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1. ABSTRACT

The development of whole systems approaches to
microbiology (e.g. genomics and proteomics) has
facilitated a global view of archaeal physiology.
Surprisingly, as archaea respond to environmental signals,
the majority of protein concentration changes that occur are
not reflected at the mRNA level. This incongruity
highlights the importance of post-transcription control
mechanisms in these organisms. One of the central players
in proteolysis is the proteasome, a multicatalytic energy-
dependent protease. Proteasomes serve both proteolytic and
non-proteolytic roles in protein quality control and in the
regulation of cell function. The proteolytic active sites of
these enzymes are housed within a central chamber of an
elaborate nanocompartment termed the 20S proteasome or
core particle. Axial gates, positioned at each end of this
particle, restrict the type of substrate that can access the
proteolytic active sites. Assortments of regulatory AAA
complexes are predicted to recognize/bind and unfold
substrate proteins, open the axial gates, and translocate
substrate into the 20S core particle.

2. INTRODUCTION

Proteasomes are energy-dependent proteases
found in all three domains of life: Bacteria, Archaea and
Eucarya (1). These enzymes maintain quality control by
degrading misfolded and denatured proteins in response to
cell stress and general protein turnover (2). Proteasomes
also play central roles in the regulation of many cellular
processes such as cell division, metabolism, and DNA

repair (3-5). A growing body of evidence reveals that
proteasomes are also intimately involved in controlling the
distribution, abundance, and activity of components of the
transcription machinery (6, 7). In addition, a functional link
between proteasomes and components of translation
initiation (eIF3, eucaryotic translation initiation factor 3)
have been identified (8). Non-proteolytic roles have also
been demonstrated for proteasomes in nucleotide excision
repair (9, 10), transcription elongation (11, 12), and cell
cycle control (13).

The development of whole systems approaches
(e.g. genomics, proteomics) to microbiology has provided
insight into the central role proteasomes are likely to play
in the physiology of archaea. This is highlighted by the
universal distribution of proteasome homologs in archaeal
genomes, including that of the recently discovered archaeal
parasite Nanoarcheum equitans, one of the smallest
genomes to date (table 1). Based on the apparent absence of
other cytosolic energy-dependent proteases, proteasomes
are predicted to be the central energy-dependent proteases
within the archaeal cell (figure 1). The catalytic core of the
proteasome (20S core particle) in combination with various
AAA regulatory proteins (e.g., Pan and VCP) is expected to
mediate the quality control and regulated turnover of most
cytosolic proteins. The 20S proteasome may also associate
with AAA proteins located in the cell membrane to aid the
archaeal-type Lon protease in the retrograde translocation
and degradation of membrane-associated proteins. The
central role proteasomes seem to play in the archaea
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Table 1. Distribution of 20S proteasome, Pan, and Cdc48 homlogs in archaea
Organism 20S α-type (COG0638) 20S β-type (COG0638) Pan (COG1222) VCP/Cdc48 (COG0464) Ref.
Euryarchaeota
Archaeoglobus fulgidus DSM 4304 AF0490a AF0481 AF1976 AF0477

AF1297
AF2098

161

Ferroplasma acidarmanusb* u.d.c Faci0876 u.d. Faci1393 GenBankd

Haloarcula marismortui* Contig88 _16562_15780
Contig77_6672_5936

Contig137_16344_17066
(Hma_Beta1)
Contig77_5936_5244
(Hma_Beta2)

Contig93_11146_12363
Contig169 _4249_3029

Contig48 _6899_5094
Contig113_11630_9513
Contig113_24357_22723
Contig144_5683_3908
Contig170_83583_81496

(http://zdna2.umbi.u
md.edu/)e

Halobacterium sp. NRC-1 VNG0166G VNG0880G VNG0510G
VNG2000G

VNG1462G
VNG1472G
VNG1654G
VNG1667G
VNG2062G
VNG6199G

162

Haloferax volcanii DS2* AAD53404
AAD53405

AAD53406 PanAf

PanB
RVO00407
RVO01890
RVO02587
RVO00584
RVO04022

38
(http://zdna2.umbi.u
md.edu/) (Reuter &
Maupin-Furlow, un-
published)

