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1. ABSTRACT 
 
 Basic fibroblast growth factor (FGF-2) is a 
pleiotropic cytokine which exerts its effects via four 
different high affinity receptors (FGFR-1 to -4) which 
function as protein tyrosine kinases. In the kidney, FGF-2 
is expressed in epithelial cells already during fetal 
development. During later stages, expression of the 
cytokine can be found in distal tubular epithelial cells, 
glomerular cells and few interstitial cells. Expression in 
fibroblasts is robustly upregulated in chronic kidney 
scarring pointing to an important role in fibrogenesis. 
Functional studies have demonstrated that FGF-2 exerts 
mainly proliferative effects on a variety of renal cell types. 
In regard to fibrogenesis, the expression and induction of 
proliferation in interstitial fibroblasts may be the most 
important function. FGF-2 is one of the key factors 
contributing to autocrine fibroblast proliferation in post-
inflammatory matrix synthesis. In addition, FGF-2 
facilitates epithelial to mesenchymal transition of tubular 
epithelial cells contributing early to an increase of matrix 
producing cells. However, the cytokine does not contribute 
directly to extracellular matrix synthesis. Still, many 
aspects of FGF-2 in renal fibrogenesis remains to be 
evaluated. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

Historically, the relationship between the 
tubulointerstitial compartment and renal function in 
glomerular disease was described as early as in 1844 in 
Germany (1) and in 1846 in England (2): in both 
observations, tubulointerstitial scarring was found to 
correlate better with the disease process than glomerular 
lesions. However, in subsequent years, these observations 
have been forgotten and tubulointerstitial changes observed 
in glomerulopathies were considered non-relevant. That 
changed in 1953 when the importance of the 
tubulointerstitial space for renal function was rediscovered 
by Spühler and Zollinger, albeit in patients with primary 
interstitial nephritis (3). Subsequently, in 1958, Hutt and 
coworkers observed a relationship between 
tubulointerstitial lesions and renal function in 15 patients 
with acute glomerulonephritis (4). This relationship was 
confirmed in patients with different types of 
glomerulopathy and chronic tubulointerstitial disease by 
Adalbert Bohles group at the University of Tuebingen, 
Germany. Studies on mesangioproliferative, membranous, 
focal-sclerosing, and membranoproliferative 
glomerulonephritis showed convincingly a robust 
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correlation between the morphometrically measured 
interstitial volume and serum creatinine (reviewed in (5)). 
Moreover, the extent of interstitial inflammation and 
fibrosis were reliable predictors of renal function 5 or more 
years later (6). Similar observations were made by the same 
group also in secondary glomerulopathies such as diabetic 
glomerulosclerosis (7) and glomerular amyloidosis (8). 
These findings have been subsequently confirmed by many 
other groups (reviewed in (9)). All in all, the overwhelming 
evidence for a decisive role of tubulointerstitial 
involvement in the deterioration of renal function and the 
progression to chronic renal failure is not surprising given 
the fact that the tubulointerstitial space occupies 
approximately 80 per cent of the renal volume (10).  

 
3. RENAL FIBROGENESIS 
 
 It has traditionally been tempting to compare the 
process and result of tissue fibrosis to wound healing in the 
skin. There is great heterogeneity in outcome in the latter; 
fetal wounding, for example, produces no scar, adult 
wounding results in an appropriate closure that contracts 
and minimizes over time or, in some cases, scars enlarge to 
produce keloids (11).  Like wound healing in the skin, three 
phases of fibrogenesis can be distinguished in the kidney; 
induction, inflammatory, and post-inflammatory phases 
(12). There is a certain degree of variability in these phases 
which may account for heterogeneous outcomes.  Renal 
fibrogenesis differs from typical wound healing, however, 
in that true resolution is rare. Instead, matrix synthesis 
continues with insidious destruction of normal organ 
architecture and eventual loss of function, interestingly 
enough this process may continue despite resolution of 
primary inflammation (13).  
 
