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1. ABSTRACT

Angiogenesis, the development of new vessels
from a pre-existing vasculature, accompanies the growth
and malignant transformation of astrocytic brain tumors.
Neovascularization is essential for sustained tumor growth,
and with increasing grade, astrocytic tumors undergo an
“angiogenic switch” manifested by marked increases in
vessel density and changes in vascular morphology. In the
quiescent state, endogenous anti-angiogenic factors
including endostatin, thrombospondin, and soluble vascular
endothelial growth factor receptor-1 (sVEGFR-1) balance
the actions of pro-angiogenic stimuli and restrain the
angiogenic switch. Once activated, pro-angiogenic factors
including most notably basic fibroblast growth factor
(FGF), vascular endothelial growth factor (VEGF-A), and
platelet-derived growth factor (PDGF) incite robust
astrocytoma neovascularization. Recent studies have also
explored the expression patterns and functional importance
of the angiopoietins, Tie2 and neuropilin receptors, and
hepatocyte growth factor/scatter factor (HGF). Together
these angiogenic factors have diverse actions on
endothelium and perivascular supporting cells that
engender tumor neovessels with a unique phenotype,
distinct from normal vessels. Properties of the astrocytoma
neovasculature contribute to tumor growth, malignant
progression, invasion, hemorrhage, and edema formation.
Thus, the mechanistic actions of angiogenic factors on
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cerebral microvessels and the nature of the resultant tumor
neovasculature establish a framework for understanding
many of the characteristic behaviors of astrocytoma tumors.

2. INTRODUCTION

Astrocytomas represent the most common
primary adult neoplasm of the central nervous system.
While traditionally presumed to derive from mature,
differentiated astrocytes, their cell of origin remains elusive
(1, 2). By comparison, gliomas represent a broader class
that also encompasses oligodendrogliomas and tumors of
ependymal origin (2). The WHO classification divides
astrocytic brain tumors into 4 grades (2, 3). This review
focuses on the more common Grade II-IV lesions and does
not address the distinct group of grade I pilocytic
astrocytomas. Grade II astrocytomas are the least malignant
and are characterized by a proliferation of diffusely
infiltrating, neoplastic astrocytes without obvious mitoses.
Grade III tumors, known as anaplastic astrocytomas,
exhibit mitoses and pleomorphism, but lack the necrosis
and endothelial proliferation that characterize the most
malignant of astrocytic tumors, the grade IV glioblastoma
multiforme lesion. Glioblastomas may be primary, arising
de novo, or they may develop secondarily by malignant
progression from low-grade lesions (4-7). Angiogenesis,
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the growth of new vessels from a preexisting vasculature,
has been extensively studied in astrocytic tumors (for
reviews see 8-13). This review explores the importance of
angiogenesis, angiogenic factors, and the tumor
neovasculature from the perspective of their contribution to
the behavior patterns of astrocytic tumors.

3. ANGIOGENESIS AND TUMOR GROWTH

3.1. Co-option, neovascularization, and the angiogenic
switch in astrocytomas

Because oxygen can diffuse only 0.1 to 0.2 mm
from a blood vessel, tumor growth is highly reliant upon
neovascularization (14-18). Astrocytic tumor growth in
animal models is characterized by two vascular phases (19,
20). In the first phase, small collections of tumor cells co-
opt or parasitize pre-existing blood vessels from the host,
and within a week of inoculation, tumor cells become
distributed preferentially around vessels. Co-option of the
preexistent host vasculature occurs in the absence of
angiogenesis. With exponential tumor cell proliferation, the
co-opted vasculature quickly fails to meet the metabolic
demands of the growing tumor mass, and co-opted vessels
at the center of the tumor begin to regress. In the second
phase of astrocytic vascularization, tumor cells in the
vicinity of the degenerating vessels become hypoxic and
upregulate expression of vascular endothelial growth factor
(VEGF-A). VEGF-A is a potent stimulus for new vessel
growth and induces a neoangiogenic response,
predominantly at the tumor periphery, that rescues the
tumor and facilitates further tumor growth (19-21). Studies
using the arterial marker, ephrin B2, have further shown
that the tumor vasculature acquires a normal arterial and
venous circulatory tree (22).

The astrocytic tumor vasculature manifests
distinctive patterns that vary with tumor grade. Low-grade
astrocytomas (grade II) exhibit vessel densities slightly
greater than normal brain and their vessel morphology is
unremarkable. As the malignant phenotype advances to
grade III, vessel density increases dramatically and with
continued transition to a grade IV glioblastoma, marked
changes in vessel morphology emerge (Figure 1). Thus the
progression from a low-grade astrocytoma to a high-grade
glioblastoma is accompanied by an “angiogenic switch”
(23). The angiogenic switch is defined as the point during
tumor growth at which dramatic upregulation of growth
factors and receptors act to induce increased tumor
vascularization. Based on the hypothesis that angiogenesis
is regulated by a balance of pro- and anti-angiogenic
factors in the tumor microenvironment, a multitude of
environmental, genetic, and metabolic factors can trigger
the angiogenic switch (14, 23, 24). Despite intense research
effort, evidence that astrocytic neovascularization plays an
independent, causal role in tumor growth and malignant
transformation remains to be established.

