

(large antral). Some oocytes derived from 3.0 mm 

follicles (small antral) have acquired a degree of 

developmental competence, but require additional 

“pre-maturation” in vivo prior to final maturation by the 

surge in gonadotrophin levels to induce competence 

(68).  

Pre-maturation in vivo can be driven by 

advancing follicular growth with FSH administration; 

the oocytes derived from cows subjected to FSH 

treatment prior to ovum pick up (OPU) have higher 

developmental competence than those derived from 

untreated cows (69, 70). Competence of SF-derived 

oocytes in vitro may be enhanced by providing 

sufficient pre-maturation incubation for a specific 

period of time (71) in the presence of meiotic 

inhibitors such as roscovitine, cycloheximide, 6-

dimethylaminopurine and butyrolactone. Amongst all 

meiotic inhibitors, roscovitine is an effective and 

reversible inhibitor of cyclin-dependent kinase 2 (72), 

capable of arresting the cells in late G1 and G2/M cell 

cycle transition. It has less detrimental effects on 

oocyte developmental competence than other 

inhibitors and has been used effectively to reversibly 

block the nuclear maturation of oocytes for certain 

time period in bovine (71, 73), equine (65), ovine (74), 

porcine (75) and bubaline (9). Incubation of COCs 

before actual maturation period for 24 h with 

roscovitine (roscovitine prematuration treatment) 

showed more BCB+ oocytes than control (9). Also the 

mRNA expression of oocyte competence molecular 

markers i.e. BMP15 and GDF9 (in oocytes) and 

GREM1, PTGS2 and EGFR (in cumulus cells) was 

significantly higher in roscovitine prematuration 

treatment group than control (9). Roscovitine 

prematuration treatment significantly improved the 

blastocysts rate in small follicle derived oocytes than 

the control (9) (Figure 2). Sanchez et al. reported that 

prematuration of small follicle derived oocytes in 

polycystic ovary syndrome patients with C-Type 

Natriuretic Peptide (CNP) for 24 h improved oocyte 

developmental competence and embryo yield. CNP 

secreted by mural granulosa cells is presently 

considered as a natural inhibitor for oocyte 

maturation (76). It binds with the Natriuretic Peptide 

Receptor 2 (NPR2), expressed in the cumulus cells 

and induces the production of cGMP. Cyclic GMP 

enters the oocyte via gap-junctional communication 

and regulates the levels of cAMP by competing for 

the hydrolyzing activity of oocyte specific 

phosphodiesterase 3A (PDE3A) (77); thus, 

maintaining oocytes under meiotic arrest. 

5.4. Interventions while in vitro maturation 

of oocytes 

Despite the significant improvements made 

towards the efficiency of IVP protocols in livestock, 

the rate of embryos developing normally remains 



Strategies for inducing oocyte developmental competence 

123 © 1996-2020 
 

lower than that seen in in vivo-produced embryos 

(78). In mammals, oocytes are arrested at GV stage 

till LH surge in vivo but when oocyte are removed 

from follicle (cumulus oocyte complexes, COCs), its 

meiosis is resumed and oocyte again arrested at MII 

stage and the in vitro maturation time varies species 

wise (79, 80). During this maturation time though 

oocytes get nuclear maturation completed but due to 

incomplete mimicking environment as par with in 

vivo, its cytoplasmic maturation is not proper, which 

results in the lower competence of such oocytes. 

In vitro maturation of COCs over the 

granulosa cell monolayer improves embryo 

development (81, 82). Supplementation of 

gonadotropins and follicular fluid has been found to 

improve in vitro maturation by improving the 

expression of germ cell markers (83, 84). As the 

oocytes and embryos express receptors for different 

growth factors (85, 86), supplementation of insulin 

like growth factor-1, (IGF-1), platelet derived growth 

factor (PDGF), epidermal growth factor (EGF) etc. 

have been found to improve maturation and embryo 

development (87). Recently, mesenchymal stem 

cells conditioned media has been reported to contain 

several important growth factors and improved the 

competence of oocytes and embryos (88) (Figure 3). 

Similarly, leptin receptor has also been reported in 

oocytes and supplementation of leptin in maturation 

media improved the competence of buffalo oocytes 

and embryos (89). Post thaw survivability is another 

issue in case of in vitro produced embryos especially 

in buffalo and large amount of cytoplasmic lipid 

droplets in in vitro produced buffalo embryos has 

been suggested as a major cause of reduced post 

thaw survival (36, 90). L-carnitine has been found to 

reduce cytoplasmic lipid droplets in embryos by 

modulation its metabolism as well as acting as 

 
 

Figure 3. Schematic summary of important strategies to improve in vitro embryo production (IVEP). Large follicle (LF) derived cumulus oocyte 

complexes (COCs) have more developmental competence than small follicle (SF) derived COCs. Coasting before ultrasound guided ovum-

pick up (OPU) increases development of more competent medium size follicles which can be retrieved through OPU and further used for IVEP, 

while this coasting technique cannot be utilized in case of slaughterhouse derived COCs. In that case competent COCs can be screened by 

