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1. ABSTRACT

High-risk human papillomaviruses (HPVs) 
are oncogenic DNA viruses that promote carcinogenic 
signaling by their oncoproteins mainly E6 and E7. 
A well-defined promoter regulates expression and 
enhancer region on HPV genome containing number 
of cis elements that essentially require a set of cognate 
host transcription factors to regulate viral promoter 
gene activity. Expression of these host factors is tightly 
regulated at multiple levels such as transcriptional, post-
transcriptional and post-translational level. Discovery 
of microRNAs (miRs) in recent years and differential 
expression of a set of specific miRs in HPV infection and 
cervical lesions indicate that among various regulatory 
mechanisms, role of these differentially expressed miRs 
in the post-transcriptional control is pivotal. Present 
review analyses and attempts to compile currently 
available miR data related to HPV infection and cervical 
carcinogenesis with a special focus on miRs that 
may regulate expression of the host and viral factors 
particularly responsible for viral transcription leading 
to carcinogenic progression of the lesion. Further, the 
review attempts to assess the therapeutic potential of 

miR-based strategies in therapeutic targeting of HPV 
infection during cervical carcinogenesis.

2. INTRODUCTION

Cervical cancer is the second most commonly 
diagnosed cancer and the third leading cause of cancer 
death in women worldwide. An estimated 527,600 
new cervical cancer cases and 265,700 deaths were 
reported worldwide in 2012. More than 90% of disease 
burden is contributed by the developing countries. India 
accounted for 25% of cervical cancer deaths (67,500) 
(1). It is a well-established fact that HPV infection is the 
primary etiological agent of cervical cancer (2–4) but 
with no specific clinically-available treatment for HPV 
infection (5). To date, over 110 different HPV types 
have been identified, and about 30 of these infect 
epithelial cells of the genital tract (6). Papillomaviruses 
exhibit a high degree of specific cellular tropism for 
squamous epithelial cells of different organ sites 
(7) and have been associated with various clinical 
manifestations ranging from benign hyperplastic 
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epithelial proliferative innocuous lesions (warts, 
papillomas) to cancer. These proliferative hyperplastic 
lesions can be cutaneous (skin warts) or can involve 
mucosal squamous epithelium of oral, pharynx, the 
esophagus or of the genital tract. On the basis of their 
association with disease types, papillomaviruses are 
classified into high-risk (HR) and low-risk (LR) types. 
HR HPV types are often associated with carcinoma 
of ano-genital tract, whereas the LR HPV types are 
associated with low grade benign lesions, like skin/
genital warts and condylomata acuminate and rarely 
associated with malignancy. Till now, 12 HR HPV types 
(HPV16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, and 
59) and 8 intermediate or probable HR HPV types 
(HPV 26, 53, 66, 67, 68, 70, 73 and 82) (8) have been 
described which collectively contribute to overall HPV-
attributable cancer burden worldwide. Among them, 
HPV16 and HPV18 are the most prevalent genotypes. 
Together, they are responsible for more than 80% of 
global HPV-associated cancerous lesions. The link 

between genital HPV infections and cervical cancer 
was first demonstrated in the early 1980s by Harald 
zur Hausen and his co-workers (9, 10). Since then, 
a number of epidemiological and functional studies 
have unraveled the causal link between high-risk HPV 
infection and cervical squamous cell carcinoma (11).

Among 6 early proteins (E1, E2, E4, E5, E6, 
and E7) that are encoded by HR-HPVs specifically 
the E6 and E7 play a pivotal role in carcinogenic 
progression (Figure 1A). Expression of these proteins 
is tightly regulated by one of the two promoters (Early 
and Late) that control spatio-temporal expression of 
HPV genomes in different mucosal linings (12). This 
non-coding viral promoter along with enhancer region 
is termed synonymously as Long Control Region (LCR) 
or Upstream Regulatory Region (URR). The URR 
contains a number of cis elements that essentially 
requires a set of host transcription factors to regulate 
viral promoter activity (13) (Figure 1B). Therefore, 

Figure 1. A. HPV16 genomic organization and functions of viral gene products. B. Schematic presentation of viral URR with potential host transcription 
factor binding sites.
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availability of the host factors directly governs and 
orchestrates viral gene expression and downstream 
pathogenic events. Expression of these host factors is 
tightly regulated at multiple levels such as transcriptional, 
post-transcriptional and post-translational level. 
Since the discovery that small RNA that can act as a 
specific regulator of gene expression (14), RNAs are 
emerging as intense area of research. MicroRNAs 
(miRs/miRNAs) are a family of highly conserved short 
non-coding RNAs involved in post-transcriptional 
gene silencing. Over 2500 human miRNAs have been 
recorded in miRBase (www.mirBase.org). miRs have 
been found in a variety of organisms from viruses to 
humans (15, 16). miRs target multiple mRNAs involved 
in variety of cellular responses or signaling pathways 
by promoting their degradation or translational silencing 
and thus act as negative regulators and fine tuners of 
the biological response.

Recent studies show role of miRs in 
oncogenesis (17). However, depending upon the 
function of the gene product of miR target(s), the end 
result of any miR’s action could be tumor promoting or 
tumor suppressive. In humans, the majority of miRs 
(70%) are transcribed from introns and/or exons, 
and approximately 30% are located in intergenic 
regions (15). Apart from the host miRs recent study 
has identified and validated papillomavirus-encoded 
miRNAs in human cervical lesions and cell lines for 
the first time. Interestingly, two miRs were found to 
be encoded by HPV16, one by HPV38 and one by 
HPV68 (18), however, their functions and downstream 
pathological effects are yet to be elucidated. These 
observations, in view of carcinogenic role of HPV, 
therefore, indicate strong interplay between host 
and viral miRs not only in regulation of target host 
transcripts whose gene products are relevant to cancer 
development and progression but also in regulation 
of viral transcripts through targeting host transcription 
factors that control expression of viral oncogenes. 
Various efforts have been made in the past decade 
to improve our understanding of the altered miR 
expression by oncogenic HPV infection that may have 
important contribution in development of cervical cancer. 
However, how alterations in specific miRs translate into 
control of viral genome is poorly defined. Present review 
assesses currently available miR data related to HPV 
infection and cervical carcinogenesis with a particular 
focus on miRs that regulate expression of host and viral 
factors, which control viral transcription and examines 
the strength and bottlenecks in developing miR-based 
prognostic and therapeutic strategies for control of 
HPV infection and cervical carcinogenesis.