3.2. Mechanisms of Tumor
Neovascularization

Vascularization of solid tumors has long been
accepted to occur through the sprouting of new capillaries
from a preexisting host vasculature in a process termed

Astrocytic

3106

tumor angiogenesis (14). Sprouting is a complex process
that involves proteolysis of the extracellular matrix to
create a path for subsequent passage of proliferating and
migrating endothelial cells. Metalloprotease-2 (MMP-2,
gelatinase A) and metalloprotease-9 (MMP-9, gelatinase B)
are expressed in normal brain as well as in glioblastoma
tumors (25, 26). Vascular endothelial growth factor
(VEGF-A), a major angiogenic cytokine expressed in
astrocytic tumors, has been shown to upregulate expression
of matrix metalloproteases and plasminogen activators (27-
29). Sprouting endothelial cells that have proliferated and
migrated from host vessels then undergo morphogenic
changes in which a new capillary lumen and new basement
membrane are formed (30). While sprouting accounts for
the increased vessel density in Grade II and III astrocytic
tumors, mechanisms involving complex remodeling of the
vasculature engender the more striking morphological
changes observed in grade IV glioblastoma tumors (Stiver -
unpublished data).

Recent studies suggest that circulating
endothelial precursor cells (EPCs) may also contribute to
the tumor vasculature in a de novo, vasculogenic
mechanism (31-33). Following intravenous injection of
EPCs into mice harboring C6 glioma implants,
approximately 5% of the precursor cells were observed to
incorporate into the endothelium of the tumor vasculature
(32). E-and P-selectin played important roles in the homing
of EPCs to the tumor endothelium (32). Following
adhesion, EPCs were reported to extravasate into the tumor
interstitium and to subsequently form endothelial clusters
and neoangiogenic sprouts (32). In a similarly designed
study, the contribution of EPCs to the tumor vasculature
was less profound. Using Rosa 26-labeled bone marrow
transplants and GL261 glioma cell tumors, only 0. 6% of
tumor vessels co-expressed the bone marrow marker lacZ
and the endothelial marker CD-31 (33). In this study the
majority of lacZ positive cells within the tumor vessels and
stroma were identified as microglia/macrophages. EPCs are
a current topic of intense research investigation and future
studies will further delineate their contributions to the
tumor neovasculature.

3.3. Characteristics of astrocytic tumor vessels

Two patterns of astrocytic tumor angiogenesis
have been described (12, 34). Infiltrative low-grade and
anaplastic astrocytomas manifest a “classic” pattern of
normal-appearing, delicate capillary sprouts, which are
uniformly distributed at increased density compared to
normal brain (35). By contrast, there is significant
heterogeneity in the microvasculature of glioblastoma
multiforme tumors. In addition to the classic microvascular
sprouting pattern, glioblastoma tumors also exhibit vascular
clusters, garlands, and bizarre glomeruloid proliferative
structures (Figure 1) (34, 35). Glomeruloid structures are
capillary tufts that resemble renal glomeruli and are
comprised of small vascular channels lined by a mixture of
hyperplastic endothelial cells and pericytes (36-39). Mitotic
figures, positive bromodeoxyuridine (BrdU) incorporation,
and *H-thymidine labeling demonstrate a high proliferative
index within glomeruloid bodies (40, 41). Collectively,
vascular clusters, garlands, and glomeruloid structures are
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Figure 1. Angiogenic patterns in human glioblastoma multiforme tumors. A) Small delicate vessels (arrows) characterize the
vasculature of normal human cortex. B) Prominent vessels in brain parenchyma juxtaposed to a glioblastoma tumor give the
appearance of sprouting angiogenesis at the invading tumor front. C) An angiogenic sprouting pattern is further evidenced as an
increased density of small vessels within a field of pleomorphic malignant cells. D) Endothelial proliferation, manifested as a
garland of vessels with hyperplastic endothelial cells (arrows), is a diagnostic criterion for grade IV glioblastoma tumors. E)
Glomeruloid structures are a bizarre form of endothelial proliferation that comprise capillary tufts (arrows) dispersed amidst a
proliferation of endothelial cells and pericytes. F) Invasive tumor cells (arrows) of glioblastoma tumors show a predilection for
perivascular cuffing. Hematoxylin and eosin stained paraffin sections. Scale bars: 50 um.

referred to as vascular endothelial proliferation and levels of thrombomodulin and anti-thrombin III (44, 45),
represent a diagnostic criterion for grade IV glioblastoma induction of a,B; integrin (46), and a different profile of
multiforme tumors (3). adhesion molecules (47, 48). The neoangiogenic vessels of
glioblastoma tumors are fragile and prone to spontaneous

Tumor vessels are structurally and functionally hemorrhage (49). Pericytes, supporting cells of normal

distinct from normal vessels (42). Co-culture of U87 capillaries, are characteristically abnormal with reduced
astrocytoma cells with human umbilical vein endothelial coverage in tumor vascular beds, and the resultant lack of
cells (Huvecs) has been shown to induce proliferative, vessel maturation may be an etiologic factor in astrocytic
migratory, and morphological changes in endothelial cells tumor hemorrhage (50-53). Furthermore, extracellular
that recapitulate many facets of the tumor endothelial components of the vessel matrix are altered and notably,
phenotype and simulate the angiogenic switch (43). In the glycoprotein tenascin, rarely seen in the normal brain
glioblastoma tumor vessels, endothelial cells exhibit altered vasculature, is found around malignant astrocytoma tumor
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vessels (54). Tenascin expression increases with increasing
grade and correlates inversely with patient survival (54,
55).