4. INDUCTION OF RENAL FIBROGENESIS AND 
EFFECTOR CELLS 

 
 Renal fibrogenesis commences with the induction 
phase. This phase is critical for the subsequent 
accumulation of matrix proteins and is characterized by the 
influx of infiltrating mononuclear cells. Interstitial 
infiltrates can be found in almost all forms of primary or 
secondary glomerular disease (14), with only few 
exceptions (15). Infiltrating mononuclear cells are 
composed mainly of monocytes/macrophages and 
lymphocytes, predominantly T-lymphocytes (16). After 
inflammatory cells infiltrate renal tissue, one begins to see 
activation and proliferation of fibroblasts. So-called 
myofibroblasts (the name is due to the de-novo expression 
of alphasmooth muscle actin in these cells whose 
expression is normally restricted to vascular smooth muscle 
cells) are the key (though not exclusive) effector cells in 
renal fibrogenesis (17). The formation of myofibroblasts 
may occur via an intermediate form, the so-called 
“protomyofibroblast” characterized by the acquisition of 
contractile stress fibers (18). In the kidney, myofibroblasts 
are derived mainly from activation of resident interstitial 
fibroblasts, albeit differentiation processes of 
periadventitial cells, bone marrow derived cells or tubular 
epithelial cells may contribute as well (19). The 
differentiation process of tubular epithelial cells refers to 

epithelial to mesenchymal transition (EMT) which was first 
described by our group in 1995 by cloning of FSP1, a 
member of the S100 protein family (20). FSP1 expression 
is constitutive in tissue fibroblasts under physiologic 
conditions (20). In a mouse model of rapidly progressive 
fibrosis (the model of unilateral ureteral obstruction), 36 
per cent of interstitial matrix producing cells were of 
tubular origin, i.e. generated by EMT as identified by 
genetically tagged proximal tubular epithelial cells which 
migrated into the interstitium and expressed de novo 
mesenchymal marker proteins (21). However, the relative 
contribution of EMT to myofibroblast formation may be 
smaller in fibrotic disease with slower progression rates. 
All in all, there is a remarkable variability in the results of 
studies that evaluated the origin of renal fibroblasts. A 
possible explanation for such a discrepancy is that 
fibroblast recruitment may occur disease-specific (19). For 
example, EMT could not be observed in a model of 
overload proteinuria (22). Conversely, the specific 
significance of EMT for the progression of renal disease 
was shown very convincingly by Yang et al. who 
demonstrated that EMT was critical for the progression of 
renal disease in the UUO model compared to the tissue 
plasminogen activator deficient mice (23).  
 
5. FGF-2 

 
 Gospodarowicz and colleagues described as early 

as 1974 the mitogenic effects of bovine pituitary extract on 
3T3 fibroblasts which later was determined to be FGF-2 
(24). Due to different translation start sites, five different 
isoforms of FGF-2 can be distinguished of which only the 
18 kD isoform gets secreted. It exerts its effects via four 
different high affinity receptors (FGFR-1 to –4). These 
FGFRs function as protein tyrosine kinases and regulate a 
wide variety of cellular processes (reviewed in (25)). 
Additionally, various heparin sulfate proteoglycans serve as 
low affinity receptors. Moreover, recently, non-tyrosine 
kinase receptors have recently been implicated in FGF-2 
signalling (26). Unlike most other polypeptide growth 
factors, FGF-2 does not have a leader sequence and the 
mechanisms for its release are still controversial. However, 
it was shown that injured cells do release FGF-2 into the 
surrounding tissue (27) and the cytokine may be secreted 
by viable cells as well (28).  

 
FGFs in general are pleiotropic molecules 

capable of affecting a variety of cell types and FGF-2 is no 
exception (29). FGF-2 has an important role in 
angiogenesis since it stimulates vascular endothelial growth 
factor (VEGF) expression in endothelial and stromal cells 
(30). In addition, FGF signaling controls the VEGF 
receptor 2 signaling responsiveness (29). However, clinical 
trials applying angiogenic growth factors in patients with 
ischemic heart disease have failed to demonstrate any 
therapeutic efficacy (31).  