3. REGULATION OF VIRAL ONCOGENE  
EXPRESSION BY URR

On HPV genome, a transcriptional control 
region designated as URR separates viral late and 

early genes. This region is approximately 800–1000bp 
(covering about 10% viral genome). It does not encode 
any protein, but contains the origin of replication, viral 
early promoter and enhancer sequences that play 
regulatory role in HPV-associated cell transformation 
and viral life cycle (Figure 1B). All papillomavirus 
URRs studied so far contain epithelial specific 
constitutive enhancers (19) that contribute to the 
epithelial tissue tropism of HPVs and control of E6/
E7 transcription. Most HPV types have a promoter in 
front of the E6 gene in common (20, 21). Functionally, 
the 850bp HPV16 URR can be divided into three 
parts: 1) A 5’-terminal portion of unknown function; 
2) A central 400bp constitutive enhancer essential 
for E6/E7 promoter activity; 3) A promoter proximal 
region containing E6/E7 promoter p97 at its 3’ end. 
Because of its potential for binding with a wide array 
of specific host transcription factors, URR works as a 
primary interface between host and the virus and thus 
determines the compatibility of specific types of HPVs 
to the host tissues resulting in productive infection (22). 
One or more host cell transcription factor binding sites 
and other keratinocytes-specific enhancers for AP-1, 
Sp1, NF-1, TEF-1, TEF-2, Oct-1, AP-2, KRF-1, YY1, 
NF-κB, STAT3 and glucocorticoid responsive elements 
have been identified in the URR region of HPV16 and 
other HPV types (23–32). Interestingly, many of the 
factors/cognate binding sites such as that of AP-1 are 
indispensable for expression of viral oncogenes. Any 
nucleotide change resulting in reduced bindings of 
these transcription factors to their binding site on HPV 
URR, or alteration in the expression or activity of the 
transcription factor may adversely affect transcription 
of the viral oncogenes. Moreover, aberrant expression 
and constitutive activation of many of these factors like 
AP-1, NF-κB, and STAT3 have been demonstrated in 
cervical cancer (33, 34). These transcription factors are 
known to have independent carcinogenic risks as they 
induce and promote carcinogenic inflammation (35, 
36). Therefore, the factors that control the expression 
and/or activity of these transcription factors during HPV 
infection need further investigation. Identification of 
miR-mediated post-transcriptional control has opened 
up several investigations that might answer some of 
these issues and may lead to better understanding of 
transcriptional control of HPV.

4. MICRORNAS IN CARCINOGENESIS

miRs, short RNA molecules of 19–25 
nucleotides in length, play a key role in regulating 
gene expression by controlling the level of transcripts 
available for translation by triggering degradation of 
their target mRNAs (37). miR genes are generally 
transcribed by RNA polymerase II (Pol II) in the nucleus 
and are exported to the cytoplasm as mature miRs. A 
schematic presentation of miRs biogenesis is given in 
Figure 2. The mature miRNA binds to complementary 
sites in the mRNA target to negatively regulate 
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corresponding gene expression. The miR negative 
regulatory action is executed in one of the two ways that 
primarily depends on the degree of complementarity 
between the miRNA and its target mRNA. miRNAs that 
bind to the 3′ UTR of their target mRNA genes with 
imperfect complementarity block target gene expression 
at the level of protein translation. miRNAs that bind in the 
coding sequence or open reading frame of their mRNA 
target with perfect (or nearly perfect) complementarity 
induce target-mRNA cleavage. miRs are important 
players in regulation of various biological processes 
including cell differentiation, proliferation and apoptosis 
(38–43). Expression of miRNAs is altered in a number 
of human diseases from psychiatric disorders (44) to 
cancer (45). Extensive research shows that miRs play 
an important role in cell apoptosis (46), suppression of 
tumor growth, invasion and metastasis in HPV-positive 
cancer (47). Because of being an upstream regulatory 
molecule with multiple targets, the changes in levels 
of miR expression are anticipated to be the cause of 
multiple dynamic alterations seen in mRNA and protein 
profiles during carcinogenesis. Studies have revealed 
that miRNAs frequently reside within fragile sites, are 
often involved in cancer development (48). However, it 

has remained a puzzle whether altered miR expression 
is a cause or consequence of carcinogenic processes. 
Emerging data shows appearance of alterations in 
a limited set of specific miRs in many cancer types 
indicate to a potential regulatory role of these miRs 
in carcinogenic process and could be a reflection of 
dynamic state of expression of tumor suppressors and 
oncogenic oncomiRs.

