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1. ABSTRACT

The recognition that the processes involved in
tumour formation are strikingly similar to developmental
morphogenetic processes, such as gastrulation, has
refashioned our approach to cancer research. Wnt and its
receptor Frizzled govern the morphogenetic processes of
gastrulation. Directed cell movements during gastrulation
require the cells to undergo transient epithelial to
mesenchymal transitions, enabling the cells to dissociate
and migrate. To do this, Frizzleds activate different
intracellular signalling cascades that affect cellular
processes such as differentiation, proliferation, cell motility
and cell polarity. Cell dissociation and migration are also
essential for tumour cell invasion and metastases and the
frequent deregulation of Wnt and Frizzled in human
cancers implicates them in this process. Indeed recent
evidence links both canonical (Wnt/beta-catenin) and non-
canonical (Wnt/Ca2+) pathways to tumour invasion and
metastases, emphasizing the importance of Frizzled in
tumour growth and progression.

2. FRIZZLED/WNT SIGNALLING: THE INSIDIOUS
PROMOTER OF TUMOUR GROWTH AND
PROGRESSION

The hallmarks of malignant transformation are
the capacity to invade and metastasise (1, 2). In order for
these processes to occur, tumour cells must be able to
dissociate from the primary tumour, migrate away and gain
access to blood or lymphatic vessels to disseminate to
distant sites in the body. It is assumed that a de-
differentiation of the tumour cells in the invasive area is
required for this process. Epithelial cells exhibit apical-
basal polarity and close linkage to adjacent cells by cell
adhesion molecules and junctions. In contrast,
mesenchymal cells have a front end-back end polarity and

have the ability to migrate through extracellular matrix. De-
differentiation of tumour cells is characterised by a change
from an epithelial to mesenchymal phenotype (3, 4), and is
referred to as the cells undergoing epithelio-mesenchymal
transition (EMT). EMT occurs physiologically during
normal developmental morphogenetic processes that
require cell migration and extracellular matrix invasion.

It is now becoming clear that tumour growth is
also a morphogenetic process that is characterized by
dynamic changes in structure and differentiation, which in
many ways emulate morphogenetic processes in embryonic
development (2, 5). Analysis of tumours in situ by
immunohistochemistry indicates that EMT is associated
with a decrease in cellular proliferative activity and an
increase in the expression of mesenchymal genes that
govern cell motility and invasion (5, 6). Interestingly, while
tumour cells undergo an EMT allowing them to migrate
away from the primary tumour, adenocarcinomas formed at
the site of metastases recapitulate the differentiation status
of the primary tumour (6). Thus, the disseminated
mesenchymal tumour cells are thought to undergo a re-
differentiation toward the primary tumour phenotype in
order to proliferate and build up the metastases [reviewed
in (2)]. Both cellular context and extracellular
environmental cues are thought to regulate the
interpretation and ultimate outcome of signals that are
initiated by the interaction between receptors and ligands
during morphogenesis. Similarly, cellular context and
environmental cues are important regulators of tumour
growth (7, 8). The analogies between developmental and
neoplastic morphogenetic processes are further supported
by the fact that the molecular pathways that govern early
embryogenesis and organogenesis are directly or indirectly
altered in most neoplasms (2, 9-11).
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One such developmental molecular pathway is
initiated by the Frizzled (FZD) receptors. FZD, as a family
of receptors, are particularly amenable to modulation by
environmental factors and the cellular context. The
receptors can activate several signalling pathways that
overlap, not only by shared components but also by cross-
regulation. Transduction of signals down any of the
signalling pathways is modulated by an ever-increasing
number of both positive and negative regulators, including
receptor co-factors and co-receptors (12). During
development the ultimate outcome of FZD signalling
affects cellular processes involved in cell differentiation,
adhesion and motility (9): processes that are pivotal to
tumour growth and invasion (2). The frequent deregulation
of FZD receptors and their Wnt ligands in a rapidly
increasing list of diverse human cancers and pathologies
makes them compelling candidates to drive oncogenesis.
The potential of FZD receptors as promoters of tumour
growth and progression is the subject of this review.

