
[Frontiers in Bioscience 9, 1398-1411, May 1, 2004]

1398

METABOLISM OF DIADENOSINE TETRAPHOSPHATE (Ap4A) AND RELATED NUCLEOTIDES IN PLANTS;
REVIEW WITH HISTORICAL AND GENERAL PERSPECTIVE

Andrzej Guranowski

Katedra Biochemii i Biotechnologii, Akademia Rolnicza, ul. Wołyńska 35, 60-637 Poznań, Poland

TABLE OF CONTENTS

1. Abstract
2. Introduction
3. Mononucleoside polyphosphates

3.1. Discovery of nucleoside-5′-polyphosphates
3.2. Occurrence of p4A and p5A in biological material
3.3. Enzymatic reactions that can lead to the accumulation of p4A

3.3.1. 4-Coumarate:coenzyme A ligase (4CL) from Arabidopsis thaliana as a "p4A synthase"
3.4. Enzymes that can degrade p4A

3.4.1. Nucleoside tetraphosphate hydrolase from yellow lupin seeds
4. Dinucleoside polyphosphates

4.1. Discovery of Ap4A and other NpnN′s in vitro
4.2. Occurrence of Ap4A, Ap3A and other NpnN′s in biological material
4.3. Enzymatic reactions that can lead to the accumulation of NpnN′s

4.3.1. Phenylalanyl- and seryl-tRNA synthetases from yellow lupin seeds as "ApnN synthases"
4.3.2. 4-Coumarate:coenzyme A ligase (4CL) from A. thaliana as an "ApnN synthase"

4.4. Enzymes that can degrade NpnN′s
4.4.1. Nonspecific enzymes that hydrolyze NpnN′s
4.4.2. Specific NpnN′-degrading enzymes

4.4.2.1. Dinucleoside triphosphate hydrolase from yellow lupin seeds
4.4.2.2. Dinucleoside tetraphosphate hydrolases from higher plants

5. Concluding remarks and perspectives
6. Acknowledgement
7. References

1. ABSTRACT

This review presents our knowledge of potential
biochemical conversions of minor mononucleotides, such
as adenosine-5′-tetraphosphate (p4A) and adenosine-5′-
pentaphosphate (p5A), and dinucleotides, such as
diadenosine-5′,5′′′-P1,P3-triphosphate (Ap3A) and
diadenosine-5′,5′′′-P1,P4-tetraphosphate (Ap4A), in plants.
Although the occurrence of p4A, Ap3A and/or Ap4A has
been demonstrated in various bacteria, fungi and animals,
identification of these compounds in plants has not been
reported as yet. However, the ubiquity of both the
compounds and enzymes that can synthesize them (certain
ligases and transferases), the demonstration that certain
plant ligases can synthesize pnAs and ApnNs in vitro, and
the existence in plants of specific and nonspecific
degradative enzymes strongly suggest that these various
pnNs and NpnN′s do indeed occur and play a biological role
in plant cells. In fact, some of the plant enzymes involved
in the synthesis and degradation of these minor mono- and
dinucleotides have been studied even more thoroughly than
their counterparts from other organisms.

2. INTRODUCTION

Two homologs of ATP, adenosine 5′-
tetraphosphate (ppppA or p4A) (Figure 1A) and

adenosine 5′-pentaphosphate (pppppA or p5A), represent
naturally occurring nucleoside 5′-polyphosphates (pnNs)
while diadenosine-5′,5′′′-P1,P3-triphosphate (ApppA or
Ap3A) and diadenosine-5′,5′′′-P1,P4-tetraphosphate
(AppppA or Ap4A), (Figure 1B), are the most
thoroughly investigated dinucleoside polyphosphates
(NpnN′s, where N and N′ are 5′-O-nucleosides and n
represents the number of phosphate residues in the
polyphosphate chain that links N with N′ esterifying the
nucleosides in their 5′ positions). Although p4A, the
closest homolog of ATP, has been known for fifty years,
it has not attracted much attention from biochemists. We
know more about NpnN′s than about pnNs but our
knowledge of the biochemistry and biological roles of
these two groups of compounds is scarce. For earlier
reviews see refs. 1-10.

As far as plants are concerned, although
neither pnNs nor NpnN′s have yet been identified in such
material, we do have quite a comprehensive
understanding of plant enzymes that can synthesize p4-

5As and Ap3-5As and of specific and non-specific
degradative enzymes. This suggests indirectly that these
compounds must occur in plant cells and that their
levels are subjected to subtle regulation.
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Figure 1. Structures of adenosine 5′-tetraphosphate (A) and
diadenosine tetraphosphate (B).

3. MONONUCLEOSIDE POLYPHOSPHATES

3.1. Discovery of nucleoside-5′-polyphosphates
In his short notes, Marrian first expressed the

belief that a compound found as a contaminant in bovine
muscle ATP preparations was p4A (11, 12). Subsequently,
Sacks reported that, in addition to p4A, commercial
preparations of ATP obtained from brewer’s yeast
contained p5A (13). These nucleotides comprised
approximately 8% and 1%, respectively, of all adenine-
containing compounds. In 1955, Lieberman confirmed
Marrian’s presumption, identifying p4A in ATP
preparations from horse muscle (14). Contamination of
NTPs with the corresponding p4Ns was then shown in
preparations of ATP (15), GTP (16, 17), UTP (18) and CTP
(19). The existence of p4N and p5N in batches of the
corresponding NTPs can be easily demonstrated even on
thin-layer chromatograms run in systems designed to
separate nucleoside mono-, di- and triphosphates. For
example, 3-5-µl aliquots of a 30-50 mM solution of
commercially available (preferentially aged) ATP,
chromatographed for 90 min in dioxane:ammonia:water
(6:1:6, by volume) on silica gel containing a fluorescent
indicator, show under short UV light spots of p4A and p5A
migrating more slowly than ATP; the Rf values are 0.17,
0.11 and 0.31, respectively. (Such separations are shown in
refs. 20 and 21). Presumably each NTP undergoes a
spontaneous dismutation: NTP + NTP → p4N + NDP. Such
a suggestion has previously been made for ATP and p4A
(15), while the accelerated dismutation of ATP has been
observed during a 4-day experiment involving repeated
drying and redissolution of a solution containing 150 mM
ATP and 50 mM MgCl2 (8). Moreover, p4A and p5A have
been shown to be minor products of the reaction of AMP-
morpholidate with pyrophosphate in pyridine (22).