5. ALTERED MIR EXPRESSIONS IN 
CERVICAL CANCER

Recent advances in the field of miRNA 
resulted in exploration of these small regulators in 
cervical cancers also. Studies describing alterations in 
the miRs profile in cervical cancer has been recently 
reviewed in detail (50, 51) and the subject is beyond 
the focus of present article. However, some of the 
salient studies have been compiled in Table 1 to assess 
the commonalities and differences in differential miR 
profiles reported (52–59). Interestingly, leaving a few 
miRs each study demonstrated a different set of miR 
that are differentially expressed in cervix cancer thus 
making the overall manifestation of miRs in this disease 

Figure 2. Brief outline of biogenesis of functional miRNAs. miRNA genes are generally transcribed by RNA Polymerase II (Pol II) in the nucleus to form 
large pri-miRNA transcripts which are several kilobases in size, capped and poly adenylated. These pri-miRNA transcripts are processed by the RNase III 
enzyme Drosha and its co-factor, Pasha, to release the ~70-nucleotide pre-miRNA precursor product. RAN–GTP and exportin-5 transport the pre-miRNA 
from nucleus into the cytoplasm. RNase III enzyme, Dicer, processes the pre-miRNA to generate a transient ~22- nucleotide miRNA:miRNA* duplex. 
This duplex is then loaded into the miRNA-associated multiprotein RNA-induced silencing complex (miRISC), which includes the Argonaute proteins, and 
the mature single-stranded miRNA is retained in this complex. The mature miRNA then binds to complementary sites in the mRNA target to negatively 
regulate the gene expression. The miR negative action mechanism is one of two ways that depends on the degree of complementarity between the 
miRNA and its target mRNA. miRNAs that bind to the 3′ untranslated regions of their target mRNA genes with imperfect complementarity block target 
gene expression at the level of protein translation. miRNAs that bind in the coding sequence or open reading frame of their mRNA target with perfect (or 
nearly perfect) complementarity induce target-mRNA cleavage. Adapted with permission from (49).
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more complex. For example, our recent study (59, 
60) and others showed that miR-21 is overexpressed 
and expression of Let-7a, miR-143, Let-7c, miR-
196b, miR-23b and Let-7b is downregulated in cervix 
tissue biopsies (52). On the other hand, Lee et al. 
demonstrated upregulation of miR-199 and miR-9 and 
downregualtion of miR-149 and miR-203 in cervical 
cancer. Similarly, high expression of miR-182 and miR-
183 and low expression of miR-126 and miR-143 was 
reported in another study (54). miR-15b and miR-16 
were overexpressed in cervical cancer while reduced 
expression of miR-126 and miR-143 was observed 
(55). Similarly, miR-148a and miR-302b were shown 
to be overexpressed and miR-203 and miR-513 to be 
downregulated in cervical cancer (57). As of present, 
studies are focusing to identify the set of miRNAs 
that can be used as molecular markers in cervical 
cancer patients (61). These studies defining specific 
variations in miR profile not only reflect population-
specific variation but also indicate dynamic nature of 
miRs in progressive lesions, which needs a deeper 
understanding.

It is likely that abundance of any particular 
miR may vary with respect to the stage of the disease, 
type of HPV infection, level of expression of viral 
oncogenes apart from the differences in technology 
applied and the type of specimen used. Nevertheless, 

a few miRs were more frequently reported than others, 
which included miR-9, miR-21, miR-24, and miR-183 
that were found overexpressed. On the other hand, let-
7a, miR-203, miR-143, and miR-203 were undetectable 
or under-expressed in cervical cancer tissues and 
cell lines. Further, a few studies have reported a 
contrasting profile of some of miRs, particularly miR-
145 and miR-199a (53, 54, 57). Assessment of clinical 
specimen revealed clinical stage and histopathological 
grade-specific alterations in miR profile (51, 58, 62). 
Upregulation of specific miRs, miR-200a and miR-9 
could predict patient survival (56). Loss of a few miRs 
(let-7c, miR-10b, miR-100, miR-125b, miR-143, miR-
145 and miR-199a-5p) is specifically associated with 
advanced stage cancer lesions (63). Patients with loss 
of miR-100 and miR-125b had a greater tendency to 
show poor prognosis. Some of these reported miRs 
demonstrate direct or indirect link of altered miR profile 
with HPV-transcription related factors, which will be 
discussed in the following sections.

6. HPV INFECTION-ASSOCIATED CHANGES 
IN HOST MIR PROFILE

Viruses play a major role in regulating host 
gene expression in many viral infections and a part of 
these responses are mediated/affected through miRs 
(64, 65). In case of HPV infection, expression of viral 

Table 1. Different miRNAs found altered during cervical carcinogenesis

miRNAs Expression Change Sample Type Technique Refernces

miR-21 Upregulation Cervical cancer cell lines 
and tissues

miRNA cloning (52)

Let-7a, Let-7b, Let-7c, , miR-23b, miR-143, miR-196b Downregulation Cervical cancer cell lines 
and tissues

miRNA cloning (52)

miR-9, miR-127, miR-133a, miR-133b, miR-145, miR-
199-s, miR-199a*, miR-199a, miR-199b, and miR-214

Upregulation Cervical tissues Taqman real time 
quantitative PCR 

(53)

miR-149 and miR-203 Downregulation Cervical tissues Taqman real time 
quantitative PCR 

(53)

miR-182, miR-183 and miR-210 Upregulation Cervical cancer cell lines Microarray (54)

miR-126, miR-143, miR-145, miR-195 and miR-218 Downregulation

miR-21, miR-24, miR-27a, and miR-205 Upregulation Cervical cancer cell lines miRNA cloning (55)

miR-143 and miR-145 Downregulation

miR-15b, miR-16, miR-155 and miR-223 Upregulation Cervical tissues Microarray (58)

miR-126 and miR-424 Downregulation

miR-9, miR-10a, miR-10b, miR-24, miR-146b,miR-181a, 
miR-183, miR-193b, miR-200a , and miR-204 

Upregulation Cervical tissues Microarray (56)

miR-10a, miR-132, miR-148a, miR-196a, and miR-302b Upregulation Cervical tissues Microarray (57)

miR-26a, miR-29a, miR-99a,miR-143, miR-145, miR-199a, 
miR-203 and miR-513

Downregulation Cervical tissues Microarray (57)

miR-21 Upregulation Cervical cancer cell lines 
and tissues

PCR (59)(60)

Let-7a Downregulation Cervical cancer cell lines 
and tissues

PCR (59)(60)

1Bold font indicates miRs reported to be altered in ≥2 studies, Italics with contrasting reports
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oncoproteins especially E5, and E6 are specifically 
linked with a number of miR alterations and the list 
is expanding with increasing knowledge of miR-
based regulation in HPV infection and cervical cancer 
(Table 2) (54, 55, 58, 59, 66–77). Recently, Honegger 
et al. showed that HPV E6/E7 silencing significantly 
alters multiple miRs which contribute to HPV E6/E7-
dependent growth of HPV-positive HeLa cells (77). 