Brilliant Cresyl Blue (BCB) staining and BCB+ COCs are found to be more competent. Further, to utilize female germplasm to the maximum 

SF derived COCs can be prematured with nuclear inhibitors like roscovitine before actual oocyte maturation to enhance the developmental 

competence of SF derived COCs. While in vitro oocyte maturation medium can be enriched by oocyte secretory factors (OSFs) or 

supplementation of denuded oocytes (DOs) as they secrete OSFs. Moreover, COCs may be matured over cumulus monolayer and maturation 

medium may be supplemented with growth factors (like; EGF (epidermal growth factor), IGF-1(insulin-like growth factor), PDGF (Platelet 

derived growth factor), LIF (leukemia inhibitory factor) etc.), stem cell conditioned medium (CM), as it contains several growth factors), L-

carnitine, leptine (antioxidant), gonadotrophins (FSH, LH), steroids (estradiol) etc. 
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antiapoptotic agent; thus, improved post thaw 

survivability (36). 

5.5. Supplementation of oocyte secretory 

factors 

Oocyte secretory factors (OSFs) are 

amongst the important mediators of bidirectional 

communication, which regulates gene expression 

in CCs that are associated with oocyte maturation 

and subsequent embryo development. Major 

OSFs that regulate oocyte developmental 

competence are growth differentiation factor 9 

(GDF9) and bone morphogenetic protein 15 

(BMP15). Positive effect of OSFs on oocyte 

developmental competence has been reported in 

buffalo (4). They found enhanced developmental 

competence of buffalo oocytes when in vitro 

maturation media was supplemented with GDF9 

(175 ng/ml) or BMP15 (100 ng/ml) alone or in 

combination, though the additive effect was more. 

As these factors are secreted from oocytes, 

supplementation of denuded oocytes (DOs) in ratio 

of 2:1 in the maturation media significantly 

improved blastocysts rate (Figure.2). This effect 

was more pronounced when OSFs were 

supplemented in small follicle derived oocytes than 

large follicle derived oocytes (4). Similar findings 

have also been reported in mouse (91), pig (92), 

cattle (30, 93) and goat (94, 95). Hussein et al. (30) 

depicted qualitative temporal changes in oocyte 

paracrine factor production during maturation and 

Li et al. (96) found that GDF9 and BMP15 mRNA 

expression levels were closely associated with 

oocyte maturation, fertilization, embryo quality, 

and pregnancy outcomes. OSFs exert synergistic 

beneficial effects on nuclear and cytoplasmic 

maturation, rapid utilization of energy and 

management of oxidative stress (94). Competent 

oocytes express higher levels of CCs transcripts, 

such as HAS2, GREM1, EGFR and TNFAIP6, 

which are responsible for cumulus expansion (13). 

A significant increase in the expression of these 

genes was observed in both the DOs co-cultured 

Table 2. Strategies to enhance developmental competence 

S.No. Methods Description References 

1 Coasting to induce competence in 

large mammals 

Arrest of gonadotropin support in presence of endogenous LH to stimulate 

follicular differentiation and oocyte competence, high rates of cleavage (90%) 

and blastocyst (80%) achieved in the cow 

53, 54, 58 

2 Screening and culture of 

competent oocytes 

Significantly higher blastocyst rate is recorded in BCB+ oocytes than BCB- 

oocyte 

13, 59, 60 

3 Pre-maturation culture of oocytes  Prematurartion inculabation with nuclear inhibitors like roscovitine, 

butyrolactone etc. improved developmental competence of SF derived COCs 

9, 65,71, 73, 

74, 75, 

4 Interventions while in vitro 

maturation of oocytes 

  

4.1.  In vitro maturation over granulosa 

cell monolayer 

Improved embryo development 81, 82, 83, 

84 

4.2.  Supplementation of growth factors 

(IGF-1, EGF, PDGF) in maturation 

media  

Improved embryo development 85, 86, 87 

4.3.  Supplementaion of mesenchymal 

stem cells conditioned media 

Improved embryo development 88 

4.4. Supplementation of leptin Improved embryo development 89 

4.5. Supplementation of L-carnitine Reduce cytoplasmic lipid droplets in embryos, cryosurvivability, improved 

embryo development  

36 

5 Supplementation of oocyte 

secretory factors 

Endogenous OSFs (supplementation of denuded oocytes) or exogenous 

OSFs (GDF9/BMP15) improved embryo development.  

4, 91, 92, 93, 

94, 95 

6 Supplementation of mitochondria Increased development to blastocyst, preimplantation development, 

mitochondrial DNA replication 

107 

S.No.: Serial Number 
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and in the GDF9–BMP15 combination group in LF 

oocytes (4).  