3.2. Occurrence of p4A and p5A in biological material
The first report of the presence of p4A in

biological material was published in 1965 by Heldt and

Klingenberg (23) who found this compound in rat liver
mitochondria. The following year, Small and Cooper
reported p4A in rabbit and horse muscle (24). Subsequently,
p4A has been detected in rat liver (25), bovine adrenal
medulla (26-28), rabbit thrombocytes (29) and yeast
(Saccharomyces cerevisiae) (30). It has been estimated that
in animal cells the concentration of p4A is between 3 and 4
orders of magnitude lower than the concentration of ATP
(approximately 2 µM). Chromaffin granules from the
adrenal medulla contain 2.2 ± 0.1 nmole p4A per mg
protein, which corresponds to almost 0.8 mM. This is 200-
300 times lower than the concentration of ATP (28).

In an effort to identify signal nucleotides that
could function during eukaryotic cell differentiation,
Jakubowski showed that the highly phosphorylated
nucleosides synthesized only during sporulation of the
yeast S. cerevisiae were p4A and p5A, reaching 2% and
1.5% of the ATP concentration. In logarithmically growing
yeast they did not exceed 0.1% of the ATP (30).

3.3. Enzymatic reactions that can lead to the
accumulation of p4A

Enzymes active in p4A synthesis and the
reactions catalyzed by them in vitro fall into three
categories. The first comprises enzymes that catalyze
transfer of a phosphate residue from a phosphate donor on
to ATP: adenylate kinase (EC 2.7.4.3), which can transfer
Pi from ADP (31), and phosphoglycerate kinase (EC
2.7.2.3), which has been reported to transfer Pi from
position 1 of 1,3-diphosphoglycerate (24). (It is presumed
that these two ubiquitous kinases function also in planta).
To the same group belong a mutant succinyl-CoA
synthetase (EC 6.2.1.5) from Escherichia coli, which can
transfer Pi from the enzyme:phosphate complex (32), and
the E. coli MurD synthetase (EC 6.3.2.9), which can
transfer Pi from an enzyme-bound acyl~phosphate (33).
The second category of enzymes includes those able to
transfer an adenylate residue (-pA) on to tripolyphosphate
(P3). The pA residue comes either from a mixed anhydride
such as aminoacyl~pA (lysyl-tRNA synthetase, EC 6.1.1.6)
(25, 30), luciferyl~pA (firefly luciferase, EC 1.13.12.7)
(34), acetyl~pA (acetyl-CoA ligase, EC 6.2.1.1, from yeast
S. cerevisiae) (20), acyl~pA (acyl-CoA ligase, EC 6.2.1.3,
from the bacterium Pseudomonas fragi) (35),
aminoacyl~pAs, including derivatives of certain non-
protein amino acids (nonribosomal peptide synthetases, the
apo-form of tyrocidine synthetase 1, from Bacillus brevis)
(36) and coumaryl~pA (coumaryl-CoA ligase, EC 6.2.1.12,
from Arabidopsis thaliana) (21), or from an enzyme~pA
complex, as in the case of the DNA- and RNA-ligases from
T4 phage (37, 38). The third category includes enzymes
that degrade Ap5A or Ap6A: (i) phosphodiesterase I (5′-
exonuclease) (EC 3.1.4.1), a ubiquitous enzyme which
hydrolyzes Ap5A to p4A and AMP (pA) (39, 40), (ii)
symmetrically acting bacterial dinucleoside
tetraphosphatase (EC 3.6.1.41), which will hydrolyze Ap6A
to p4A and ADP (ppA) (41), (iii) dinucleoside
tetraphosphate phosphorylase (EC 2.7.7.53), discovered in
brewer’s yeast (42) and protozoa (43), which catalyzes the
phosphorolytic cleavage of Ap5A to p4A and ADP, (iv)
dinucleoside triphosphatase (EC 3.6.1.29) occurring in
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various phyla (9, 44) including plants (45), which can
hydrolyze Ap5A to p4A and AMP, and (v) the recently
discovered Ap5A/Ap6A hydrolases in budding and fission
yeasts that split Ap5A to p4A and AMP and Ap6A to p4A
and ADP (46, 47).

3.3.1. 4-Coumarate:coenzyme A ligase (4CL) from
Arabidopsis thaliana as a "p4A synthase"

So far, this ligase is the only enzyme thoroughly
characterized as a p4A synthase (21). Both the recombinant
protein of the native 4CL2 isoform from A. thaliana
(At4CL2 wild type) and the At4CL2 gain of function
mutant M293P/K320L, which exhibits the capacity to use a
broader range of phenolic substrates, catalyzed the
synthesis of p4A and p5A when incubated with MgATP2-