In another study, E5 was found to induce expression 
of miR-146a, whereas it repressed miR-324–5p and 
miR-203. These miR alterations were accompanied 
by suppressed differentiation and attenuated immune 
response to HPV infections in cervical epithelial 
cells (69). Similarly, the expression of the HPV16 
E6 specifically reduced miR-218 expression, and 
conversely the expression of epithelial-cell specific 

Table 2. Representative studies showing HPV infection-induced alterations in host miRNA profile

HPV gene miRNAs miRNA target Effect Sample type References

HPV16 E6 miR-218↓ LAMB-3↑ Downregulation of miR-218 by E6 and overexpression 
of LAMB-3 may promote viral infection

Cervical cancer (54)

miR-34a↓ E2F↑, p18Ink4c↑ Expression of HR-HPV oncoprotein E6 reduces 
miR-34a expression by destabilizing p53& 
promoting cell proliferation

Cervical cancer (55, 71)

miR-23b↓ uPA↑ E6 downregulate miR-23b by targeting p53 Cervical cancer (68)

miR-145↓ IRS-1↑ Inhibition of p53 -dependent miR-145 up-regulation Cervical cancer 
cell lines

(72)

miR-92↑ PTEN↓ E6 upregulated miR-92 expression, promoted cell 
growth and invasion

Cervical cancer & 
cell lines

(74)

miR-9↑ ALCAM↓, FSTL1↓ Effects independent of p53, regulation of cancer
metastasis 

Cervical cancer (75)

Let-7a↓,
miR-21↑

STAT3↑
PTEN↓, MMP-9↑, 
TIMP↓

Upregulation of STAT3 expression, persistent 
STAT3 activity due to loss of PTEN

Cervical cancer 
cell lines

(59)

HPV E7 miR-203↓ p63↑ E7 blocks miR-203 upregulation through MAP 
kinase pathway 

Normal 
Keratinocytes

(67)

HPV E6/
E7

miR-363↑,
(miR-181a, 218, 
29a)↓

TS P57↓
P85/CDC42↑

Cell cycle disruption,
Negative regulators of p53

HPV16+ & HPV-
SCCHN cell 
lines, human 
foreskin
keratinocytes

(70)

miR-95↑,
(miR-23b, 100, 
137, 149, 432, 601, 
1202)↓

SNX1↓, (uPA, 
PTEN, Hes1, 
FGFR3, MMP13, 
Plk1LSD1, Cdc42, 
CtBP1, Akt1 and 
E2F1,b-Myb, 
GSK3a, NF-kB)↓ 

Effects at least in part, due to reduction in the 
levels of transcription factor p53 by E6 and the 
release of E2F from the pRb-E2F complex

Transfected 
human foreskin
keratinocytes

(73)

(miR-24, 205)↓ p27 miR-205 expression is dependent on pRb, target 
CDK inhibitor p27

Human foreskin
keratinocytes

(76)

IC(miR-17,186,378, 
637, 7) ↑
IC(miR-143, 23a, 
miR-23b, 27b) ↓
E(let-7d, miR-20a, 
378a,423, 7, miR-
92a) ↑ E(miR-21) ↓ 

P21↓ Effects independent of p53, intracellular miR-17~92 
cluster downregulates antiproliferative p21

Cervical cancer 
cell lines

(77)

HPV16 E5 miR-146a↑ ↓p38, ERK1/2↓ Suppress differentiation of epithelial cells, 
attenuated immune response in HPV infections

Cervical cancer (69)

miR-324–5p↓ N-cadherin ↑, 
E-cadherin ↑ 

HPV E5 oncogene may repress miR-324–5p 
expression in cervical epithelial cells 

(69)

miR-203↓ p63↑, STAT1↑ E5 acts by suppressing differentiation of epithelial 
cells through downregulation of miR-203 with 
subsequent upregulation of p63.

(69)

HR HPV miR-218↓ Not known miR-218 involvement in pathogenesis Cervical cancer (64)

miR-100↓ PLK1↑ Independent of HPV E6/E7 expression Cervical cancer 
and cell lines

(144)

E-Exosomal; IC-Intracellular
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marker LAMB3, a target of miR-218, was found 
upregulated (54). Other HR-HPVs were later described 
to downregulate miR-218 expression (66). Expression 
of E6 was also found associated with reduction of 
miR-34a expression in organotypic tissues derived 
from HPV-containing primary human keratinocytes. 
Reduction of miR-34a expression was attributed to the 
expression of viral E6, which destabilizes the tumor 
suppressor p53, a known miR-34a transactivator (78). 
In addition, E6 oncoprotein decreases the expression 
of miR-23b that culminates in upregulated expression 
of its target gene uPA, an inducer of cell migration (68). 
These studies, therefore, indicate an important role of 
HPV oncoproteins in alteration of host miRNA profile 
and this altered miRNA expression profile by itself 
becomes a major pool of regulators that destabilizes 
cell growth and survival mechanisms causing events 
leading to cervical carcinogenesis.