 
5. 1. FGF-2 in the kidney 
 FGF-2 expression in the kidney was first 
described in 1985 when Baird and colleagues isolated the 
cytokine from whole bovine kidneys (32). In the human 
fetal kidney, FGF-2 expression is detectable mainly in 
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epithelial cells in different stages of differentiation (33). 
Takeuchi et al. and Floege et al. examined the expression 
of FGF-2 in adult kidneys more closely and described 
expression in some tubules, the interstitial space, but 
mainly in Bowman’s capsule, the mesangial space and in 
the vasculature (34, 35). However, these findings could not 
be confirmed by all investigators probably due to the use of 
different affinity antibodies (36). With the use of four 
different antibodies, Floege and colleagues localized FGF-2 
expression in normal human kidneys most consistently to 
vascular smooth muscle and distal tubular epithelial cells 
(37). Our own studies in human kidneys demonstrated that 
FGF-2 is expressed not only in glomerular and vascular 
cells but also in selected interstitial fibroblasts (38). In situ 
hybridization studies and western blot analyses of 
fibroblasts confirmed these results. 
 

FGF-2 is mitogenic for many renal cell types 
including glomerular endothelial (39) and glomerular 
epithelial cells (34) but also for mesangial (40) and 
proximal tubule cells (41). Functionally, FGF-2 may 
augment podocyte injury and glomerulosclerosis in rats 
induced with a model of membranous nephropathy (42). In 
addition, chronic infusion of FGF-2 resulted in 
glomerulosclerosis and interstitial fibrosis in rats (43). Both 
studies point to a role of FGF-2 in renal sclerosing disease. 
More recently, Li et al. demonstrated that FGF-2 may be 
involved in renal cyst formation by overexpression of 
human FGF-2 in newborn mice (44). Our group did study 
the expression of FGF-2 in human diabetic nephropathy 
and found a robust upregulation within the 
tubulointerstitium but not within the glomerulus in kidneys 
with diabetic renal involvement (Vasko et al., submitted). 

 
Conversely, to these potential pro-fibrotic effects, 

there is no study analyzing the effects of FGF-2 on renal 
angiogenesis. 
 
5. 2. Early role of FGF-2 in renal fibrogenesis 

How is FGF-2 (basic fibroblast growth factor) 
involved in the induction phase of renal fibrogenesis? We 
do not know exactly since no study has analyzed the 
expression of the cytokine carefully in a progressive animal 
model. Studying human kidney biopsies with variable 
degrees of interstitial inflammation and interstitial scarring, 
FGF-2 expression was robustly upregulated in interstitial 
and tubular epithelial cells by immunohistochemistry and 
in-situ hybridization (38). Some of the interstitial cells may 
have been inflammatory infiltrating cells. Moreover, 
studying the functional effects on human renal fibroblasts, 
we found induction of proliferation in primary cortical 
fibroblasts and promotion of the expression of alpha-
smooth muscle actin in these cells indicating activation of 
these cells within the induction phase (38). Ray et al. 
examined FGF-2 expression in a transgenic mouse model 
of HIV nephropathy and found that interstitial FGF-2 
staining was increased and colocalized with extracellular 
matrix (45). FGF-2 expression may be induced in 
inflammatory vascular processes as well as was shown by 
the same group studying children with hemolytic uremic 
syndrome (46). Finally, Stein-Oakley and colleagues 
described increased FGF-2 expression in the 

tubulointerstitial space from kidneys with focal segmental 
glomerulosclerosis and IgA nephropathy (47), though 
again, the exact time course was not analyzed.  