Methanocaldococcus jannaschii MJ0591 MJ1237 MJ1176 MJ1156 163
Methanopyrus kandleri AV19 MK0385 MK1228 MK0878 MK0486

MK0486
164

Methanosarcina acetivorans C2A MA1779 MA3873 MA4123
MA4268

MA1813
MA2066
MA3527
MA4064
MA4575

165

Methanosarcina barkeri* Meth1878 Meth3136 Meth3002
Meth2182

Meth1099
Meth2519
Meth0893

GenBank

Methanosarcina mazei Göe1 MM2620 MM0694 MM1006
MM0798

MM0248
MM0447
MM1256

166

Methanosarcina thermophila* PSMA_METTE PSMB_METTE u.d. u.d. 146
Methanothermobacter
thermoautotrophicus str. Delta H

MTH686 MTH1202 MTH728 MTH1639 167

Pyrococcus abysii PAB0417 PAB2199
PAB1867

PAB2233 PAB1478
PAB1789
PAB2086

168

Pyrococcus furiosus DSM 3638 PF1571 PF1404
PF0159

PF0115 PF1882
PF0963

169

Pyrococcus horikoshii OT3 PH1553 PH1402
PH0245

PH0201 PH0687
PH1278
PH1840

170

Thermococcus kodakaraensis* u.d. u.d. u.d. Pk-cdcA 171
Thermoplasma acidophilum Ta1288 Ta0612  g Ta0840

Ta1175
145, 172, 73

Thermoplasma volcanium TVN0304 TVN0663  TVN0382
TVN0947

174

Crenarchaeota
Aeropyrum pernix K1 APE1449 APE0521

APE0507(Alag)
APE2012 APE0960

APE1367
APE2474

175

Pyrobaculum aerophilum str. IM2 PAE2215 PAE0807
PAE3595 (Ala)

 PAB1478
PAB1789
PAB2086

176

Sulfolobus solfataricus P2 SSO0738 SSO0766
SSO0278 (Ala)

SSO0271 SSO0176
SSO0421
SSO0909
SSO2420
SSO2831

177

Sulfolobus tokodaii str. 7 ST0446 ST0477
ST0324 (Ala)

ST0330 ST0376
ST0209
ST2584

178

Sulfolobus acidocaldarius* DSM 639 u.d. u.d. AA073475 u.d. GenBank
Nanoarchaeota
Nanoarchaeum equitans Kin4-M NEK566 NEK221 NEK202 NEK516 179

a GenBank protein/nucleotide accession number, b Asterisks (*) indicates complete genome sequence not available, c u.d.,
undetermined, d sequence submitted directly to GenBank, e Open reading frames determined from H. marismortui and H. volcanii
unfinished genomes available at http://zdna2.umbi.umd.edu, f PanA and PanB sequences unpublished, g , no homolog identified
based on complete genome sequence

contrasts with that of bacteria, which encode multiple
energy-dependent proteases in the cytosol (e.g. Lon, Clp)
that provide redundant functions (14). However, even with
this redundancy, 20S proteasomes are critical to the
survival of some bacteria after exposure to stress (15).

Recent evidence highlights the importance of
post-transcriptional regulation in the archaea. Examination

of Halobacterium sp. NRC-1 at the global level reveals that
the majority of protein concentration changes that occur are
not reflected at the mRNA level (16). Hence, there appears
to be a significant degree of post-transcriptional control in
this haloarchaeon (and likely other archaea), which may be
mediated by proteases such as the proteasome. Elucidating
the role proteasomes play in this regulation as well as in
general protein turnover is expected to have far reaching
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Figure 1. The centrality of archaeal proteasomes in protein quality control and regulated protein turnover. The 20S core particle
and AAA+ (e.g., Pan and VCP) homologs are predicted to be central players in the quality control and post-transcriptional
regulation of cytosolic proteins. Proteasomes, in association with their regulatory particles, are expected to serve not only
proteolytic roles but also to mediate non-proteolytic processes such as protein remodeling. Proteasomes may also assist in the
hydrolysis of membrane-associated proteins. GenBank protein accession numbers are indicated for a select number of protease,
chaperone, and regulatory protein homologs based on genome sequence of Halobacterium sp. NRC-1 (162). Protease homologs
include: 20S proteasome (this review); TET, tetrahedral aminopeptidase (180); PfpI, P. furiosus protease I homolog (181); Lon,
archaeal-type Lon protease (182); HtpX, membrane metalloprotease with a cytosolic active site (183); HtrA (DegQ), serine
protease with twin-arginine motif (184). Chaperone and protease regulator homologs include: Pan, proteasome-activating
nucleotidase and VCP(Cdc48) (this review); prohibitin (HflX, HflC, HflK), (185); thermosome (Hsp60), prefoldin, DnaK
(Hsp70), DnaJ (Hsp40), GrpE, and Hsp20 (186).