The astrocytic tumor vasculature is not only
morphologically aberrant but also functionally abnormal.
The blood brain barrier is incompetent and leads to
significant morbidity from tumor edema (for reviews see
56, 57). Loss of cerebral autoregulation contributes to
hyperperfusion, as evidenced in positron emission
tomography (PET) and magnetic resonance imaging (MRI)
studies, and may play a role in tumor hemorrhage, edema
formation, and local brain ischemia (58-60). Moreover,
consideration should also be given to the functional
outcome of the tumor neovascularity in terms of blood
flow, oxygenation, and the degree to which it meets the
metabolic demands of the tumor (61, 62). Indeed the
paradoxical association of glomeruloid structures and
microvascular proliferation juxtaposed to areas of necrosis
may suggest that this profuse vascular response does not
contribute to nutritive sustenance of the tumor (34).

4. ANGIOGENIC GROWTH FACTORS AND
ASTROCYTIC TUMOR GROWTH

Numerous factors elaborated directly or
indirectly by tumor cells play a role in tumor angiogenesis.
Basic fibroblast growth factor (FGF), vascular endothelial
growth factor (VEGF-A), and platelet-derived growth
factor (PDGF) are noteworthy for their significant role in
astrocytoma vascularization. In addition, further studies
have recently explored the contributions of angiopoietin 1
and angiopoietin 2 (Angl, Ang2), neuropilin, hepatocyte
growth factor/scatter factor (HGF), and a small group of
endogenous anti-angiogenic factors.

4.1. Basic Fibroblast Growth Factor (FGF)

In in vitro angiogenesis assays, basic FGF is an
essential and highly potent inducer of capillary endothelial
tube formation (63, 64). Immunostaining of basic FGF
expression in human astrocytomas has been reported to
correlate with histological tumor grade and vessel density
as well as with angiographic assessments of vascularity
(65-67). However, basic FGF can be bound and stored in
the extracellular matrix, and studies employing
methodologies to extract basic FGF from astrocytoma
tumor tissue, have reported no difference in expression
levels between low- and high-grade lesions (64). In view of
this finding, it has been suggested that basic FGF alone is
insufficient to induce astrocytoma angiogenesis, but rather
that it acts synergistically with VEGF-A and hepatocyte
growth factor/scatter factor (HGF) to evoke robust
neovascularization (64, 68). In addition, changes in FGF
receptor expression have been suggested to play a role in
malignant progression (69-71). However, in overall
comparison to vascular endothelial growth factor (VEGF-
A), basic FGF is a much less powerful regulator of
astrocytoma angiogenesis.

4.2. Vascular Endothelial Growth Factor (VEGF-A)
VEGF-A is the chief member of the VEGF
family of growth factors, which also comprises VEGF-B,
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C, D, E and placental growth factor (PIGF). VEGF-A
mRNA is upregulated in low-grade astrocytomas, and in
glioblastoma tumors it is over-expressed 50-fold compared
to normal brain (72, 73). Alternative splicing of the VEGF-
A gene yields isoforms of 121, 145, 165, 189, and 206
amino acids (74). The VEGF-A'! isoform is freely
diffusible, whereas VEGF-A'® remains bound to the cells
that secrete it (75). The 165 isoform predominates in
astrocytic tumors and is partly diffusible and partly bound
to the cell surface and extracellular matrix (75, 76). In
addition, most glioblastoma tumors strongly express
VEGEF-D, an X-linked angiogenic factor regulated by the
nuclear oncogene, c-fos (77, 78). PIGF mRNA has also
been identified at low levels in astrocytic brain tumors (79).
While it has been suggested that PIGF may act to potentiate
VEGF-A, the role of PIGF in astrocytoma growth and
angiogenesis has not been explored (79).

VEGF-A is a key mediator of neovascularization
in astrocytoma tumors (80). Multiple studies have shown a
positive correlation between VEGF-A mRNA levels and
microvessel density in astrocytomas (64, 73, 76, 81-83).
VEGF-A mRNA is produced by the tumor cells, but the
largest amount of VEGF-A protein is found on the
vasculature (73, 81, 82), presumably in association with its
two endothelial specific receptor tyrosine kinases VEGFR-
1 (Flt-1; fms-like tyrosine kinase) and VEGFR-2
(KDR/FIk-1; kinase insert domain containing receptor or
KDR in humans and fetal liver kinase-1 or Flk-1 in rodents)
(84, 85). VEGFR-1 and VEGFR-2 are upregulated in
astrocytic tumor vessels (73, 81, 86, 87), but in both low-
and high-grade astrocytomas, only VEGFR-2 levels have
been found to correlate with microvessel density (88).

VEGF-A mRNA is strongly expressed in the
palisading tumor cells lining necrotic zones, evidence that
hypoxia drives VEGF-A expression in glioblastoma tumors
(72, 73, 81). Tumor growth, that exceeds the metabolic
supply afforded by the tumor’s vasculature, likely
engenders these zones of hypoxia. Hypoxic transcriptional
regulation of VEGF-A is mediated by hypoxia-inducible
factor (HIF-1a), which binds to HIF-response elements in
the VEGF-A promotor (89). Under hypoxic conditions,
HIF-1a does not undergo oxidative degradation, leading to
upregulation of VEGF-A transcription as well as increased
VEGF-A mRNA stabilization (72, 89-92). However, high
levels of VEGF-A expression can also be found at the
tumor periphery, remote from zones of central necrosis and
hypoxia (93). Furthermore, hypoxia is not a characteristic
feature of low-grade astrocytomas, which also upregulate
VEGF-A (94). Together, these findings suggest that
additional factors and mechanisms may contribute to the
induction of VEGF-A expression in astrocytic tumors.