 
In regard to EMT, the effects of FGF-2 were 

examined by our group a number of years ago (48). One 
key feature of EMT is increased cell motility as a 
characteristic property of mesenchymal cells. In our 
studies, FGF-2 induced cell motility dose dependently 
across a tubular basement membrane in two tubular cell 
lines. In addition, the expression of the mesenchymal 
marker proteins vimentin and FSP1 was induced by 
incubation with FGF-2, whereas cytokeratin expression 
was downregulated by immunofluorescence. These 
effects were most notable in the distal tubular epithelial 
cell line and were confirmed by immunoblot analyses. 
Furthermore, FGF-2 stimulated FSP1 and decreased E-
cadherin promoter activities in stably tranfected tubular 
epithelial cells. FGF-2 also induced intracellular 
fibronectin synthesis. Conversely, fibronectin secretion 
could only be stimulated by TGF-ß1, not by FGF-2 
alone. The tubular basement membrane is a barrier 
which often prevents the migration of tubular epithelial 
cells into the tubulointerstitial space. Since it is 
composed mainly of type IV collagen, the appropriate 
matrix degrading enzymes (e.g. matrix 
metalloproteinases (MMPs), particularly MMP-2 and 
MMP-9) are required for degradation of the tubular 
basement membrane. Thus, zymographic analyses 
demonstrated that FGF-2 induced MMP-2 activity by 
2.6-fold and MMP-9 activity by 2.4-fold, providing a 
putative mechanism for basement membrane 
disintegration and migratory access of transforming 
epithelium to the interstitium.  

 
Figure 1 illustrates the effects of FGF-2 on EMT. 

Similar effects may be induced by other profibrotic 
cytokines such as TGF-ß1 (transforming growth factor) or 
Oncostatin M (49), to name only a few. 

 
5.3 . FGF-2 in the inflammatory phase of renal 
fibrogenesis 

During the phase of inflammatory matrix 
synthesis, fibroblasts are stimulated mainly by cytokines 
from infiltrating inflammatory cells as well as from 
resident renal cells. Several cytokines play key roles in that 
process including angiotensin II, transforming growth 
factor beta (TGF-beta), connective tissue growth factor 
(CTGF), epidermal growth (EGF), and platelet derived 
growth factor growth factor (PDGF). Certainly, TGF-ß1 is 
one of most important profibrotic cytokines.  

 
 The role of FGF-2 in the inflammatory phase of 

renal fibrogenesis is probably much less prominent. As was 
shown by our group, FGF-2 has only marginal effects on 
the synthesis of extracellular matrix proteins in renal 
fibroblasts (38). However, our group was able to 
demonstrate that TGF-ß1 induces FGF-2 synthesis on the 
mRNA and protein levels robustly and may result in the 
release of preformed FGF-2. Furthermore, we 
demonstrated that TGF-ß1 promotes proliferation in
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Figure 1. Simplified schematic of the effects of FGF-2 on 
the process of epithelial mesenchymal transition and on the 
activation process of fibroblasts to myofibroblasts via the 
intermediate form of the protomyofibroblast. Please note 
that whereas FGF-2 does induce these differentiation 
processes, it does not stimulate secretion of extracellular 
matrix. 

 
medullary and cortical fibroblasts and that this effect is 
mediated mainly by induction of FGF-2 (50). 
 
5.4 . Postinflammatory phase and FGF-2 

The phase of postinflammatory matrix synthesis 
distinguishes tissue fibrogenesis from typical wound 
healing where resolution is expected.  In this phase, the 
primary inflammatory process is often confined to limited 
areas. However, despite apparent resolution of 
inflammation, interstitial matrix synthesis and deposition 
continue. There are several possibilities how fibrogenesis 
may continue during that phase: First, stimulation by the 
few remaining interstitial infiltrates is strong enough to 
result in persisting fibroblast activity. Second, autocrine 
loops in activated fibroblast may result in autonomous 
stimulation of these cells. Lonnemann et al., for example, 
observed that IL-1 secreted by fibrotic kidney derived 
fibroblasts led to a mitogenic response and autocrine 

stimulation of its own secretion (51). Our own studies 
emphasize the role of FGF-2 in autocrine fibroblast 
proliferation since neutralization of the cytokine caused 
inhibition of basal proliferation (38). Furthermore, as 
indicated above, we were able to demonstrate that TGF-
beta1 induced synthesis and secretion of FGF-2 from 
cortical fibroblasts (13). A third mechanism of 
postinflammatory matrix synthesis is the interaction 
between tubular epithelial cells and fibroblasts. Again, 
FGF-2 seems to be involved in that process. Phillips et al. 
showed that FGF-2 may stimulate release of latent TGF-
beta1 from proximal tubule cells and indicate the presence 
of another positive feed-back loop (52). A fourth very 
interesting mechanism was recently described by Wallach-
Dayan et al. in pulmonary fibrosis (53). These authors 
found an overexpression of the Fas ligand (FasL) in 
myofibroblasts from fibrotic lungs allowing these cells to 
escape immune surveillance and to proliferate. Of course, 
these findings will have to be confirmed for the kidney 
(54). 