rewards in understanding fundamental aspects of archaeal
cell physiology. In addition, controlling proteasome activity
will advance our ability to modify metabolic pathways and
express recombinant proteins at high levels in this domain.

3. 20S PROTEASOME STRUCTURE AND
ACTIVITY

The 20S proteasome or 20S core particle refers to
the multicatalytic protease component of proteasomes. This
complex is responsible for many facets of proteolysis
within the cell and is universal among archaea, eucaryotes,
and Gram-positive actinomycetes (1). Much is known
about the detailed structure of 20S proteasomes thanks to a
number of X-ray diffraction studies (17-20). In general,
20S proteasomes have a highly conserved barrel-like

structure formed by four stacked heptameric rings of
subunits from a family of related proteins, α and β (21).
The outer two rings are composed of α-type subunits and
the inner two rings are of β-type subunits (22). The
proteolytic active sites are located at the N-termini of
βsubunits and line an inner chamber, flanked by two
antechambers which are accessed through a central channel
(17, 23). Axial gates, positioned at each end of the barrel,
limit the ability of globular substrates to enter the central
channel (24-27).

3.1. 20S proteasome subunit and isoform complexity
Although the basic structure of 20S proteasomes

is conserved, modest differences in the complexity of
subunits exist among organisms. Most prokaryotic 20S
proteasomes are composed of one α-type and one β-type
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subunit; however, some contain 3 to 4 different subunits
(28, 29). In contrast, eukaryal 20S proteasomes are
characterized by 7 different α-type and 7 different β-type
subunits (30, 31). Comparative genomics predicts these β
subtypes differentiated earlier than did the α subtypes (32).

The number of 20S proteasome isoforms also
varies among organisms. Primitive eucaryotes (e.g. yeast,
Caenohabditis elegans) synthesize only one 20S
proteasome. In contrast, higher eucaryotes have constitutive
housekeeping and inducible ancillary 20S proteasomes. For
example, the immunoproteasome of vertebrates is induced
by IFN-γ (33), and a spermatogenesis-specific proteasome
has been identified in insects (34). Multiple proteasomes
are also common in plants where up to 23 different α- and
β-type genes have been identified (35), and mixtures of
proteasome isoforms have been purified (36). Recent
dissection of 20S proteasomes from human erythrocytes
reveals at least 32 different subunit types with many
subunits modified post-translational (37). Surprisingly, the
haloarchaeon Haloferax volcanii synthesizes at least two
different 20S proteasomes including: a constitutive
complex of only α1 and β subunits (38) and an ancillary
asymmetric complex of homooligomeric rings arranged in
an αββα2 configuration (29).

3.2. Mechanism of peptide bond hydrolysis
20S proteasomes belong to the amino-terminal

(Ntn) hydrolase family (39). A mechanism similar to serine
proteases is envisioned in which the N-terminal threonine
hydroxyl group of β subunits initiates hydrolysis by
attacking the carbonyl carbon of a peptide bond (40, 41).
This results in the formation of a tetrahedral intermediate
that collapses into an acyl-enzyme and releases the peptide
product generated downstream of the cleavage site.
Nucleophilic attack of this acyl-enzyme intermediate by
water yields free enzyme and release of the second peptide
product upstream of the cleavage site. In contrast to serine
proteases, however, 20S proteasomes require the additional
methyl group of threonine to support rapid rates of protein
breakdown (41, 42).