and tripolyphosphate or tetrapolyphosphate, respectively.
Adenosine polyphosphate synthesis was either strictly
dependent on or strongly stimulated by the presence of a
cognate cinnamic acid derivative. Coumarate was the most
effective cofactor for p4A synthesis catalyzed by the wild-
type ligase (kcat = 0.42 s-1) and ferulate for the mutant form
(kcat = 0.52 s-1). For the wild-type ligase, ferulate was over
83-fold, cinnamate 50-fold and caffeate over 8-fold less
effective than coumarate, while sinapate was inactive as a
cofactor. The At4CL2 mutant M293P/K320L was
stimulated by coumarate only slightly less than by ferulate
(in 92%) with caffeate, cinnamate and sinapate being 69%,
45% and 4% as effective, respectively. Interestingly, the
mutant form was able to support p4A synthesis also in the
absence of exogeneous phenolic acid, synthesis proceeding
25-fold more slowly than in the presence of ferulate. This
suggests that there may also be an alternative mode of
adenylate transfer from ATP on to tripolyphosphate via an
enzyme~adenylate intermediate. In the presence of ferulate
the mutant ligase synthesized p5A at a rate 10-fold lower
than p4A. The maximum rate of p4A synthesis was
observed between pH 6 and 8 and the reaction was
supported by the following cations: Mg2+ > Mn2+ = Co2+ >
Ni2+ > Zn2+. The Km values estimated for wild-type 4CL2
for coumarate and caffeate were 22 µM and 1.4 µM,
respectively while the values estimated for the mutant for
ferulate, ATP and tripolyphosphate were 2.7 µM, 150 µM
and 4.9 mM, respectively.

Coenzyme A, even at low micromolar
concentrations, strongly inhibited the synthesis of p4A
catalyzed by At4CL (Guranowski and Pietrowska-Borek,
unpublished observations).

3.4. Enzymes that can degrade p4A
Enzymes that degrade p4A can be classified either

with respect to their substrate specificity or to the moiety in the
p4A substrate that is recognized by the active site.
Phosphatases and apyrase are exophosphatases that exhibit low
substrate specificity and recognize the oligophosphate chain.
Alkaline (EC 3.1.3.1) or acid (EC 3.1.3.2) phosphatases
remove successive Pi residues, finally converting p4A to 4Pi
and adenosine. Apyrase (EC 3.6.1.5) initially catalyzes the
relatively slow removal of the δ phosphate and the subsequent
rapid removal of the γ and β phosphate residues, leaving AMP
as the final product (48). Through recognition of the nucleotide
moiety, non-specific phosphodiesterase I (EC 3.1.4.1)

catalyzes hydrolysis of p4A, generating AMP as one of the
reaction products. Non-specific adenosine-phosphate
deaminase (EC 3.5.4.17) from the snail Helix pomatia and
fungus Aspergillus oryzae (49) is another enzyme that can act
upon p4A, converting it to inosine 5′-tetraphosphate (p4I).
Various hydrolases from the nudix protein family can also
hydrolyze p4A: asymmetrically acting Ap4A hydrolase (EC
3.6.1.17) (45, 50-52) and the recently discovered Ap5A/Ap6A
hydrolases (46, 47). Because these enzymes recognize the ATP
moiety in their substrates (53), they degrade p4A to ATP and
Pi, acting as endophosphatases. Cleavage of p4A to ATP and Pi
was first observed for the (asymmetrical) Ap4A hydrolase from
yellow lupin seeds (45) and confirmed in recent studies of the
substrate specificity of the orthologous enzyme from the
bacterium Bartonella baciliformis (50), the nematode
Caenorhabditis elegans (51) and of a nudix hydrolase encoded
by the g5R (D250) gene of African swine fiver virus (52).

Symmetrically acting dinucleoside tetraphosphate
hydrolase (EC 3.6.1.41), which always liberates an NDP
from its substrates (53), can degrade p4A to ADP and
presumably PPi (41, 54, 55).

A much more specific enzyme that recognizes p4A
is the exopolyphosphatase (EC 3.6.1.11) from brewer’s yeast
(56) and bacteria (57). This enzyme prefers long-chain-
polyphosphates as substrates but also hydrolyzes tetra- and
tripolyphosphates and, as has been shown recently, p4A and
p5N (58-61). However, the most specific p4A-degrading
enzyme is nucleoside tetraphosphate hydrolase (EC 3.6.1.14)
found in mammals (62, 63) and higher plants (64). As has been
shown for the homogeneous enzyme from yellow lupin seeds,
it degrades p4A to ATP and Pi. In contrast to the lupin
(asymmetrical) Ap4A hydrolase, the water molecule attacks the
substrate within the oligophosphate chain and not at the ATP-
site: p4N hydrolase degraded p5A to ATP and 2Pi whereas the
Ap4A hydrolase cleaved this compound to ATP and PPi (64).
Reactions that may be involved in the metabolism of p4A in
plant cells are shown in Figure 2.

3.4.1. Nucleoside tetraphosphate hydrolase from yellow
lupin seeds

This plant enzyme is so far the only pnN
hydrolase purified to electrophoretic homogeneity. It has
been purified from lupin seed meal by ammonium sulfate
fractionation (50-70% saturation), ion-exchange
chromatography on DEAE-Sephacel column, gel filtration
(Sephadex G-200), chromatography on a dye-ligand column
(Black C-2) and hydrophobic-interaction chromatography
(Toyopearl butyl-650S). Lupin p4N hydrolase is a single
polypeptide chain of 25 ± 1 kDa. The following cations
function as cofactors: Mg2+>> Co2+>Ni2+>Mn2+. Optimum
pH is 8.2, the Km for p4A 3 ±0.6 µM and the kcat is 8.5 s-1

[at 30oC, in 50 mM Hepes/KOH (pH 8.2), 5 mM MgCl2
and 0.1 mM dithiothreitol]. Both p4A and p4G are
hydrolyzed at the same rate and p5A 200-fold more slowly,
sequentially liberating two molecules of orthophosphate.
Zn2+, F- and Ca2+ are inhibitory, with estimated I50 values of
0.1 mM, 0.12 mM and 0.2 mM, respectively. In addition to
nucleoside polyphosphates, this enzyme hydrolyzes
tripolyphosphates, but neither pyrophosphate nor
tetraphosphate.
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Figure 2. Reactions and relevant enzymes potentially
involved in the synthesis and degradation of adenosine
tetraphosphate in the plant cells. Numbers in circles
represent: 1, adenylate kinase (EC 2.7.4.3); 2,
phosphoglycerate kinase (EC 2.7.2.3); 3, nucleoside
tetraphosphate hydrolase (EC 3.6.1.14); 4, apyrase (EC
3.6.1.5); 5, alkaline (EC 3.1.3.1) or acid phosphatese (EC
3.1.3.2); 6, phosphodiesterase I (EC 3.1.4.1); 7,
phenylalanyl-tRNA synthetase (EC 6.1.1.20) or any other
ligase of the EC 6.1.1. subsubclass; and 8, coumarate:CoA
ligase (EC 6.2.1.12)