There could be 6 different and independent 
mechanisms by which HPV affects host miR profile 
and consequently the host transcriptome. 1). by 
targeting fragile sites that are often the site of HPV 
integration (79). About 50% of miR genes are found 
located at the fragile sites and genomic regions 
with frequently dys-regulated expression in cancer 
(48). 2). HPV-mediated epigenetic changes in miR 
expression (reviewed in (80)). miRs are transcribed 
as a unit or in groups of 2–19 and can reside in the 
introns or exons of coding genes or in intergenic 
regions, the later has its own promoter which allows 
them to be individually transcribed and hence subject 
them to epigenetic regulation. 3). Expression of its 
own miRs (18). Recent study performed using deep 
sequencing showed at least 2 miRs are encoded by 
HPV16 and one each by HPV38 and HPV68 (18, 81). 
These viral miRs are capable of targeting both viral 
as well as host transcripts. 4). Indirect effect of action 
of viral oncoproteins E5, E6 and E7. This is among 
the most widely studied mechanisms by which HPV 
infection influences host miR profile. E5 was found to 
induce expression of miR-146a, whereas it repressed 
miR-324–5p and miR-203. These miR alterations 
were accompanied by suppressed differentiation and 
attenuated immune response to HPV infections in 
cervical epithelial cells (69). Similarly, the expression 
of the HPV16 E6 specifically reduced miR-218 
expression, and conversely the expression of 
epithelial-cell specific marker LAMB3, a target of miR-
218, was found upregulated (54). HR-HPV infections 
in general were later described to downregulate miR-
218 expression (66). Expression of E6 was also found 
associated with reduction of miR-34a expression in 
organotypic tissues derived from HPV-containing 
primary human keratinocytes. Reduction of miR-34a 
expression was attributed to the expression of viral 
E6, which destabilizes the tumor suppressor p53, a 
known miR-34a transactivator (78). In addition, E6 
oncoprotein decreases the expression of miR-23b that 

culminates in upregulated expression of its target gene 
uPA, an inducer of cell migration (68). Apart from these 
p53-dependent alterations, HPV has been described 
to induce p53 independent changes in host cell miR 
profile (75, 77). 5). Global changes in miR profiles 
due to changes in miR processing enzyme Drosha 
(82) which is reported to be overexpressed in cervical 
cancer (83). 6). Changes in exosomal packaging of 
miRs. Recent study showed a characteristic shift in 
the miR signatures of exosomal and intracellular miR 
profiles following ectopic expression of HPV oncogenes 
E6 and E7 irrespective of the HR-HPV type (77). 
These studies, therefore, indicate an important role of 
HPV oncoproteins in alteration of host miRNA profile 
and this altered miRNA expression profile by itself 
becomes a major pool of regulators that destabilizes 
cell growth and survival mechanisms causing events 
leading to cervical carcinogenesis and at the same 
time promote a milieu which is more conducive to viral 
oncogene expression.

7. MIRS AS UPSTREAM REGULATORS AND 
DOWNSTREAM TARGETS OF CELLULAR 
TRANSCRIPTION FACTORS ASSOCIATED 
WITH VIRAL TRANSCRIPTION

Because of the potential for binding with a set 
of specific host transcription factors, URR works as a 
primary interface between host and the virus and thus 
determines the compatibility of specific types of HPVs 
to the host tissues resulting in productive infection 
(22). One or more host cell transcription factor binding 
sites and other keratinocytes-specific enhancers for 
AP-1, Sp1, NF-1, TEF-1, TEF-2, Oct-1, AP-2, KRF-1, 
YY1, STAT3 and glucocorticoid responsive elements 
have been identified in the URR of particularly HPV16 
(23–31). Some important upstream regulators and 
downstream targets of these transcription factors 
that control HPV16 URR are depicted in Figure 3. It 
is important to note that various levels of functional 
complexities are present among these transcription 
factors. Some of these transcription factors are basal 
(such as SP-1, and Oct-1) as they are constitutively 
expressed and active in all cell types whereas others 
are inducible (such as AP-1, NF-κB and STAT3). 
The differential transcriptional outcome occurs if 
different members of the same family interact (such 
as AP-1, NF-κB and STAT3). Further, their activity is 
controlled by multiple regulatory mechanisms (such as 
phosphorylation) that also include negative feedback 
mechanisms and involvement of miRs. Listing all 
possible miR interactions will be quite complex and not 
relevant to the context. Therefore, only most relevant 
miRs that have been reported to control the expression 
of these HPV-related transcription factors and if they 
have been found altered in cervical cancer have been 
outlined in Table 3 and some more relevant ones have 
been discussed below:
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7.1. Activator protein-1 (AP-1)

Early studies on transcriptional control of HPV 
oncogenes revealed indispensable role of two AP-1 
sites driving the expression of virus-encoded E6 and 
E7 oncoproteins in HPV16 URR (30, 31, 84, 85). AP-1 
is a family of transcription factors containing seven 
members, c-Jun, JunB and JunD in the Jun family and 
c-Fos, FosB, Fra-1 and Fra-2 in the Fos family. These 
members can form homodimers or heterodimers within 
the same family members or with members of other 
family (86). Mutational inactivation of AP-1 binding 
sites in the natural context of the HPV16 URR leads to 
an almost complete loss of the transcriptional activity 
of the E6/E7 promoter (87). AP-1 has been shown to 
develop carcinogenesis in a variety of tissues (88). 
Our group demonstrated a significant overexpression 
of constitutively active AP-1 family members in 
cervical precancer and cancer tissues (33). Recently, 
miR-7B has been shown to decrease the translation 
efficiency of the unstable c-Fos mRNA (89). miR-663 
decreases AP-1 activity and impairs its upregulation 
via lipopolysaccharides by directly targeting JunB and 
JunD transcripts (66). Also, AP-1 binding site has been 
revealed in miR-21 promoter (90).