3.3. Mechanism of polypeptide chain hydrolysis
The mechanism of how 20S proteasomes degrade

polypeptide chains into short peptides is not fully
understood. Products range from 3 to 30 amino acids in
length and fit a log-normal distribution (43, 44). The
number of catalytic sites does not influence the average
length of product (45); however, regulatory components
that associate with and modify the axial gates do (44, 46).
Thus, the dimensions of the 20S proteasome axial gates are
likely to play a role in determining the size of products
released. The rate-limiting step is entry of substrate protein
into the 20S proteasome and/or translocation of this
substrate to the proteolytic active sites. This is based on the
observation that the rate of bond cleavage decreases with
increasing chain length of unfolded polypeptide (41).

An intrinsic feature of 20S proteasomes is the
processive degradation of proteins from free N- or C-
termini and may be due to a trapping of the substrate
protein inside the 20S cylinder (47, 48). Regulatory

components are not required for processive degradation but
appear to be necessary for the rates of degradation required
in the cell (45). Interestingly, 20S proteasomes degrade
some proteins by non-processive hydrolysis (49) and do not
require substrates to have free N- or C-termini (50). In fact,
some substrates (e.g., NF-κB p105, NF-κB p100) are
predicted to have disordered, internal loops that enter the
axial channel of 20S proteasomes resulting in substrate
processing and activation (50). This model is supported by
the follow studies of 20S proteasomes: endoproteolytic
activity has been detected using green fluorescent protein
(GFP) fusions (50), the open gate conformation is predicted
to accommodate β-hairpin structures (24, 25), and three
extended polypeptide chains can be modeled to fit within
the central proteolytic chamber (51).

There is growing evidence that 20S proteasomes
do not cleave proteins at random; instead, there are
preferred amino acid motifs that are recognized and
hydrolyzed (proline at P4, leucine at P1 and amino acids
that promote β-turns at P1’) (45, 46, 52). In addition,
allosteric binding of effector molecules to non-catalytic
sites influences protein degradation (53-56). Hydrophobic
peptides act as positive effectors and promote an open gate
conformation of the axial channel of 20S proteasomes that
stimulates peptidase activity (56). This open gate transition
is consistent with the two distinct, inter-converting forms of
20S proteasomes observed by atomic force microscopy
(57). These two allosteric states include R (closed-gate
barrel-like) and T (open-gate cylinder-like) states in which
the T state is stabilized by hydrophobic substrates (57).

4. PROTEASOME-ASSOCIATED REGULATORY
PARTICLES

A variety of regulatory components associate
with 20S proteasomes including: both type I and type II
AAA proteins (ATPases associated with various cellular
activities) (58-60) as well as non-ATPase modulators.

4.1. 19S cap and COP9 signalsome
The 19S cap (PA700) is a proteasome regulatory

complex of eukaryotes that is composed of at least 17
subunits. In yeast, the 19S cap can be separated into two
multisubunit substructures including: a “lid” composed of
nine Regulatory particle non-ATPases (Rpn) subunits and a
“base” composed of six Regulatory particle triple-A type I
proteins (Rpt) and two Rpn proteins (61, 62). The 20S core
and 19S cap together form 26S proteasomes, which
recognize and degrade substrates tagged with ubiquitin
(Ub) (63). “26S proteasome” commonly refers to either a
30S complex consisting of a 20S particle capped at both
ends by 19S complexes or a 26S particle capped only at
one end (64). The 20S core and base alone can degrade
globular proteins; however, the presence of the lid, in
addition to the 20S core and base, is essential for the
degradation of ubiquitin-tagged proteins (62).

Duplicated genes encoding 19S cap homologs are
present in a variety of organisms including Trypanosoma,
Arabidopsis, and rice (65-67). The differential expression
of these homologs appears to have diversified the
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functional capacity of proteasomes. Mixtures of 19S caps
with different Rpt isoforms have been identified, and the
relative amounts and expression patterns of these isoforms
vary in a tissue-specific manner (68). A more distantly
related homolog of the 19S cap, the COP9 signalsome or
CSN, also interacts with the ubiquitin-proteasome system
to regulate protein turnover (69, 70).