Numerous oncogenes and tumor suppressor
genes, including Src, (95, 96), Ras (97), p53 (98), and von
Hippel Lindau (99) have been shown to play a role in the
regulation of VEGF-A in astrocytoma tumors. In addition,
the mechanisms by which the PTEN tumor suppressor gene
controls angiogenesis and astrocytoma growth are of
particular relevance. Mutations in the PTEN tumor
suppressor gene on the long arm of chromosome 10 are
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found in approximately 20-40% of glioblastoma tumors,
more frequently in primary as compared to secondary
lesions (4, 100-105). High levels of PTEN in glioblastoma
tumors have been shown to correlate with a better patient
prognosis (106). The tumor suppressor functions of PTEN
are closely linked to the PI3Kinase/Akt signaling pathway,
which plays a critical role in regulating cell growth,
survival, and migration, as well as angiogenesis (107-109).
PTEN encodes a lipid phosphatase (phosphatidylinositol-
3,4,5trisphosphate phosphatase) that acts to negatively
regulate PI3Kinase and thereby inhibits Pi3Kinase
activation of VEGF-A and the oncoprotein AKT (107, 108,
110-112). Astrocytoma cell cultures treated with PTEN
have been shown to exhibit a marked decrease in VEGF-A
protein expression at the transcriptional level (110).
Further studies have demonstrated PTEN's significant role
in inhibiting angiogenesis, even in the face of additional
pro-angiogenic factors such as p53 mutations and
epidermal growth factor receptor (EGFR) overexpression
(113). This suggests that loss of PTEN function is a potent
contributor to the angiogenic switch. Additionally, PTEN
mutations lead to increased activation of AKT, which has
been shown to induce malignant transformation of
anaplastic astrocytomas to glioblastomas (114-118).

4.3. Angiopoietins and Tie Receptors

The angiopoietins are a small family of proteins
that exert their effects in the later phases of vessel
development, acting to remodel and sculpt the mature
vasculature. Angl appears to mediate vessel maintenance
by stabilization of contacts between endothelial cells and
perivascular pericytes and smooth muscle cells (119-121).
In angiogenesis models, Angl has also been shown to
inhibit vascular permeability (122, 123). By contrast, Ang2
reportedly destabilizes vessels and acts to sensitize
endothelial cells to angiogenic stimulation (20, 124). Both
Angl and Ang2 bind to the Tie2 receptor; but whereas
Angl induces receptor phosphorylation, Ang2 acts to block
Angl activation of Tie2 (124). Angl and Ang2, as well as
Tie2 receptor, are expressed in malignant astrocytomas
(125-130). Angl is expressed primarily by tumor cells
(125, 126, 130), while Ang2 is localized to small tumor
vessels (125, 127, 130). Levels of Angl, Ang2, and Tie2
expression have been shown to correlate with tumor grade
(128, 130).

The functional importance of the angiopoietins in
tumor biology is an ongoing area of active interest. Murine
implantation of US87 astrocytoma cells engineered to
overexpress Angl has been shown to engender a modest
increase in both microvascular density and tumor growth
(128). The tumor vessels themselves were structurally
normal. In contrast, tumor growth was inhibited following
inoculation with U373 cells overexpressing Angl, and
differential levels of Angl expression may have been
responsible for the variable results between the two cell
lines (128).

In related studies, overexpression of Ang2 in U87
and U373 astrocytoma lines had no affect on tumor growth
but promoted a dilated and abnormal vascular architecture
(128, 129). Orthotopic implants of U87 cells
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overexpressing Ang2 have also been observed to promote
angiogenesis at the invading tumor front (131). Concordant
with this, evidence suggests that Ang2 plays an initiating
role in the angiogenic switch and astrocytoma
neovascularization. Ang2 is not expressed in low-grade
astrocytomas, but is expressed at high levels in anaplastic
astrocytomas and glioblastomas (126, 127, 130).
Furthermore, Ang2 demarcates apoptotic endothelial cells
in co-opted vessels undergoing regression, precedes the
formation of necrotic foci, and heralds tumor cell
associated expression of VEGF-A, all of which suggest that
Ang? plays a pivotal role in the angiogenic switch (20, 130,
132). In the presence of VEGF-A, Ang2 may further
facilitate neoangiogenesis by loosening periendothelial
contacts and making the vessels more susceptible to the
angiogenic effects of VEGF-A (19, 20). The importance of
the angiopoietin/Tie 2 signaling cascade as an anti-
angiogenesis target has been validated in recent studies
demonstrating that blockade of Tie2 receptor activity in
glioblastoma  xenografts effectively inhibits tumor
vascularity and growth (129).

4.4. Neuropilin

Neuropilin is a transmembrane co-receptor for
VEGF-A'® activation of VEGFR-2 that has been shown in
other tumor types to promote angiogenesis as well as tumor
cell migration and survival (133-136). Acting in association
with plexins, neuropilin also has an important role in
semaphorin signaling (reviewed in 137). Neuropilins 1 and
2 have been demonstrated by RT-PCR and immunoblot
analysis in a number of human astrocytoma lines, with
expression levels exceeding those in human breast and
colon cancer (138, 139). In further studies, expression of
neuropilins 1 and 2 co-localized with F-actin to cytoskeletal
adhesion sites in U138 malignant astrocytoma cells (138);
however, the biological importance of neuropilins in
astrocytoma tumors remains largely unexplored.