7.2. Nuclear factor kappa B (NF-κB)

The role of NF-κB, a transcriptional regulator, 
in linking inflammation and tumorigenesis has been 
supported by accumulating evidences (91, 92). NF-κB 
is constitutively activated during human cervical cancer 
progression (93). HPV16 E6 and E7 proteins modulate 
the expression and the sub-cellular localization of NF-
κB precursors (94). Also the HPV16 E5 expression 
leads to NF-κB activation, in part, with AP-1 in cervical 
carcinogenesis (95). Two putative NF-κB binding sites 
are reported in the miR-155 promoter (96). A positive 
correlation between miR-155 upregulation and NF-
κB activation has been shown by some studies (78, 
97–100). NF-κB activation is increased on binding of 

miR-181b-1 in the promoter regions of STAT3. The 
increased transcription of miR-181b-1 inhibits CYLD, 
negative regulator of NF-κB (101), which in turn causes 
increased NF-κB activation in MCF-10A cells. miR-21 
works within the inflammation-transformation positive 
feedback loop through STAT3-mediated regulatory 
circuits, which down-regulate PTEN expression to 
increase NF-κB activity (36). miR-301 activates NF-
κB in a positive feedback loop in which miR-301a 
represses Nkrf to elevate NF-κB activity and NF-κB 
promotes the transcription of miR-301a (102). NF-
κB binds to a site upstream of the let-7 RNA coding 
region. NF-κB activation and subsequent repression 
of let-7 result in high levels of IL-6. These high levels 
of IL-6 are required for sufficient binding to the IL-6 
receptor to cause activation and nuclear entry of the 
STAT3, which then activates VEGF (35).

7.3. Signal transducers and activators of 
transcription-3 (STAT3)

Recent studies show involvement of STAT3 
in cervical carcinogenesis. STAT proteins comprise a 
family of transcription factors latent in the cytoplasm 
that participate in normal cellular events, such as 
differentiation, proliferation, cell survival, apoptosis, 
and angiogenesis following cytokine, growth factor, 
and hormone signaling (103). Overexpression of 
STAT3, one of the important member of the STAT 
family, has been observed in a wide number of 
human cancer cell lines and primary tumors including 
blood malignancies, solid neoplasia (104, 105) and 
cervical cancer (34, 59, 60, 106). Current literature 
indicates a strong interaction of STAT3 signaling 
with HPV infection during cervical carcinogenesis. 
STAT3 activation may serve as an important player in 
HPV-mediated cell cycle dysregulation. Upregulated 
STAT3 expression is expected to repress the de 
novo production of p53, whereas E6 mediates the 
degradation of already produced p53 proteins thereby 
critically depleting the cellular p53. STAT3 binding 

Figure 3. Upstream regulators and downstream target miRNAs of some of the transcription factors that control HPV16 URR.
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 Table 3. Cellular transcription factors associated with viral transcription and respective miRs that regulate
their expression/activity

Transcription Factor (145) Regulation TF Status in CaCx Subunits Corresponding Validated 
Regulatory miR (From 
Pubmed/ miR database)

Status of 
Respective miR in 
Cervical Cancer (R)

AP-1
5’-TGACTCA-3’ (86)

Induced Constitutively active with 
overexpression of c-Fos 
and
JunB (33)

c-Jun miR-21 (146, 147), miR-23 
(148), miR-155 (96), miR-206 
(149)

miR-21↑ (60), miR-
23↑ (77) , miR-155 
↑ (150), miR-206↓ 
(151) miR-92a ↑ 
(152)c-Fos miR-21 (146), miR-23 (148), 

miR-92a (153)

JunB miR-21 (146)

SP-1
5′-(G/T)GGGCGG(G/A)
(G/A)(C/T)-3′ (154)

Basal Plays an important role for 
the activation of the E6/E7-
promoter (155)

miR-22 (156), miR-27a (157), 
miR-29b (158, 159), miR-34c 
(160), miR-17–92 cluster 
(161), miR-132 (162), miR-
133a, miR-133b and miR-145 
(163, 164), miR-141 and miR-
146b-5p (165), miR-149 (166), 
miR-182 (167), miR-183 (168), 
miR-200 and miR-200b (169–
171), miR-335 (172), miR-375 
(173), miR-1188 (174), miR-
3151 (175)

miR-27a ↑ (176), 
miR-34c ↓ (177), 
miR-17–92 cluster 
↑ (178), miR-132 
↓ (179), miR-145 
↓ (180), miR-182↑ 
(181), miR-183↓ 
(182)

NF-1
5’-TTGGC-3’ (25)

Basal NF-1 binds only poorly 
to recognition sites 
within URRs and only 
marginally contributes to 
transcriptional activation 
(155)

NF1A miR-217 (183), miR-223 (184) miR-223↓ (185),
miR-124↓ (186)

NF1B miR-124 (187), miR-136 (188)

TEF-1
5’-GTGGAATGT-3’ (189)

Basal Active in human 
keratinocytes and
essential for HPV16 
transcription (190)

No report No report

Oct-1
5’-ATTTGCAT-3’ (191)

Basal High expression (192) miR-1467, miR-1185, miR-
4493 and miR-3919 (192)

miR-1467, miR-1185, 
miR-4493 and miR-
3919 (192)

AP-2
5’-GCCN3GGC-3’ (193)

Induced Transcriptional control of 
HPV (194)

AP-2α
AP-2β
AP-2γ
AP-2δ
AP-2ε

No report No report

KRF-1
5’-TAACTATATCC-3’ (29)

Basal Binding is necessary for 
high level of transcriptional 
activation of HPV18 (29)

No report No report

YY-1
5’-GCCGCCATTTTG-3’ 
(195)