4.2. Archaeal Rpt homologs
Archaea encode Rpt homologs that resemble the

base of the 19S cap in both structure and function (71, 72).
These proteins have been designated Pan for Proteasome-
activating nucleotidases. Most archaea encode a single Pan
protein while some encode two highly related paralogs
(table 1). Interestingly, Haloferax volcanii synthesizes at
least three Pan isofoms including both homo and
heteroligomeric complexes of PanA and PanB (Reuter and
Maupin-Furlow, unpublished results). Since Pan proteins
alone are able to catalyze the unfolding of substrate
proteins (73), they appear to be directly involved in
substrate recognition. It will be interesting to see whether
the diversification of Pan and other AAA family members
(e.g. Cdc48 homologs discussed below) enhances the
number of different motifs recognized as substrates for
degradation by archaeal 20S proteasomes. If so, the
haloarchaea encode a tremendous number of AAA proteins
(table 1) that may be used in different combinations with
20S proteasome isoforms for the regulated turnover of
proteins. This would be a new paradigm with analogy to
the model recently proposed for haloarchaeal gene
regulation in which a diversity of transcription factors
interact in up to 42 different combinations to recognize a
large set of promoters (74).

The Pan protein (MJ1176) from
Methanocaldococcus jannaschii is the most thoroughly
characterized archaeal Rpt homolog. It forms an irregular
ring-shaped dodecameric ATPase of 600 kDa (71, 72). In
the presence of ATP or CTP this Pan stimulates 20S
proteasome-dependent hydrolysis of proteins including
casein and GFP-SsrA (GFP with an 11-residue C-terminal
peptide tag) (71, 72). Substrate binding to this triple-A
ATPase in vitro, activates ATP hydrolysis, which
successively promotes substrate unfolding, opening of the
axial gate, and possibly substrate translocation into the 20S
core (27, 75) (see below).

In addition to Pan, small proteins with
Jab1/MPN+ motifs common to the eucaryal 19S cap are
predicted for archaea and bacteria (76). Although the
Jab1/MPN+ motif has been implicated in the de-Ub activity
of eucaryal 26S proteasomes (77), an archaeal protein
(AF2198) with this motif does not appear to hydrolyze
peptide bonds. Instead this archaeal protein is proposed to
catalyze the removal of lysine side chain modifications
(78).

4.3. Cdc48 homologs
Not all archaea encode Rpt homologs (i.e.

Thermoplasma sp. and Pyrobaculum aerophilum) (table
1), which has lead to the suggestion that archaeal Cdc48
(VCP, VAT, p97) homologs may also facilitate

proteasome-mediated degradation. Cdc48 homologs are
type II AAA proteins found in all three domains and
purify as barrel-like structures of two stacked hexameric
rings (79, 80) with chaperone-like activity (81, 82). In
eucaryotes, the p97 protein in complex with Ufd1 and
Npl4 has been implicated in the ATP-dependent
movement of polyUb substrates into the cytosol via
retrotranlocation from the ER for proteasome-mediated
degradation (2, 83, 84).

4.4. Non-ATPase modulators
There are several non-ATPases that modulate

20S proteasome activity. Most of these have been isolated
from eucaryotic cells including the IFN-γ inducible 11S
(PA28, PA26, REG) activator (85) as well as the CF-2, β-
amyloid , PI31, and Hsp90 inhibitors (86-89). An inhibitor
of the Ca2+-dependent proteinase activity of an archaeal
20S proteasome has also been described (90). Of these, the
mechanism of activation of the 11S regulator is best
understood and is mediated by a loop which opens the axial
gates of 20S proteasomes (91, 92). Whether the inhibitors
cap the axial pores, plug the channel and or promote
conformational changes in the substrate binding sites of
20S proteasomes is not clear.

5. ENERGY-DEPENDENT PROTEOLYSIS

Regulatory AAA particles may serve multiple
roles in stimulating the energy-dependent degradation of
proteins by 20S proteasomes. These include substrate
recognition and binding, substrate unfolding, opening the
axial gates of 20S proteasomes, and translocation of
unfolded substrates into the proteolytic chamber of 20S
proteasomes. A growing list of AAA+ protein structures
[i.e. HslU (93-95), ClpA (96, 97), ClpX (98), FtsH (99)]
has enhanced our understanding of how these molecular
machines couple energy to the unfolding and/or remodeling
of proteins for proteolysis.