4.5. Platelet-Derived Growth Factor (PDGF)

Weakly angiogenic, platelet-derived growth
family members A and B form homo- and heterodimers
that signal transduce through PDGF-Ra and -Rf receptors
(140). PDGF-B plays an important role in angiogenesis,
enabling vessel maturation through its action as a strong
mitogen and chemoattractant factor for the recruitment of
pericytes and smooth muscle cells (141). PDGF is thought
to be an early marker of tumorigenesis (142), and
PDGF/PDGF-R expression in low-grade astrocytomas is
associated with loss of p53 tumor suppressor (143, 144).
PDGF-A and PDGF-B are expressed in low-grade,
anaplastic and glioblastoma tumors with expression levels
increasing with tumor grade (142, 145, 146). In malignant
astrocytomas, the A isoform predominates over the B
isoform and is expressed at levels up to 100-fold that of
normal brain (146, 147). PDGF-A and PDGF-Ra
expression localize to the tumor cells themselves
suggesting a role for PDGF-A in autocrine stimulation of
astrocytoma tumor growth (142). In contrast, PDGF-B and
PDGF-Rp are expressed in tumor endothelial cells and
show a predilection for glomeruloid vascular structures
(142, 148, 149).
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PDGF-B has been shown to upregulate VEGF-A
expression in both astrocytoma cells and endothelial cells
in vitro (150, 151). Moreover, inoculation of mice with
U87 astrocytoma cells overexpressing PDGF-B has been
found to upregulate VEGF-A expression in the resultant
tumors, leading to increased tumor angiogenesis and larger
tumors (50). Of further interest, these PDGF-B
overexpressing cells stimulated increased recruitment of
pericytes to the developing tumor neovasculature (50).
PDGF-B is present in low-grade astrocytomas, and the
observation that it can upregulate VEGF-A expression has
led to the hypothesis that PDGF-B plays an important role
in regulating the angiogenic switch (50, 152).

4.6. Hepatocyte Growth Factor/Scatter Factor (HGF)

Hepatocyte growth factor (HGF) (originally
termed scatter factor) functions as a potent angiogenic
factor that signals through MET, a tyrosine kinase receptor
encoded by the proto-oncogene c-met (153). In early
studies, malignant astrocytoma cyst fluid was found to
contain higher concentrations of HGF as compared to fluid
from non-tumorous cysts (154). Further studies have gone
on to show that HGF exhibits strong chemotactic action on
numerous astrocytoma cell lines (68, 154). HGF is also
mitogenic for astrocytoma cells, but this action is less
robust that its effect on motility and invasion (68).
Experimental tumors grown from astrocytoma cell lines
transfected with HGF were observed to be larger and to
exhibit higher vessel densities (68, 155). In human
specimens, expression levels of HGF and Met receptor
have been shown to correlate with tumor grade (64, 68,
156, 157). Compared to low-grade tumors, anaplastic
astrocytomas and glioblastomas together expressed 7-fold
higher levels of HGF and 11-fold higher concentrations of
VEGF-A (64, 68). By regression analysis both HGF and
VEGF-A functioned as independent predictors of tumor
microvessel density (68).

4.7. Endogenous Anti-angiogenic Factors

The angiogenic switch from a quiescent
vasculature to robust tumor neovascularization results from
perturbation of the balance between pro-angiogenic and
anti-angiogenic factors (23, 24, 158). Endogenous anti-
angiogenic proteins playing important roles in the
inhibition of astrocytoma angiogenesis and tumor growth
include endostatin, thrombospondin (TSP), and soluble
VEGFR-1 (sVEGFR-1).

Endostatin is a fragment of collagen XVIII, a
constituent of vascular endothelial basement membranes.
Endostatin is expressed in astrocytomas, and levels have
been shown to correlate with the degree of malignancy
(159, 160). Moreover, antibodies to endostatin have been
detected in the blood of a glioblastoma tumor patient (161).
In several animal models, endostatin treatment substantially
reduced tumor burden through reductions in tumor
neovessel density as well as by inhibition of tumor
migration and invasion (162-164).

Thrombospondin (TSP) is a tumor suppressor
gene found on chromosome 10 that has important anti-
angiogenic properties. PTEN and the transcription factor
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p53 regulate TSP expression and may thereby influence
angiogenesis in astrocytomas (165). Normal brain, low-
grade astrocytomas, and anaplastic astrocytomas generally
retain chromosome 10 and stain strongly for TSP (166).
Loss of chromosome 10 is largely restricted to glioblastoma
lesions (167), and in a small series, 12 of 13 glioblastomas
were shown to lack TSP expression (166). One case
followed serially demonstrated conversion to negative TSP
immunostaining coincident with malignant progression
(166). In these studies, normal chromosome 10 was re-
introduced back into several glioblastoma cell lines. Tumor
growth from chromosome 10-reverted cells was inhibited
and culture media failed to stimulate endothelial cell
migration or rat corneal neovascularization (166). TSP
neutralizing antibodies restored the potent angiogenic
properties of the parent cells. Together these studies
implicate TSP as an important inhibitor of the angiogenic
switch in astrocytomas.