4. DINUCLEOSIDE POLYPHOSPHATES

4.1. Discovery of Ap4A and other NpnN's in vitro
Chronologically, NpnN′s were first discovered by

chemists. In 1953, Todd’s laboratory reported the detection of
Ap2A and Up2U as by-products of reactions designed to
synthesize ApU (65). Then in 1965-66, Moffatt and co-
workers reported that various ApnAs (22, 66) and GpnGs (67)
accumulated as highly stable end products of the dismutation
of ATP and GTP in pyridine or pyridine-containing solvents.
However, the most important finding for biochemists was that
lysyl-tRNA synthetase is able to transfer the adenylate moiety
from the lysyl~AMP intermediate onto various acceptors
possessing a pyrophosphate moiety, including ADP and ATP
(68). Since then, it has been shown that other aminoacyl-tRNA
synthetases, other types of ligases and, certain transferases
have the ability to catalyze the synthesis of NpnN′s (see
below).

4.2. Occurrence of Ap4A, Ap3A and other NpnN′s in
biological material

Two years after discovering Ap4A in vitro,
Zamecnik and co-workers first demonstrated the
biosynthesis of Ap4A in rat liver slices after incubating
them with [14C]adenine (25). Thereafter, Ap4A and various
other Ap4Ns and Ap3Ns were found at submicromolar to
micromolar concentrations in virtually all cells and tissues

examined, including bacteria, protozoa and animals (1).
Ap3A was first demonstrated in 1983 in the slime mold
Dictyostelium discoideum, BCC-1 epithelial monkey cells
and Ehrlich ascites tumor cells (69). In addition to Ap4A,
the presence of six non-adenylylated Np4N′s (Cp4C, Cp4G,
Cp4U, Gp4G, Gp4U and Up4U) was reported in yeast S.
cerevisiae and E. coli (70).

Embryonic cysts or eggs of crustaceans such as the
brine shrimp Artemia franciscana (71) and Daphnia magna
(72) contain abundant amounts of the guanine-containing
NpnN′s, Gp4G and Gp3G, which probably serve as a reservoir
of purine nucleotides for the developing organism (see 73 for
review). Interestingly, the concentrations of Ap4Ns and Ap3Ns
increase dramatically when cells are exposed to various kinds
of stress (70, 74-80). Moreover, certain cells and cellular
subfractions are particularly rich in NpnN′s. These include
blood platelets (81, 82), granules within the chromaffin cells of
the adrenal medulla (83, 84) and synaptic terminal secretory
granules (85).

So far, the existence of NpnN′s in plant tissues has
not been demonstrated. This may be partially explained by the
high levels of various secondary metabolites in plants that
interfere during estimation of NpnN′s when using procedures
developed for the estimation of these compounds in extracts
from bacteria, yeast and animals.

4.3. Enzymatic reactions that can lead to the accumulation
of NpnN′s

Adenine-containing NpnN′s (ApnNs) can be
synthesized by some ligases, transferases and firefly
luciferase, the last being classified as an oxidoreductase
but behaving in ApnN synthesis as a ligase (34). All
enzymes able to produce p4A (see section 3.3) can
synthesize ApnNs, although some of them, e.g. the yeast
acetyl-CoA ligase, do it at a very low rate (20).
Moreover, not all can synthesize Ap3A (Ap3Ns). ADP
was not an adenylate acceptor for the Arabidopsis
coumarate:CoA ligase (21) and a very poor one for
firefly luciferase (86). Among the aminoacyl-tRNA
synthetases, lysyl- (EC 6.1.1.6), phenylalanyl- (EC
6.1.1.20), alanyl- (EC 6.1.1.7) and prolyl- (EC 6.1.1.15)
tRNA synthetases are the most active in ApnN synthesis
(2, 87) and all of them are strongly activated by Zn2+,
regardless of enzyme origin. Less active are histidyl-,
leucyl-, isoleucyl-, seryl-, aspartyl- (88), glycyl- (89)
and threonyl-(90) tRNA synthetases, while the
tryptophanyl- and arginyl- ones proved to be inactive in
this process (88). It should be mentioned here that not
all kinds of aminoacyl-tRNA synthetase have been
tested as potential "ApnN synthases".

So far, only three plant enzymes have been
shown to synthesize ApnNs in vitro: phenylalanyl- and
seryl-tRNA synthetases from yellow lupin seeds (91) and
the coumarate-CoA ligase from A. thaliana (21) (see
below; sections 4.3.1. and 4.3.2).

There is also a brief report of Ap4A synthesis by
three phenylalanyl-tRNA synthetases purified from
Euglena gracilis chloroplasts, mitochondria and cytosol.
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The reaction catalyzed by these three (iso)enzymes is also
strongly stimulated by Zn2+ (92).

In the yeast S. cerevisiae ApnNs can also be
synthesized by Ap4A phosphorylase (EC 2.7.7.53) which in
the reverse reaction transfers adenylate from either ADP (42,
93) or adenosine 5′-phosphosulfate (94) onto ATP or other
NTP via a covalent enzyme~AMP intermediate (95). In
addition to Ap4G, which can be formed by the enzymes
mentioned above, this and other GpnNs can be synthesized
by a unique enzyme, GTP:GTP guanylyltransferase (EC
2.7.7.45), demonstrated first in Artemia (96). It catalyzes
transfer of GMP- via an enzyme~GMP intermediate onto
GTP, GDP or other acceptors, yielding Gp4G, Gp3G or
GpnN, respectively (97). Recently, another transferase, the
uridine triphosphate:glucose-1-phosphate uridylyltransferase
(EC 2.7.7.9) from S. cerevisiae has been found to synthesize
UpnNs, including Ap4U and Ap5U, by transferring the UMP-
moiety from UDP-glucose onto ATP and p4A, respectively
(98). This and similar transferases that form NDP-sugars
may be responsible for the accumulation of pyrimidine-
containing NpnN′s in the cells demonstrated earlier (70).