5.1. Substrate recognition and binding
Self-compartmentalized proteases such as 20S

proteasomes rely upon upstream energy-dependent
enzymes for substrate discrimination. In eucaryotes, 26S
proteasomes recognize substrates covalently linked to
polyUb chains (100). Ubiquitination is an energy-
dependent process mediated by a series of enzymes
including Ub-activating (E1), Ub conjugating/carrier (E2)
and Ub protein ligases (E3). The specificity of a Ub-
proteolytic pathway is conferred by the E3 ligase (101).
Once a protein is modified by poly-Ub, the Rpt5 (102) and
Rpn10 (103) subunits of the 26S proteasome can bind. In
addition, the Ub-like and Ub-associated domains of
proteins can interact with E3 Ub ligases and 26S
proteasomes to provide a link between the ubiquitination
and degradation of substrates (104). For example, Rpn1 and
Rpn2 subunits of 26S proteasomes bind the Ub-like
domains of the poly-Ub binding proteins Rad23 and Dsk2
(105-107). In addition, the poly-Ub binding activity of the
N-terminus of p97-VCP, a Cdc48 homolog, is necessary for
targeting a subset of proteins for degradation by 26S
proteasomes (108, 109). It should be noted, however, that
not all proteins degraded by 26S proteasomes are
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conjugated to Ub (e.g. ornithine decarboxylase, CDK
inhibitor p21waf/cip1) (110).

In archaea, as well as bacteria, homologs of the
19S lid subunits (Rpn) and other enzymes essential to the
ubiquitin pathway have not been identified. Therefore, it
is not surprising that archaea do not use the ubiquitin-
labeling pathway to tag substrates for degradation. In fact,
a pathway for proteolytic targeting has yet to be
determined. Based on analogy to structurally related
proteases such as Clp, it is anticipated that proteasomal
ATPases such as Pan directly recognize and bind non-Ub
substrates. The N-terminal coiled-coil domain of Pan is
proposed to mediate substrate binding as well as subunit
interaction (111). However, it is not yet know the
mechanism by which Pan recognizes substrates for
degradation. Interestingly, the distantly related Clp
ATPase (ClpX) has both a processing site which
recognizes degradation signals at or near the C- or N-
terminus of proteins as well as tethering sites which
interact with substrate delivery/adaptor proteins (e.g.
UmuD, SspB, RssB) (112-114). These adaptor proteins
appear to improve the efficiency of degradation at low
substrate concentration via tethering to the proteolytic
complex. Similarly, adaptor proteins may also be needed
for archaeal proteasome function.

5.2. Substrate unfolding
The hexameric ring-like structures formed by

many AAA proteins appear to be physiologically
advantageous in the catalysis of protein unfolding, a
process required for entry of substrate into the 20S
proteasome. The central pore and internal cavity/chamber
of the ring structure may enable cells to sequester substrate
proteins from the cytosol during the unfolding process.
Consistent with this, unfoldase and/or chaperone activity
has been detected for several proteasome-associated AAA
proteins (115). Pan catalyzes the ATP-dependent unfolding
of GFP-SsrA, a step required for degradation of this
substrate by 20S proteasomes (27, 73, 75). In addition,
VCP accelerates the ATP-dependent unfolding of
penicillinase (81), and the base of the 19S cap has ATP-
dependent chaperone activity (116).

Mechanical forces analogous to the GroEL-
GroES chaperonin are predicted to underlie the mechanism
of protein unfolding prior to hydrolysis (117). A
degradation signal at the C- or N-terminus of the substrate
may mediate initial binding to the AAA ring. Further
binding could occur as transient local unfolding exposes
hydrophobic regions of the substrate. Substrate binding to
multiple sites within the AAA chamber may be coupled to
large, cooperative conformational rearrangements of the
enzyme mediated by ATP. This may result in sequential
unfolding of independently stable domains of the substrate
protein, which are passed through the axial pores of 20S
proteasomes.