sVEGFR-1, a soluble, secreted form of VEGFR-1
(F1t-1) produced by alternative splicing, has recently been
found to function as an endogenous anti-angiogenic protein
in astrocytic tumors (168). sVEGFR-1 has a high binding
affinity for VEGF-A and can act in a dominant negative
fashion to inhibit VEGFR-2 signaling (169, 170). Together
these data indicate that sSVEGFR-1 functions as a negative
regulator of VEGF-A bioavailability. In animal models,
adenoviral expression of sVEGFR-1 has indeed been
demonstrated to inhibit angiogenesis and tumor growth
(171, 172). Interestingly, VEGF-A has been shown to
upregulate sVEGFR-1 expression (168). Levels of
SVEGFR-1 were also found to correlate with astrocytic
tumor grade and patient survival (168). Specifically,
sVEGFR-1 was found in 40 of 46 glioblastomas (87%) and
6 of 14 (43%) anaplastic astrocytomas. sVEGFR-1
expression was 12-fold higher in glioblastomas as
compared to anaplastic astrocytomas (p <0. 001).
However, at the same time the sVEGFR-1 to VEGF-A ratio
decreased due to substantially greater increases in VEGF-A
concentrations. None-the-less, in a small cohort of newly
diagnosed glioblastoma patients, levels of sVEGFR-1
expression correlated with patient survival (168).

5. ANGIOGENESIS IN ASTROCYTIC TUMOR

PROGRESSION AND MALIGNANT
TRANSFORMATION
Anti-angiogenic strategies for treatment of

astrocytic tumors are predicated on the theory that
angiogenesis plays a causal role in tumor growth and
malignant progression. Evidence that tumor growth is
angiogenesis-dependent is comparatively well established.
In astrocytoma models in rodents, neutralizing antibodies
against VEGF-A (173, 174) as well as VEGFR-2 (175)
have been shown to reduce tumor vascularity and inhibit
tumor growth. In more recent studies, treatment of U87
astrocytoma implants with the PI3kinase inhibitor,
LY294002, caused a substantial reduction in tumor burden
through inhibition of tumor angiogenesis (165).
Importantly, VEGF-A has been shown to have negligible
effects on proliferation and signal transduction in
astrocytoma cells, despite the presence of low levels of
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both VEGFR-1 and VEGFR-2 (176). However, similar
control studies are needed for all factors contributing to
astrocytoma angiogenesis in order to separate out the
importance of angiogenesis to tumor growth. In addition,
studies should control for the fact that angiogenic factors
may also act to promote extracellular matrix degradation
and tumor invasion thereby facilitating tumor growth,
independent of angiogenesis (27, 29). Thus, rigorous
definition of angiogenesis as an independent determinant of
tumor growth is a challenging experimental endeavor.

Malignant progression from a low- to high-grade
astrocytoma is accompanied by florid tumor angiogenesis.
Few studies, however, have examined whether the
angiogenic switch is a causal factor in malignant
transformation. In early studies, C6 rat glioma cells
transfected with sense and antisense murine VEGF-A'®*
yielded tumors that modeled high- and low-grade lesions
respectively (177). However, this correlation does not
prove causation, as findings of necrosis, hemorrhage, and
edema denoting the high-grade lesions are not diagnostic of
malignant transformation and may have been caused by
increased tumor growth and the co-morbid effects of
VEGF-A expression. In more recent studies, Sonoda et al.
(178) demonstrated that tumors resulting from implantation
of H-ras cells engineered to express VEGF-A'?' and
VEGF-A'® were more vascularized than anaplastic
astrocytomas arising from control H-ras cells. The VEGF-
A 121 and 165 overexpressing tumors did not, however,
show evidence of malignant transformation to
glioblastomas, evidencing that neither VEGF-A nor
increased angiogenesis engendered tumor progression in
this model.

In clinical studies, establishing causation between
angiogenesis and tumor progression is even more complex
and difficult. Many studies have shown a correlation
between microvascular density and either tumor grade or
patient survival (94, 179-182). However, interpretation of
these data is complicated by the fact that more aggressive
tumor cells, capable of stimulating more robust
angiogenesis, may also elaborate additional factors that
promote malignant transformation. Moreover, increased
morbidity attributable to vessel permeability, hyperemia
with associated ischemic steal, and capillary fragility
leading to hemorrhage may confound the interpretation of
survival data.

One approach in clinical studies has been to look
at a select group of low-grade lesions and to test whether
microvessel density correlates with an indicator of
malignant transformation, such as time to recurrence. In
such studies, expression levels of VEGF-A and VEGFR-2
have been statistically associated with earlier times to
recurrence (p=0.0018 and 0.024 respectively) (88).
Furthermore, VEGF-A and microvascular density have
been shown to be prognostic measures of survival in low-
grade patients (180). Using a different approach, however,
Kern et al. (183) found no relationship between the MIB-1
labeling index of endothelial cells in glioblastoma tumors
and tumor progression, as determined by time to tumor
recurrence. Similarly, Birner et al. (34) compared the two
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histological patterns of angiogenesis in glioblastoma
multiforme tumors with patient prognosis. The presence of
endothelial proliferation comprising garlands, clusters, and
glomeruloid structures was associated with a poorer
survival than that observed for tumors exhibiting a
“classic” microvascular-sprouting pattern. MIB-1 labeling
was similar in the two patterns, but tumor cell apoptosis
was significantly higher in tumors with a classic sprouting
pattern, accounting for their longer survival times. The
authors hypothesized that tumors with endothelial
hyperproliferation outpace their vascular supply such that
growth and progression become independent of
vascularization. This led them to further speculate that
glioblastomas expressing a proliferative vascular pattern
may not be responsive to anti-angiogenic therapy.