4.3.1. Phenylalanyl- and seryl-tRNA synthetases from
yellow lupin seeds as "ApnN synthases"

For the two decades since 1983, these two
synthetases have been the only plant enzymes known to be
able to produce ApnNs (91). This short section summarizes
the data concerning that catalytic ability. After prolonged (16
h) incubation of 40 nM homogeneous lupin phenylalanyl-
tRNA synthetase at 25oC in a reaction mixture containing 50
mM Hepes (pH 8.0), 0.1 mM phenylalanine, 0.1 mM ZnCl2
and 10 mM [14C]ATPMg, 71% of the radioactivity was
transformed into [14C]Ap4A, 14% into [14C]Ap3A, 5% into
[14C]ADP with 8% remaining as [14C]ATP. Exogenous
inorganic pyrophosphatase enhanced the rate of Ap4A
formation 3-4-fold and tRNA inhibited the reaction.
Periodate-oxidized tRNA was a much poorer inhibitor,
indicating that the intact 3′-terminus of the tRNA is required
for inhibition. ZnCl2 was absolutely required for Ap4A
synthase activity, however it did not affect the rate of Ap4A
formation catalyzed by seryl-tRNA synthetase. Kinetic
parameters of the Ap4A synthase activities were as follows:
With phenylalanyl-tRNA synthetase, Km for ATP was 5 mM,
for phenylalanine < 1 µM and for ZnCl2 15 µM. At a
saturating concentration of ATP the rate constant of Ap4A
formation was 1.1 s-1 (pH 8.0, 25oC, 10 mM MgCl2, 10
µg/ml inorganic pyrophosphatase). The rate constant of
phenylalanyl-adenylate formation was 45 s-1. With seryl-
tRNA synthetase, the Km values for ATP and serine were 3
mM and 15 µM, respectively and kcat 0.06 s-1. In addition to
Ap4A and Ap3A, both lupin enzymes were able to synthesize
Ap4Ns and Ap3Ns. Four other lupin enzymes, the alanyl-,
arginyl-, tryptophanyl- and tyrosyl-tRNA synthetases did not
promote synthesis of Ap4A.

4.3.2. 4-Coumarate:coeanyzme A ligase (4CL) from A.
thaliana as an "Ap4N synthase"

The same variants of At4CL2 that could produce
p4A and p5A (see section 3.3.1.) were also found to act as
an Ap4N synthase (21). When the At4CL2 mutant
M293P/K320L was incubated in the absence of CoA with

ATP, which served as both adenylate donor and acceptor, 5
mM MgCl2 and 62 µM ferulate, accumulation of Ap4A was
observed. Maximum rates of Ap4A synthesis were obtained
between pH 6 and 7. The Km for ATP was 4.1 mM and Vmax
1.2 nkat mg-1. The enzyme tolerated replacement of ATP
with dATP, in which case dAp4dA accumulated at a
comparable rate. With p4A as the only nucleotide present in
the reaction mixture, the enzyme additionally supported the
synthesis of Ap5A. The At4CL2 mutant also synthesized
Ap4C, Ap4G and Ap4U when the reaction mixture
contained the corresponding NTP in addition to the
standard ingredients (ATP, MgCl2 and ferulate)
(Guranowski and Pietrowska-Borek, unpublished
observations). However, as mentioned above, no Ap3A
synthesis could be detected in a reaction mixture containing
ADP as potential adenylate acceptor. The At4CL2 wild-
type also catalyzed the synthesis of Ap4A, albeit at a rate
10-fold lower than the At4CL2 double mutant. The specific
activity determined in the presence of 0.1 mM coumarate as
activator was 0.12 nkat mg-1.

4.4. Enzymes that can degrade NpnN′s
4.4.1. Nonspecific enzymes that hydrolyze NpnN′s

Higher eukaryotes, both animals and plants, possess
type I phosphodiesterase, a 5′-exonucleotidase that liberates 5′-
NMP from its substrates and for which NpnN′s are just one
group among a much wider range of possible substrates. This
non-specific enzyme is probably predominantly responsible for
the hydrolysis of NpnN′s in crude extracts of higher eukaryote
tissues. Snake venom phosphodiesterase was originally used to
characterize the newly discovered NpnN′s, both by biochemists
(68, 71) and chemists (66). Characterization of
phosphodiesterases as enzymes that catabolize NpnN′s has
been carried out using preparations obtained from yellow lupin
seeds (45), rat liver (99), human plasma (100) and serum
(101), the slime mold Physarum polycephalum (102) and
bovine adrenal medullary plasma membranes (103). At least in
mammals, much of the phosphodiesterase activity is associated
with membranes from where it can be extracted with Triton X-
100 (99, 103). Also, analysis of three heterologously expressed
mammalian members of the ectonucleotide
pyrophosphatase/phosphodiesterase family, NPP1, NPP2 and
NPP3, as Ap4A-hydrolyzing enzymes has led to the suggestion
that these enzymes are major candidates for the hydrolysis of
extracellular ApnAs in vertebrate tissues (104).

The yellow lupin phosphodiesterase is a single
polypeptide chain of 56 kDa. It does not require Mg2+ for
activity and was inhibited neither by other divalent cations
nor by EDTA (45). The Km values estimated for Ap3A and
Ap4A were around 2 µM. Activities called nucleotide
pyrophosphatase (EC 3.6.1.9) which hydrolyze ApnAs have
been demonstrated in potato tuber (105) and Ph.
polycephalum (102). The potato enzyme did not require
divalent metal cations for activity. The molecular mass of
the native enzyme (tetramer of 74 kDa subunits) was 343
kDa. The Km values for Ap3A and Ap4A were 50 µM and
200 µM, respectively.