5.3. Channel gating
Both archaeal and eucaryal 20S proteasomes

appear gated at the axial pores by the N-termini of α-
subunits. Based on atomic force microscopy, 20S

proteasomes oscillate between two conformers (i.e.
closed gate, barrel-like and open gate, cylinder-like)
depending on the ligand (57, 118). Currently, however,
it is not known how wide the axial gates open during
protein degradation and whether differences in substrate
can induce multiple conformations of the gates. A recent
report suggests that the gates can open wide enough to
allow passage of at least three stretches of a polypeptide
chain (51). Natively-disordered substrate proteins (i.e.,
cyclin-dependent kinase inhibitor p21Cip1 and α-
synuclein) have been shown to promote activation of
latent 20S proteasomes and, thus, appear to stimulate
transition to an open gate conformation (50). In order to
maintain a stable open gate, the highly conserved Tyr8,
Asp9, Pro19 and Tyr26 residues of α subunits (numbered
according to the Thermoplasma acidophilum α
subunit) are required (119). The archaeal Pan (27) and
eucaryal Rpt2 (26) appear to mediate transition to an
open gate conformation. Consistent with this, deletion
of the α-subunit N-terminal residues which gate the
channel results in an artificial ‘open gate’ and reduces
the need for AAA proteins in protein degradation (24,
25, 27).

5.4. Substrate translocation
Proteasome-associated AAA regulators are likely

to assist in translocation of unfolded protein through the
axial pore of 20S proteasomes for hydrolysis in the central
chamber. The pore of the 19S cap forms a continuous
passage with the axial channel of the 20S core and is
presumed to assist in the transfer of unfolded substrate
proteins (120). It is currently unknown whether substrate
translocation is an energy-dependent step. ‘Open-gate’ 20S
proteasomes require Pan and hydrolysable ATP for the
degradation of unfolded GFP-SsrA (27). However, the
translocation step does not appear to increase the overall
amount of ATP hydrolyzed per molecule of protein
degraded (27).

6. REGULATION AND MODIFICATION OF
PROTEASOME SUBUNITS

Alterations in the levels of 20S proteasome
and proteasome associated AAA regulators play a role
in regulating proteasome activity. In eucaryotes, these
changes occur after proteasome inhibition (121-123),
IFN-γ induction (124), during rapid growth (125),
during differentiation and development (126-128), after
heat shock and canavanine treatment (129), and after
transition from log to stationary phase (130-132). Rpn4
appears to be a major player in the transcriptional
control of balanced levels of proteasome subunits in
yeast. Rpn4 is not only a subunit of 26S proteasomes,
but also a transcriptional activator that binds to a
common cis-element (proteasome-associated control
element or PACE) upstream of almost all of 26S
proteasome genes (133). Once Rpn4 induces proteasome
formation, it is destroyed by mature proteasomes in an
autoregulatory feedback mechanism (134). One notable
exception to Rpn4-mediated control is Rpn10, which is
also the only 26S proteasome subunit found at
significant levels free in the cytosol (135, 136).   
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Figure 2. Deduced N-terminal sequence of archaeal β-type proteasomal proteins. The amino acid residues and number of
residues predicted to be removed from the mature β subunit are highlighted in yellow and indicated on the right, respectively.
Those β-type proteins which do not have a conserved N-terminal threonine residue are indicated by an asterisk. The N-terminal
threonine residues of PSMB_HVO, PSMB_METTE, and TA0162 were determined by sequencing the β subunit of purified 20S
proteasomes (38, 146, 172). Protein ID as in Table 1.

Post-transcriptional modification controls
proteasome assembly, activity and subcellular location.
One of the most common controls is the autocatalytic
removal of the N-terminal β propeptide to generate an
active site N-terminal threonine. In yeast, the β-
propeptide has been shown to protect the Thr1 active
site from acetylation and inactivation (137). Acetylation
and N-myristolyation have also been observed for other
26S proteasome proteins (138, 139); however, the
rationale for these modifications remains to be
determined. In eucaryotes, subunits of the 19S cap (i.e.,
Rpt2, Rpt3, Rpt4, Rpt6, Rpn8), 20S proteasome (i.e., α2
to α7) and Cdc48 homologs (140-143) are
phosphorylated in a tissue and organism specific
manner. Phosphorylation of Rpt6 has been shown to be
linked to the assembly of 26S proteasomes (144).