6. THE INVASIVE NATURE OF ASTROCYTOMAS
FROM AN ANGIOGENIC PERSPECTIVE

Cure of astrocytic brain tumors is thwarted by
their diffuse and widespread invasive nature. Astrocytic
tumor cells disseminate along distinct anatomical pathways
within the central nervous system, following components of
the extracellular matrix that foster cell adhesion and
migration (184, 185). Experimentally, C6 rat glioma cells
injected into caudate-putamen demonstrate a high affinity
for endothelial basement membranes and a predisposition
to grow around blood vessels (186, 187). Furthermore,
histopathological sections from patient specimens evidence
that astrocytic tumor cells have a predilection to form
perivascular cuffs (188). Despite this perivascular
clustering, astrocytoma cells do not transgress the wall of
cerebral blood vessels (189). This finding accounts for the
characteristic lack of hematogenous spread of astrocytic
brain tumors, and research to define the molecular elements
responsible for the restrictive nature of cerebral
microvessels is of great interest (190).

The interactions between astrocytoma cells and
specific extracellular matrix components of the brain
microenvironment are complex (191, 192). Brain
parenchymal matrix is largely comprised of hyaluronic acid
and various glycosaminoglycans; the more common
extracellular components laminin, collagen, and fibronectin
are restricted to the basement membranes of cerebral blood
vessels (193). In in vitro models, laminin, fibronectin, and
collagen type IV have been shown to foster astrocytoma
cell migration and invasion (194-199). Interactions between
integrin receptors on astrocytoma cells and these substrates
are instrumental in promoting tumor cell dissemination
(194, 196, 198). Furthermore, the matrix glycoprotein
tenascin is expressed around vessels at the invasive front of
malignant astrocytomas and may act through a2f1-integrin
receptors to promote tumor cell migration (200, 201).
Recent evidence suggests that many of the extracellular
components that act to foster tumor dissemination are, in
fact, elaborated by the host brain tissue in response to the
invading tumor cells (201, 202).

Discovery of new laminin isoforms has particular
significance to astrocytoma cell invasion. Normal brain
microvascular endothelial cells express small amounts of
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the laminin-9 isoform (a4p2yl), while in human
glioblastoma tumors, capillary basement membranes
claborate laminin-8, an isoform comprising a4, B1, and yl1
chains (203). Interestingly, co-culture of astrocytoma cells
with brain endothelial cells stimulated the endothelial cells
to express the laminin-8 PB1 chain (203). Furthermore,
antisense oligos directed against the a4 and 1 chains of
laminin 8 significantly inhibited astrocytoma cell invasion
in in vitro invasion assays (203). In related clinical studies,
expression of laminin-8 has been found to be predictive of
astrocytoma recurrence (204).

Angiogenic cytokines elaborated by astrocytic
tumor cells also play a role in tumor cell migration and
invasion. A detailed analysis of the distribution of VEGF-A
in human astrocytoma biopsy specimens demonstrated high
VEGF-A expression in tumor cells that had infiltrated the
surrounding brain (93). In addition to upregulating
metalloproteases that act to degrade the extracellular
matrix, VEGF-A has also been shown to induce focal
adhesion kinase (FAK), a mediator of early integrin
functioning (205, 206). Human astrocytoma cells and
tumor tissue exhibit increased levels of FAK expression
(207); and glendamycin, a small molecule antagonist of
FAK has been shown to inhibit astrocytoma cell migration
(208).

Other angiogenic factors, including most notably
Ang?2 and HGF, have also been shown to promote astrocytoma
cell invasion. Overexpression of Ang2 in U87 astrocytoma cell
implants led to aggressive tumor cell invasion into adjacent
brain  parenchyma through activation of  matrix
metalloprotease-2 (131). Ang2 and MMP-2 were co-expressed
at the invading tumor front. The functional significance of
MMP-2 was evidenced by in vitro invasion assays showing
that MMP-2 inhibitors blocked migration of U87 cells that
overexpressed Ang2 (131). Boyden chamber migration studies
have also demonstrated that HGF is chemotactic for many
astrocytoma cell lines (154, 157, 209). Basic FGF, PDGF, and
VEGF-A had markedly weaker efficacy in these assays,
targeting HGF as a potent motility factor in astrocytoma
invasion (209).

In early reports, Wesseling et al. (12) raised the
possibility that anti-angiogenic therapy may not be efficacious
in treating astrocytomas as their highly infiltrative nature
allows them to derive much of their blood supply from the host
brain. Indeed, subsequent studies have shown that, while
inhibition of astrocytoma angiogenesis can impair tumor
growth, invasion along the host vasculature can actually be
enhanced by these treatments (174, 175, 210).