Basal Overexpressed and 
positive correlation 
with HPV E6/E7 (58), 
Negative regulation of HPV 
transcription (122, 145)

miR-7 (196), miR-193a-5p 
(197), miR-206 (149),

miR-7 ↓(198), miR-
206 ↓(151)

STAT-3
5’-TT(N)4–6AA-3’ (199)

Induced Constitutively active with 
overexpression of STAT3 
(34)

Let-7a (109), miR-7 (200), 
miR-17–92 cluster (201), miR-
98 (202), miR-106b (173), 
miR-30c (203), miR-130b 
(204), miR-181b-1 (205), miR-
221 & miR-222 (194), miR-874 
(206), miR-1181 (207)

Let-7a ↓ (59, 60),

NF-κB
5’-GGGRNYY YCC-3’ (208)
(in which R is a purine, Y is 
a pyrimidine, and N is any 
nucleotide)

Induced Constitutively active with 
overexpression of p50 
homodimers (33)

P50 miR-21 and miR-34ac (209), 
miR-155 (96), miR-183, miR-
218 (210), miR-221 & miR-222 
(194)

miR-218 ↓ (54), miR-
221 ↑ (211), miR-222 
↑ (212)

P65/RelA miR-155 (96), miR-3151 (175)

GR
5’-TGTTCT-3’ (213)

Induced Activated (214) miR-124 (215), miR-142–3p 
(216), miR-150–5p (217)

miR-142–3p ↓ (218)

1Bold font indicates *Italics indicate not direct target l ↑: upregulated, ↓: downregulated
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site has been shown in the promoters of different 
miRs including miR-21 (90, 107) and miR-148a, 
miR-132, miR-181b-1, miR-148b, miR-193a, miR-
340, miR-335, miR-210 and miR-187 (36). 130-bp 
regions containing two predicted STAT3 binding sites 
upstream of the miR-21 genes have been reported in 
various vertebrate species. A stable distance between 
miR-21 and the STAT3 sites throughout all vertebrates 
strongly suggests their functional correlation (107). 
Schematic representation showing miRNAs which 
negatively regulates STAT3 activators and co-
activators, and STAT3 inhibitors and repressors are 
depicted in Figure 4A. Our group has recently shown 
that STAT3 is negatively regulated by Let-7a and 
it regulates miR-21 in HPV-positive cervix cancer 
tissues (60) and cell lines (59). STAT3 transactivates 
another miR, miR-181b-1. STAT3 and miR-181b-1 
expression levels are positively correlated in colon 
adenocarcinomas as well as in MCF-10A cells 
during transformation (36). miR-20b reduces VEGF 
expression through HIF-1 and STAT3 mediation in 
breast cancer cells (108). Recent data have identified 
STAT3 as a novel target of let-7a in hepatocellular 
carcinoma (109). miR-21 negatively regulates PTEN, 
a negative regulator of STAT-3 and MMP-2, thus up-
regulating MMP-2 expression in cardiac fibroblasts 
(110). SOCS-1 has been implicated in the negative 
regulation of IL-6R/Jak/STAT pathways (111). miR-
19a and miR-19b has been shown to target SOCS-
1 (negative regulator of STAT3) and suggest a role 
of miR-19 in the IL-6 anti-apoptotic signal in the 
pathogenesis and malignant growth of multiple 
myeloma (112). Some of the important components 
of STAT3 signaling as direct targets and regulators of 
miRs are shown in Figure 4B.

7.4. “Yin and Yang1” (YY1)

The ubiquitous cellular factor YY-1 also 
known as UCRBP, δ, NF-E1, CF1, NMP-1, has 
been reported to play a critical role in tumorigenesis 
(113) and HPV infection (114). YY-1 can function as 
both a positive (115–117) and a negative (118, 119) 
regulator of cellular and viral gene expression. The 
extrachromosomal or integrated HPV16 DNA isolated 
from malignant cervical biopsies contains mutated or 
deleted YY1 sites upstream of the p97 start site (120, 
121) which result in increased p97 transcription, origin 
of replication (ori) function, initial plasmid amplification 
and virus immortalization capacity. It has been noted 
that YY1 binding to a critical motif adjacent to the p97 
transcription start site downregulates the HPV16 E6/
E7 promoter (122). YY1 regulates miR-190 expression 
in the primary hippocampal cultures (123). miR-29 is 
epigenetically silenced by an activated NF-κB-YY1 
pathway in rhabdomyosarcoma cells and primary 
tumors (124).

8. STRATEGIES TARGETING MIRS IN 
CARCINOGENESIS PROCESS

Accumulating data suggest that miRNAs 
might be used as potential therapeutic tools for 
several diseases including cancer. For example, 
the activity of miRNAs was inhibited using miRNA 
inhibitors for miR-21 and the cell growth in HeLa 
was found to increase after miRNA inhibition (125). 
The reporter vectors containing miR binding sites for 
target miRs are constructed. These binding sites are 
made by hybridizing oligonucleotides containing the 
miRNA binding site and cloned them into the 3’ UTR 