5.6. Supplementation of mitochondria 

Mitochondria are energy supplying 

organelles, whose functional integrality is essential 

for cellular survival and development. Mitochondria in 

the oocyte can provide adenosine triphosphate (ATP) 

for fertilization and preimplantation embryo 

development (97) and they can act as stores of 

intracellular calcium and proapoptotic factors as well. 

Mitochondria have their own genetic materials, 

mitochondrial DNA (mtDNA) that is derived from 

maternal mtDNA exclusively, for the paternal 

mitochondria are not retained in the fertilized oocyte 

at the four cell stage (98). There are approximately 

1,00,000 to 2,00,000 mtDNA copies in a mammalian 

oocyte (99), which are divided among all daughter 

cells during the developmental progress of embryos. 

Because there is no mtDNA replication until post 

implantation, this renders oocytes more susceptible 

to any kind of mitochondrial dysfunction (100). A 

mitochondrial pre-fertilization threshold need to be 

ensured, as mitochondria are diluted out during post-

fertilization cleavage, there should be sufficient 

copies of mtDNA per blastomere to allow 

transmission of mtDNA to each cell of the 

postimplantation embryo after the initiation of mtDNA 

replication during the early postimplantation stages 

(101). Recent studies have shown that mitochondrial 

dysfunctions, such as the structural, spatial and 

genetic abnormalities in the oocyte, may influence 

normal embryo development, so mitochondrial 

characteristics and other mitochondrion-related 

changes can serve as signs of oocyte quality. The 

importance of ATP levels during in vitro maturation 

has been demonstrated in bovine oocytes. Higher 

quality oocytes, assessed by morphology, contained 

significantly higher ATP levels and produced 

significantly higher blastocyst rates after fertilization 

(102). Mitochondrial DNA encodes 13 of the subunits 

of the electron transfer chain (ETC) complexes, 

associated with the process of oxidative 

phosphorylation, along with 22 tRNAs and 2 rRNAs 

that are necessary for mRNA expression (103). 

Expression of these mitochondrial genes is vital for 

cellular function, especially as the ETC is the cell’s 

major generator of ATP (104) whilst mutation or 

deletion can result in severe cellular impairment 

(105). In ovine, Cotterill et al. (106) observed 

increase in the mtDNA copy number across 

oogenesis reflects the changing ATP demands 

needed to orchestrate cytoskeletal and cytoplasmic 

reorganization during oocyte growth and maturation 

and the need to fuel the resumption of meiosis in 

mature oocytes following the pre-ovulatory 

gonadotrophin surge (106). Supplementation of 

mitochondrial DNA to mitochondria deficient oocytes 

increased development to blastocyst, the final stage 

of preimplantation development, and promoted 

mitochondrial DNA replication prior to embryonic 

genome activation in mitochondrial DNA deficient 

oocytes (107). Thus, supplementing oocytes with 

mitochondria may be used as a strategy to overcome 

mtDNA deficiency and enhance oocyte 

developmental competence. 

The above mentioned strategies for the 

enhancement of oocyte developmental competence 

in vitro has been summarized in Table 2.  
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complexes; IVEP= in vitro embryo production; 

GV= Germinal Vesicle; GVBD= Germinal 

Vesicle Break Down; MII= Metaphase –II; MI= 

Metaphase-I; PBE= Polar Body Extrusion; ZP= 

Zona Pellucida; CCs=cumulus cells; GDF9= 

Growth Differentiation Factor 9; BMP15 bone 

morphogenetic protein 15; HAS2= Hyaluronan 

Synthase 2; INHBA= Inhibin βA; EGFR 

epidermal growth factor receptor; 

GREM1=Gremlin 1; BTC= Betacellulin; CD44= 

Cluster of Differentiation 44; TNFAIP6= Tumor 

Necrosis Factor-Induced Protein 6; PTGS2= 

Prostaglandin-endoperoxide synthase 2; 

interleukin 7 (IL7); G6PDH= Glucose-6-

Phosphate Dehydrogenase; BCB= Brilliant 

Cresyl Blue; OSFs= Oocyte Secretory Factors; 

MHz= Mega Hertz; LH= Luteinizing Hormone; 

FSH= Follicle-Stimulating Hormone; OHSS= 

Ovarian Hyperstimulation Syndrome; GnRH= 

Gonadotrophin Releasing Hormone; mtDNA= 

Mitochondrial DNA; LF= Large Follicle; SF= 

Small Follicle; OPU= Ovum Pick Up; CNP= C-

Type Natriuretic Peptide; NPR2=Natriuretic 

Peptide Receptor 2; cGMP= Cyclic Guanosine 

Mono Phosphate; PDE3A= Phosphodiesterase 

3A; IGF-1=Insulin-Like Growth Factor-1; PDGF 

Platelet Derived Growth Factor; EGF= 

Epidermal Growth Factor; DOs= Denuded 

Oocytes; ATP= Adenosine Triphosphate; 

ETC=Electron Transfer Chain. 
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