7. ANGIOGENESIS AND ANGIOGENIC FACTORS

IN ASTROCYTIC TUMOR EDEMA AND
HEMORRHAGE
Edema, the result of plasma extravasation

through hyperpermeable vessels, forms around brain
tumors at a rate of 14-78 ml per day (211). In the case of
astrocytic tumors, permeability occurs through breakdown
of the blood brain barrier of normal cerebral vessels
together with leakage across abnormal angiogenic vessels
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of the tumor vasculature. VEGF-A is generally considered to
be the key cytokine responsible for vascular permeability and
edema formation in malignant astrocytic tumors. VEGF-A
potently causes vascular permeability through the induction of
caveolae/vesicular vacuolar organelles (VVOs), fenestrations,
and transcellular gaps in endothelial cells (for reviews see 212,
213). In astrocytic tumors, VEGF-A mRNA levels have been
shown to correlate with capillary permeability and vascular
volume (82). However, attempts to use MRI imaging to
compare the severity of tumor edema with levels of VEGF-A
expression have not yielded uniformly consistent results (214,
2195).

Derangements in several components of the blood
brain barrier likely contribute to edema formation in malignant
astrocytomas. Perivascular changes include the presence of
astrocytic tumor cells that may not recapitulate the barrier
function of astrocyte foot processes, and the less extensive
pericyte coverage of tumor vessels may further potentiate
tumor vessel hyperpermeability (52, 216). In glioblastoma
multiforme tumors, electron microscopy studies have
documented structural changes in the tumor endothelium
including the presence of open inter-endothelial tight junctions,
increased numbers of pinocytic vesicles/caveolae, and the
induction of fenestrac and transendothelial gaps (217-221).
Data demonstrating the open status of tight junctions should be
interpreted cautiously, as many glioblastoma specimens derive
from patients treated with mannitol, a hyperosmotic agent that
reportedly opens inter-endothelial passages (222). Despite this,
evidence from several studies does suggest that the integrity of
endothelial tight junctions may be compromised and a source
of vascular hyperpermeability in malignant astrocytomas.
Transmembrane and associated proteins that bind adjacent
endothelial cells maintain tight junctions. In astrocytoma
tumors, the tight junction proteins occludin, claudins 1,3, and
5, as well as zonnula occludens-associated protein-1 (ZO-1)
are downregulated (223-226). Expression levels of these tight
junction proteins have been shown to correlate inversely with
malignancy  (223-226).  Furthermore, ~VEGF-A-induced
phosphorylation of occludin and ZO-1 has been shown to
downregulate these tight junction proteins leading to an
increase in endothelial permeability (227).

While the above results implicate abnormalities in
tight inter-endothelial junctions, related studies point to the
importance of caveolae and intra-endothelial vesicular
transport in astrocytoma edema. VEGF-A has recently been
shown to downregulate caveolin-1, a principle protein of
caveolae and vesicular organelles (228). Caveolin-1 expression
in endothelial cells isolated from glioblastoma tumors was
decreased 75% compared to normal brain, with a 2-fold
increase in phosphorylated caveolin-1 (228). In endothelial cell
culture, VEGF-A has been shown to induce caveolae
formation leading to increased permeability (229).
Furthermore, VEGFR-2 has been found to localize to caveolae
and to associate with caveolin-1 (230). Together these data
identify caveolin-1 and VEGFR-2 as possible molecular
targets for the treatment of vascular hyperpermeability and
astrocytoma edema (228, 230).

Hemorrhage is a characteristic source of
considerable morbidity in glioblastoma tumors. Tumor
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vessels are fragile and their endothelium exhibits altered
expression of pro-thrombotic and pro-coagulant proteins
(44). Elaboration of high levels of the VEGF-A 165
isoform appears to be a causal factor in malignant tumor
hemorrhage. In a mouse model, U87 astrocytoma cells
expressing  VEGF-A'?' and VEGF-A'® induced rapid
growth and breakdown of the vasculature leading to
cerebral hemorrhage within 5 days (231). Cells expressing
VEGF-A'"® demonstrated a similar degree of vascularity,
but the tumors did not undergo hemorrhagic conversion.
Further studies demonstrated the importance of pericyte
coverage in preventing tumor hemorrhage. Simultaneous
overexpression of PDGF-B and VEGF-A'® in U87
astrocytoma tumors led to a 3.4 fold increase in pericyte
coverage of the tumor vessels and completely prevented
intracranial hemorrhage (50). These studies elegantly
demonstrated that PDGF-B acts to recruit pericytes to the
developing tumor neovasculature, facilitating their
maturation and stabilization against hemorrhage (50).

8. CONCLUSIONS AND PERSPECTIVES

New research has advanced our understanding of
specific genes that control angiogenic factors and promote
the angiogenic switch in astrocytoma tumors. Mechanisms
by which the more established angiogenic factors, vascular
endothelial growth factor (VEGF-A), basic fibroblast
growth factor (FGF), and platelet-derived growth factor
(PDGF), regulate astrocytoma angiogenesis has been the
focus of many investigations. New studies are also
beginning to discover important roles for the angiopoietins,
Tie and neuropilin receptors, as well as for a less well
known but potent angiogenic factor, hepatocyte growth
factor/scatter factor (HGF). Despite this intensive effort, an
absolute link between angiogenesis and tumor growth and
malignant progression remains to be rigorously proven and
validated in clinical trial. In addition, preliminary findings
that anti-angiogenic therapy may promote increased tumor
invasion need to be carefully evaluated. Future studies
focused on the molecular mechanisms underlying the
structural and functional abnormalities of angiogenic
vessels will enable research efforts to alleviate tumor
edema and hemorrhage and to selectively target the tumor
neovasculature in treatment strategies.
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