Non-specific adenosine-phosphate deaminases (EC
3.5.4.17) that occur in the snail H. pomatia and fungus A.
oryzae are able to convert adenosine(5′ )oligophospho(5′)
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adenosines via inosine(5′) oligophospho(5′) adenosines in to
inosine(5′) oligophospho(5′) inosines (49).

As has been reported very recently (106), ApnAs
can be substrates of the ATP N-glycosidase from a marine
sponge Axilla polypoides. This unusual enzyme catalyzes
hydrolysis of the N-glycosidic bond in any compound
containing an adenosine-5′-diphosphoryl- moiety. Thus,
ApnAs can be depurinated via adenosine(5′)
oligophospho(5′) riboses to the ribose(5′) oligophospho(5′)
riboses.

4.4.2. Specific NpnN′-degrading enzymes
Although in vitro the NpnN′-synthesizing

enzymes can catalyze the reverse reactions leading to the
degradation of NpnN′s in the presence of the cognate
organic acid (21, 91), there is no evidence that these
reactions can proceed in vivo at physiological levels of
pyrophosphate. Therefore those ligases will not be
considered in this section, which deals exclusively with
degradative enzymes. We know of two classes of NpnN′-
degrading enzymes: hydrolases and phosphorylases. The
hydrolases discriminate between NpnN′s on the basis of
oligophosphate chain length. Thus there are (i) dinucleoside
triphosphate hydrolases (EC 3.6.1.29), (ii) two subclasses
of dinucleoside tetraphosphate hydrolases, one comprising
asymmetrically acting enzymes (EC 3.6.1.17) that catalyze
splitting of Ap4A to ATP and AMP, and the second
comprising symmetrically acting hydrolases (EC 3.6.1.41)
that split Ap4A to 2ADPs, and (iii) the recently discovered
diadenosine penta- and hexaphosphate hydrolases (for
which an EC number has not yet been assigned). The
dinucleoside polyphosphate phosphorylases can be divided
only with respect to their specificity towards Ap3A. The
yeast (S. cerevisiae) enzyme does not split Ap3A but only
Ap4A and its higher homologs while the phosphorylase
from Euglena gracilis cleaves both Ap3A and Ap4A (107).

Np3N′ hydrolases occur in different organisms —
mammals (44, 108), invertebrates (109), bacteria (110),
yeast (111) and plants (45, 112). They prefer Np3N′s but
can hydrolyze also higher homologs liberating always an
NMP as one of the reaction products. As demonstrated for
the Np3N′ hydrolase from yellow lupin seeds using H2

18O,
water attacks substrates only at Pα , yielding [18O]NMP and
[16O]ADP in the case of Ap3A and [16O]ATP in the case of
Ap4A hydrolysis (53).

(Asymmetrical) Np4N′ hydrolases prefer Np4N′s
as substrates. They can cleave the higher homologs but do
not recognize Np3N′s. An NTP always appears as one of
the reaction products and in this case the water molecule
attacks the δ phosphate which yields [18O]AMP and
unlabeled ATP in case of Ap4A, and [18O]ADP and
unlabeled ATP in case of Ap5A (53). These hydrolases
occur in eubacteria and higher eukaryotes, both animals
and plants, and are the most thoroughly investigated NpnN′-
degrading enzymes. The first enzyme reported to
specifically degrade NpnN′s was Gp4G (asymmetrical)
pyrophosphohydrolase from embryonic cysts of Artemia
franciscana (113). The same enzyme was then found in rat
liver extracts (114). Homogeneous preparations of

(asymmetrical) Np4N′ hydrolases have now been obtained
from human leukemia cells, human red blood cells, human
placenta, yellow lupin seeds, encysted Artemia embryos, rat
liver, the green alga Scenedesmus obliquus, firefly
(Photinus pyralis) tails, tomato cells and narrow-leafed
lupin (Lupinus angustifolius) seeds (for corresponding
references see review, 9). More recently, highly purified or
electrophoretically homogeneous preparations of the
recombinant (asymmetrical) Np4N′ hydrolases have been
obtained from a monocotyledonous plant, barley (Hordeum
vulgare) (115), C. elegans (51) and the bacteria B.
bacilliformis (50, 116), Salmonella typhimurium (encoded
by the ygdP gene) (117) and Helicobacter pylori (118).

An Ap4A hydrolase that catalyzed a symmetrical
mode of cleavage was first found in extracts of P.
polycephalum (54) and, independently, a Co2+-stimulated
activity was identified in bacteria (55). (Symmetrical)
Np4N′ hydrolases prefer Np4N′s but can also hydrolyze
Np3N′s and their higher homologs. The enzyme from E.
coli splits its substrates in such a way as to always produce
an NDP as one of the reaction products. Experiments in
H2

18O showed that it is β phosphate that is attacked during
the catalytic process (53). When the enzyme hydrolyzed
Ap3A, Ap4A, Ap5A and Ap4AαS (ApspppA), [18O]ADP
was always produced with unlabeled AMP, ADP, ATP and
ADPαS (pspA), respectively (53).