Figure 4. miRNAs negatively regulating STAT3 activators and co-activators and STAT3 inhibitors and repressors (A) and their reciprocal regulation by 
STAT3 signaling components (B).
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of luciferase vector. miRNA inhibitors inhibit the ability 
of the endogenous miR by inhibiting the expression 
of the reporter gene containing the miRNA binding 
site (126–128). Another approach uses 2-O-methyl 
oligoribonucleotides (2-O-Me-RNA). These molecules 
stoichiometrically bind and irreversibly inactivate 
miRNAs. Antisense 2-O-Me-RNA have been used 
to specifically down-regulate miRNAs in human 
cells (126). Knockdown of miR-21 using 2-O-Me-
RNA triggered activation of caspases and increased 
cell death in glioblastoma cells (129). Antagomirs 
are chemically modified cholesterol conjugated 
single strand RNA molecules complementary to a 
mature miRNA. miR-122 antagomir administration 
showed upregulation of genes with 3’UTR miR-122 
recognition motifs, leading to a reduction in plasma 
cholesterol levels (130). For miRNAs that act as tumor 
suppressors, it may be of interest to develop in vivo 
expression systems. For example, let-7, a tumor 
suppressor family, may provide useful strategy to 
control tumor growth by ectopically overexpressing its 
family (131). Locked nucleic acids (LNAs) comprise a 
class of bicyclic high-affinity RNA analogues in which 
the furanose ring in the sugar-phosphate backbone 
is chemically locked in an RNA-mimicking N-type 
(C3-endo) conformation by the introduction of a 
2-O,4-C methylene bridge (132) (see Table 4). LNA-
ISH (in-situ hybridization)-based detection of miR-21 
overexpression indicates important diagnostic marker 
of colorectal carcinogenesis (133). The sponge mRNA, 
which contains multiple target sites complementary to 
a miRNA of interest, is a dominant negative method 
(134). Down-regulation of miRNA-574–5p using 
miR-574–5p sponge in vivo significantly abrogated 
the enhanced tumor progression induced by TLR9 
signaling in human lung cancer (135). Expression 
of constitutively active TORC1 has been shown to 
attenuate the miR-21 sponge-mediated suppression of 
proliferation and migration of renal cancer cells (136). 
miRNA target decoys are endogenous RNA that can 
negatively regulate miRNA activity. An mRNA decoy 
has been designed and applied in the research of miR-
133 in the pathogenesis of cardiac hypertrophy. The 
suppression of miR-133 decoy sequences induced 

cardiac hypertrophy (137). The various strategies to 
target miRNAs are summarized in Table 4.

9. PERSPECTIVE - PROGNOSTIC 
SIGNIFICANCE OF MIRS IN CERVICAL 
CANCER

Despite available data that progressive 
cervical or other cancer lesions will have unique 
set of miR, not much work has been carried out to 
harvest the prognostic significance of miRs in HPV 
infection or cervical cancer in clinical settings. Altered 
miR expression has been associated with cancer 
progression and miR profile as prognostic factor can 
provide valuable tool in treatment of cervical cancer 
patient. Huang et al. showed that low expression 
of hsa-miR-100 and hsa-miR-125b showed poor 
prognosis in small cell carcinoma of the cervix patients 
(63). Some studies have shown potential of miRs as 
prognostic marker in HPV-mediated cancers. Thirty-
nine cancer-associated miRs were found near 37 
HPV integration sites. miR-21, miR-142, miR-301a 
and miR-454 were present at HPV16 integration 
site at chromosome number 17q23.1 (138). Among 
these miRs, overexpressed miR-21 was detected 
in a variety of cancers. Hu et al. used the recursive 
feature elimination (RFE) technique to rank the relative 
importance of each miRNA in cervical cancer samples. 
Among top 10 miRs, miR-200a and miR-9 were 
described as promising miRs that could predict patient 
survival (68). Recently, some studies have indicated 
that aberrant and circulating miRNA expressions 
may have potential prognostic value in different other 
malignancies (139). Similarly in human lung cancer 
cells, an association has been shown between high 
expression of miR-31 and poor survival of stage I–
III squamous cell carcinoma patients without any 
treatment prior to surgery (140). The tumor suppressor 
DICER1 was identified as a target of miR-31 and the 
expression of miR-31 can repress DICER1 activity.

Recently, miRNA mimic-based therapy 
has been tested in preclinical models of cancer. 
Several studies have investigated the miRNA mimics 

Table 4. Various strategies for targeting/overexpression of microRNAs

Strategy Advantages Reference

Locked nucleic acid (LNA) Unprecedented binding affinity to complementary RNA molecules which is 
governed by conformational restriction

(132)

mRNA Decoy It will be more difficult for diseased cells to evolve resistance to RNA decoy (219)

Modified anti-miRNA oligonucleotides (AMOs) or 
Antagomirs

Effectively silence miRNAs in vivo. Enable the study of gene regulation in 
vivo by tissue specific miRNAs

(130)

miR Mimics Specifically bind to essential sites within target RNAs (220)

miRNA Inhibitory Transgenes or miRNA sponges Convenience of making dominant negative transgenics over knockouts and 
applicability to a broader range of model organism and cell lines

(134)

miR Hairpin Allow use of DNA vector-based short hairpin (sh)RNA for RNA interference (221)
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in preclinical animal models of lung cancer and 
mesothelioma (141). A phase 1 trial of TargomiRs, 
MesomiR-1, focused on miRNA mimic-based therapy 
for thoracic cancer was initiated in 2014 (141). Similarly, 
there are on-going clinical trials and preclinical studies 
targeting miRNAs against different cancers (142). 
Rosetta Genomics is now offering a panel (miRview-
mets2) to clinicians so that the origin of metastatic 
cancers can be identified where the primary origin of 
metastasis is uncertain (143). Although the current 
status of miRNA-based clinical applications is narrow, 
further advancement in miRNA studies will hopefully 
translate miRNA-based cancer therapeutics into a 
clinical reality.

These findings suggest that miR signatures 
apart from understanding the basic biology could also 
provide useful information as novel prognostic indicators 
or markers of treatment response, which may contribute 
to improved selection of patients to classify tumors 
according to clinicopathologic variables currently used 
to predict disease progression. However, these initial 
findings need additional experiments based information 
to investigate how altered miRNA expression would 
manifest the biological consequences in the development 
of cervical cancer. Taken together, we propose a 
schematic representation of potential miRNA-mediated 
regulatory mechanism that may operate during HPV-
induced cervical carcinogenesis (Figure 5).
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