In archaea, very little is known about the
control of 20S proteasome, Pan, or VCP (a Cdc48
homolog) activity. Whether the β-propeptide serves to
protect the active site of some archaeal proteasomes is
not known. However, it is not required for the biological
function of 20S proteasomes from either Pyrobaculum

aerophilum or Nanoarchaeum equitans, based on its
absence from the deduced protein sequence (figure 2). It
is possible that the α-subunits of archaeal 20S
proteasomes are modified by post-transcriptional
mechanisms. One can imagine that this would influence
a variety of 20S proteasome functions including axial
pore gating and interaction with regulatory proteins.
Primary sequence analysis reveals most archaeal α
subunits have conserved phosphorylation sites (145,
146); however, this has not been confirmed at the
protein level. Some archaeal α subunits appear to be
modified at their N-termini (based on the inability to
obtain an N-terminal protein sequence vs. internal
sequence) (38, 145). Furthermore, 20S proteasomes
purified from Methanosarcina thermophila contain a
mixture of α-subunits encoded by the same gene with
one of the α subunits four amino acids shorter than the
other (146). Recently, the transcription of 20S
proteasome genes has been shown to be induced by heat
shock in Pyrococcus furiosus (147). Whether this
increase in mRNA translates to an increase in
proteasome proteins remains to be determined; however,
this finding is consistent with the requirement for



Archaeal proteasomes

1750

archaeal 20S proteasomes to be active in order to
survive heat shock (148).

7. PROTEASOME ASSEMBLY

The most recent advances in understanding
eucaryotic proteasome assembly have been in the
identification of the maturation factors Nob1 and Pno1, in
addition to the previously identified Ump1 (149). Final
assembly of eucaryal proteasomes has been shown to occur in
the nucleus (150). Nob1p facilitates the maturation of 20S
proteasomes prior to nuclear import (151) and remains
associated at the interface of 20S proteasomes and 19S cap (or
pre19S) complexes (151, 152). Thus, Nob1 is also predicted
to assist in assembly of 26S proteasomes where it is degraded
after a tight association has been made between 20S
proteasomes and 19S cap complexes. Pno1 associates with
Nob1p and assists in transport of proteasome intermediates
into the nucleus. Interestingly, although archaea do not have a
nucleus, Nob1 and Pno1 homologs are present in this domain.
Whether these homologs serve to stabilize 20S proteasome
and AAA regulatory particle associations or play other roles
in proteasome function is not known.

In yeast, the transition to stationary phase has been
shown to induce assembly of doubly capped 26S proteasomes
from 20S and 19S complexes (131). As cells reach late
stationary phase, there is a down-regulation of proteolytic
activity which appears to be mediated by disassembly of 26S
proteasomes into 19S cap and 20S core particles (153). The
reason for this has yet to be determined but may serve to
inhibit proteolysis and/or enable the proteasome particles to
play independent roles. For example, the 20S proteasome may
hydrolyze certain proteins independent of Ub and ATP (50)
while the 19S caps refolds proteins (116, 154). Similar control
of proteasome assembly/disassembly in the archaea remains
to be determined.

8. PERSPECTIVES

Recent advances in proteomics and genomics
have greatly assisted in obtaining a global perspective of
the motifs and/or substrates recognized by a variety of
energy-dependent proteases. Affinity purification of an
inactive ClpP variant enabled the trapping and
identification of more than 50 protein substrates with 5
recurring amino acid motifs (155). Comparison of protease
mutant (clpP and ftsH) and parent strains by 2D-PAGE
reveals a multitude of previously unknown substrate
proteins and suggests new roles for proteases in cell
physiology (156, 157). In addition, mass spectroscopy has
enabled the identification of the Ub sites for over 70
proteins (158) and the identification of additional proteins
which associate with proteasomes from yeast (159, 160).
Similar whole systems approaches, coupled with classical
genetics, will most certainly assist in understanding the role
proteasomes play in the physiology of archaea.
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