For the diadenosine hexaphosphatase from S.
cerevisiae, Ap6A was an 8-fold better substrate than Ap5A
(46) and Ap4A and Ap3A were not substrates. This yeast
enzyme prefers to generate p4A from both Ap6A and Ap5A.
However, the substrate “wobbles” in the active site during
hydrolysis — Ap6A yielded p4A + ADP (76%) and p5A +
AMP (34%). Similarly, Ap5A yielded predominantly p4A +
AMP (96%) and a small amount of ATP + ADP (4%).
Hydrolysis of Ap6A in H2

18O showed that both the AMP
and ADP products were 18O-labeled; thus the attack by
water was directed either at Pα′ or, preferentially, at Pβ′,
respectively. This indicates that the yeast Ap6A hydrolase
preferentially accommodates a p4A moiety in the substrate-
binding site. In this respect the Ap6A hydrolase from
fission yeast Schizosaccharomyces pombe differs. The
major reaction products were ADP + p4A. The S. pombe
enzyme showed only limited activity with Ap4A and no
detectable activity with Ap3A (47). Finally, an orthologous
human Ap6A hydrolase showed a predominant (80%) route
of Ap6A hydrolysis to AMP + p5A, with the formation of
ADP + p4A as a more minor reaction (20%). Ap5A was
primarily (at least 96%) hydrolyzed to p4A and AMP and
much less efficiently (4%) to ATP + ADP. Interestingly, all
these Ap6A/Ap5A hydrolases also exhibit hydrolytic
activity towards diphosphoinositol polyphosphates (119).
Moreover, the catalytic site of these and some other Np4-6N
hydrolases have been demonstrated to possess
pyrophosphatase activity that removes the β phosphate
residue from the pyrophosphate moiety in 5-
phosphoribosyl-1-pyrophosphate, generating the glycolytic
activator ribose 1,5-bisphosphate (120).

The (asymmetrical) Np4N′ hydrolases and the
Ap6A/Ap5A hydrolases belong to nudix (formerly MutT)
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protein family while the Np3N′ hydrolases (at least from
humans and yeast) are members of the HIT protein family;
the latter have a catalytic histidine triad in their active sites.
To this latter group also belongs the dinucleoside
polyphosphate hydrolase from S. pombe, which can
hydrolyze various NpnN′s (n = 3-5) (121). Although it
prefers Ap4A as a substrate, structurally it is a member of
the HIT family.

Plant enzymes that specifically degrade Ap3A
and/or Ap4A will now be presented in more detail.

4.4.2.1. Dinucleoside triphosphate hydrolase from
yellow lupin seeds

So far, this is the only plant enzyme with this
specificity that has been purified to electrophoretic
homogeneity and characterized (45, 112). It has been
purified from yellow lupin seed meal by ammonium sulfate
fractionation (50-70%), ion-exchange chromatography
(DEAE-Sephacel), gel filtration (Sephadex G-200) and
elution from AMP-agarose (the resin with AMP attached to
the matrix at N-6 via an eight-atom-spacer; Sigma Cat. No.
A 3019) with 0.1 mM Ap3A in 50 mM potassium
phosphate (pH 6.8) containing 1 mM MgCl2 (112). The
enzyme is a single polypeptide chain of 41 kDa. It exhibits
a broad pH optimum for activity (from 5-8), requires Mg2+

and is inhibited by Zn2+. In addition to various Ap3Ns, it
hydrolyzes Ap4A (10-fold more slowly than Ap3A) and
various 5′-mRNA cap analogs. m7Gppp(m7G) was
hydrolyzed 4.5-fold and m7GpppC 3-fold faster than Ap3A.
Of four different m7GpppNs, only m7GpppG was degraded
randomly, yielding equal amounts of m7GDP + GMP and
m7GMP + GDP. Other cap analogs were split with a
preference towards generation of m7GMP. For instance,
m7GpppU was hydrolyzed almost exclusively to m7GMP +
UDP (98-99%) and UMP + m7GDP (1-2%) and m7GpppA
to m7GMP + ADP (75-80%) and AMP + m7GDP (20-
25%).

4.4.2.2. Dinucleoside tetraphosphate hydrolases from
higher plants

Regardless of their origin, the asymmetrically
acting Np4N′ hydrolases are the most well known of the
specific NpnN′-degrading enzymes. Among the plant
enzymes, the (asymmetrical) Ap4A hydrolase was first
identified in extracts of yellow lupin (Lupinus luteus) seeds
(45). This activity was then demonstrated in the extracts of
sunflower and marrow seeds (122), tomato cells grown in
suspension (123) and seeds of the narrow-leafed lupin (L.
angustifolius) (124). The yellow lupin enzyme is a single
polypeptide chain of 18-18.5 kDa, the narrow-leafed lupin
19 kDa (125) and the tomato enzyme 20 kDa (123). The
cDNA obtained from L. angustifolius cotyledons encodes a
protein of 199 amino acids and molecular mass 22,982 Da
(124). In addition to substrate specificity and low molecular
mass, another common feature of the (asymmetrical) Ap4A
hydrolases is their susceptibility to fluoride. This anion is a
strong and specific noncompetitive inhibitor of all these
enzymes and the plant hydrolases are inhibited particularly
strongly. The estimated I50 values of 2-6 µM (122-124) are
among the lowest ones reported for fluoride in any
enzymatic system; these are usually in the mM range (122).

Very recently, it has been shown that an ATP⋅MgFx
complex can bind strongly to the lupin Ap4A hydrolase,
mimicking the substrate (126). The three-dimensional
structure of the lupin Ap4A hydrolase complexed with
ATP⋅MgFx has been solved and comparative studies
showed that the majority of residues involved in substrate
binding by the lupin enzyme are conserved in
(asymmetrical) Ap4A hydrolases from pathogenic bacteria
(50, 116) but are absent in their human counterpart (127).

The three-dimensional structure of the narrow-
leafed lupin (asymmetrical) Ap4A hydrolase was the first
high-resolution solution structure of an (asymmetrical)
Ap4A hydrolase to be determined (128). Although the
structure is similar to that of E. coli MutT, (129), clear
differences were observed. Studies have been also
conducted of the active-site residues of this lupin Ap4A
hydrolase (130). Site-directed mutagenesis has been used to
characterize the functions of key amino acid residues in the
catalytic site of this nudix hydrolase. The results revealed a
high degree of functional conservation between lupin Ap4A
hydrolase and the MutT 8-oxo-dGTP hydrolase from E.
coli (129). E55, E59 and E125 all contributed to catalysis.
Mutations of these residues to Q reduced kcat markedly,
whereas mutations R54Q, E58Q and E122Q had lesser
effects. None of the mutations substantially changed the Km
for Ap4A but modified the pH-dependence, sensitivity to
fluoride and preference of bond cleavage of the
asymmetrical substrate analog, 2′-deoxyadenylated(Ap4A)
(130).