 
Figure 2 summarizes the possible pathogenetic 

mechanisms of postinflammatory matrix synthesis focusing 
on FGF-2. This phase is probably characterized by the 
existence of several autocrine loops. The critical role of 
FGF-2 and TGF-ß1 in post-inflammatory matrix synthesis 
is corroborated by studies on fetal wound healing. During 
fetal wound healing no scarring can be observed. However, 
in post-fetal wound healing scarring commonly occurs. As 
was demonstrated in a nice series of experiments, one of 
the major differences besides the organization of collagen 
fibers between fetal and post-fetal wound healing is the 
expression of the two cytokines FGF-2 and TGF-ß1 which 
can be easily detected in post-fetal (scarring) but not in 
fetal (non-scarring) wounds (55, 56). 
 
5.5. FGF-2 in non-renal fibrosis 

Besides the kidney, FGF-2 has been implicated in 
the pathogenesis of skin, liver und pulmonary fibrosis. 
Gonzalez and colleagues described the association of FGF-
2 expression with proliferative fibrogenesis in patients with 
Dupuytren’s contracture (57). Charlotte et al., for example, 
found increased expression of FGF-2 in carbon 
tetrachloride induced liver fibrosis (58). That study 
confirmed already an expression of the cytokine in liver 
myofibroblasts. Yu and colleagues examined the effects of 
FGF-1 and FGF-2 double knock-out mice and found that 
liver fibrosis was much less severe compared to regular 
control mice expressing both cytokines (59). This study 
again points to a profibrogenic role of FGF-2 though it is 
difficult to discern the effects of FGF-2 from FGF-1 using 
this approach. However, there are also some reports 
claiming a beneficial effect of FGF-2 on fibrogenesis. For 
example, Ishikawa and colleagues treated carbon-
tetrachloride induced liver fibrosis in mice with a 
combination of bone marrow transplantation and FGF-2 
and found that the combination improved matrix deposition 
(60). Interestingly, Akasaka et al. described a proapoptotic 
effect of FGF-2 on dermal fibroblasts and an inhibition of 
alpha-smooth muscle actin expression (61), thus, opposite 
effects to those described in the kidney. The potential pro-
fibrotic effects of FGF-2 are corroborated by studies using  
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Figure 2.  Schematic of the possible mechanisms of post-
inflammatory matrix synthesis. Autocrine and paracrine 
loops of (myo)fibroblasts and tubular epithelial cells may 
be involved in continous fibroblast proliferation 
responsible in part for post-inflammatory matrix synthesis. 
 
FGF deficient mice which display (mild) delays in wound 
healing (62).  
 
6. CONCLUSION AND PERSPECTIVE 
  

There is little doubt that FGF-2 is a profibrotic 
cytokine in the kidney exerting mainly proproliferative 
effects on cortical fibroblasts and facilitating EMT. In 
addition, robust upregulation of expression particularly in 
the tubulointerstitium has been described in correlation 
with scarring. However, to date no studies have been 
performed in FGF-2 deficient mice and no studies have 
used complete neutralization of the cytokine studying 
fibrogenesis. However, vaccination therapies against FGF-
2 have been developed with some success in animal studies 
(63) whereas clinical studies so far have failed due 
probably to redundancy of the FGF system. In addition, 
some studies in non-renal tissue point to certain anti-
fibrotic effects and certainly induction of angiogenesis may 
have potential beneficial effects on the course of chronic 
progressive renal failure. Thus, the effects of FGF-2 may 
vary depending on the time course and maybe even 
depending on the model used. Further studies are urgently 
needed in order to better define the role of FGF-2 in renal 
fibrogenesis. 
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