Previously, the stereochemical course of
hydrolysis of Ap4A catalyzed by the yellow lupin Ap4A
hydrolase obtained from my laboratory had been
established (131). In their elegant studies, Dixon and Lowe
showed that the reaction proceeds with inversion of
configuration at the phosphorus indicating that the enzyme-
catalyzed displacement by water occurs by a direct "in-
line" mechanism. The yellow lupin enzyme exhibits
optimal activity in the pH range from 7.5-9, requires Mg2+

for activity and is inhibited by Ca2+(45). The lupin enzymes
also hydrolyze certain Ap4A analogs and derivatives. In
addition to various hybrid Ap4Ns, and Ap4A homologs,
Ap5A and Ap6A (45), they were shown to hydrolyze
methylene and halomethylene analogs, such as AppCH2ppA
or AppCF2ppA (132, 133), Pα-phosphorothioate analogs,
such as Ap4AαS (134), cap-analogs, such as m2,7GppppG
(135), the aforementioned 2′-deoxyadenylylated(Ap4A) (130)
and 3′-adenylylated(Ap4A) (136). Among different Ap4A
analogs tested as inhibitors the strongest ones appeared to be
the adenosine-5′-O-phosphorothioylated polyols (137).
Particularly effective for the L. angustifolius Ap4A
hydrolase was the non-hydrolyzable di(adenosine-5′-O-
phosphorothio) erythritol (Ki = 0.15 µM).

Studies on substrate specificity and inhibition
shed some light on the substrate requirements and one of
the nonhydrolyzable analogs, P1,P4-dithio-P2,P3-
monochloromethylene diadenosine-5′,5′′′-P1,P4-tetraphosphate
that formed an enzyme:ligand complex has been used in
studies of the three-dimensional structure of the Ap4A
hydrolase from L. angustifolius (128).
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Figure 3. Reactions and enzymes that can be involved in
the metabolism of diadenosine triphosphate (ApppA) (A)
and/or diadenosine tetraphosphate (AppppA) (B). Numbers
in the circles represent: 6, phosphodiesterase I (EC 3.1.4.1);
7, phenylalanyl-tRNA synthetase (EC 6.1.1.20); 8,
coumarate:CoA ligase (EC 6.2.1.12); 9, dinucleoside
triphosphate hydrolase (EC 3.6.1.29); 10, dinucleoside
tetraphosphate (asymmetrical) hydrolase (EC 3.6.1.17)

Partial sequencing of the tomato Ap4A hydrolase
and generation of antibodies to particular peptide fragments
(123) allowed a monospecific polyclonal antibody to be
raised. This was used to show a predominant nuclear
location of the Ap4A hydrolase in 4-day-old cells of a
tomato cell suspension culture (138). Microscopic analysis
of the distribution of the Ap4A hydrolase at different stages
of the cell cycle visualized by parallel 4,6-diamidino-2-
phenylindole staining, revealed that the protein
accumulates within nuclei of cells in the interphase but is
absent in the nucleus as well as cytoplasm during all stages
of mitosis.

Interconversions between adenine mononucleotides
and diadenosine polyphosphates that can occur in plant cells
are shown in Figure 3.

5. CONCLUDING REMARKS AND PERSPECTIVES

As has been shown in this review, mononucleoside
polyphosphates and dinucleoside polyphosphates are
ubiquitous compounds and although their existence in plant
cells has yet to be demonstrated, plants possess both the
anabolic enzymes responsible for pnN and NpnN′ synthesis,
and the catabolic enzymes, some of which are highly specific,
that degrade these minor dinucleotides to NTP, NDP and/or
NMP that are found in other organisms. Therefore results
obtained in studies of the biochemistry of these compounds in
plant systems may be of wider significance. A good example is
the study of (asymmetrical) Ap4A hydrolases whose
catalytically active nudix motif proved to be conserved in
various related enzymes.

It is plausible that plants are even more active
with respect to the synthesis of pnNs and NpnN′s than other
organisms since, in addition to aminoacyl-tRNA
synthetases, they possess coumarate:CoA ligase. This
typically plant enzyme, essential for phenylpropanoid
metabolism, has to be particularly active for the efficient
synthesis of such important compounds as lignins and
flavonoids. I anticipate the demonstration of other pnNs

and/or NpnN′ "synthases" in plants. These could be
transferases involved in the metabolism of carbohydrates
that use NDP-sugars as intermediates. At certain stages of
plant development and in certain organs, the reactions
leading, for example, to starch accumulation have to
proceed very intensively. However, in the event of an
inadequate supply of either acyl- or sugar acceptors, these
transferases may transfer the nucleotide moiety (AMP- or
UMP-) from the accumulating acyl~pN intermediates on to
polyphosphates or nucleoside polyphosphates. This
suggestion will require experimental verification since, as
has been shown earlier (21), not all enzymes (ligases) that
catalyze the reversible transfer of the nucleotidyl- moiety
from NTP on to the cognate organic acid, such as an amino
acid, fatty acid, phenolic acid or sugar-phosphate, with
concomitant release of PPi, are able to transfer the NMP-
moiety onto polyphosphates and/or nucleoside
polyphosphates.

So far, there has not been a single report
describing the biological effects exerted by pnNs or NpnN′s
on plant cells. A variety of intriguing effects exerted by
these compounds have been shown in animal and microbial
systems, however (8), and these should inspire plant
physiologists to test pnNs or NpnN′s in experimental plant
models. I hope that this review will encourage somebody to
do so.
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