3. THE FRIZZLED FAMILY OF RECEPTORS

FZD was first identified for its role in regulating
planar cell polarity (front end-back end polarity) through
genetic screens in Drosophila (13, 14) and was
subsequently shown to serve as a receptor for Wnt ligands
(15-17). A large number of FZD homologs have since been
cloned from diverse organisms spanning the evolutionary
tree from lower metazoans (18) to man (19). At present
there are at least nineteen human Wnt ligands and ten FZDs
that serve as their receptors
(http://www.stanford.edu/%7Ernusse/wntwindow.html).
All FZD receptors have an N-terminal signal sequence and
a highly conserved cysteine-rich extracellular domain. The
cysteine-rich extracellular domain or CRD, now usually
referred to as the Frizzled or Fz domain, includes ten
conserved cysteine residues. This is followed by seven
transmembrane helices separated by three cytoplasmic and
three exofacial loops. The seventh transmembrane helix is
followed by a C-terminal cytoplasmic tail that is essential
for at least some aspects of receptor signalling (16, 20).

FZD receptors bind Wnt signalling glycoproteins
via the Fz domain (21, 22). This has been demonstrated by
direct binding studies (23) and indirectly, since co-
expression of the amino-terminal ectodomain of FZD
receptors generally antagonizes Wnt-mediated FZD
signalling (17, 24). Naturally occurring secreted frizzled-
related proteins (sFRP), that contain the Fz domain but lack
the remaining domains of FZD, have also been identified
and shown to bind Wnt antagonising Wnt-mediated FZD
signalling (25). The sFRPs are just one family of proteins
that regulate the interaction between Wnt and FZD. Both
positive and negative modulators (eg. Daam1, DKK, WIF)
and co-receptors (LRP5/6) have been shown to regulate the
coupling of Wnt to FZD (see
http://www.stanford.edu/%7Ernusse/wntwindow.html and
http://stke.sciencemag.org/cm/) and the frequent
deregulation of these signal modulators in human cancers
indicates strong selection for deregulated FZD signalling in
oncogenesis.

4. FRIZZLED SIGNALLING PATHWAYS

4.1. Canonical Wnt/Frizzled Signalling
The FZD-dependent signalling cascade comprises

several branches (Figure 1) whose differential activation
depends on specific Wnt ligands, FZD isoforms and the
cellular context (26-28). The best-known Wnt pathway is
the Wnt/beta-catenin pathway (Figure 1a), also referred to
as the canonical Wnt pathway (28). This pathway has been
extensively studied in diverse vertebrate and invertebrate
model systems. beta-Catenin is a central molecule in the
canonical Wnt/FZD pathway. In the absence of a Wnt/FZD
signal, beta-catenin is ubiquinated and rapidly degraded by
the proteosome. Activation of the canonical pathway by
FZD receptors leads to the phosphorylation of dishevelled
(Dsh/Dvl) which, through its association with axin,
prevents glycogen synthase kinase-3beta (GSK-3beta) and
casein kinase 1alpha (CK1alpha) from phosphorylating
critical substrates, including beta-catenin (29).
Phosphorylation of beta-catenin at the N-terminus by
CK1alpha and GSK-3beta is essential for its targeted
degradation (30). Non-phosphorylated beta-catenin escapes
recognition by beta-TRCP, a component of an E3 ubiquitin
ligase complex, thereby avoiding degradation. This non-
phosphorylated form of beta-catenin is then able to localise
to the nucleus (31), form a complex with TCF/LEF
transcription factors (32, 33) and induce the expression of
downstream target genes (see web sites above). The core
components of the canonical Wnt pathway are strongly
conserved through evolution (28).

4.2. Planar Cell Polarity
In addition to the canonical pathway, recent

developmental studies have identified alternative, beta-
catenin-independent, Wnt/FZD signalling cascade
branches. In the cell polarity pathway, referred to as the
Planar Cell Polarity (PCP) pathway in Drosophila (Figure
1b), FZD functions to establish asymmetric cell polarities
and coordinate cell shape changes and cellular movement.
In this pathway FZD regulates the activity of the small
GTPases Rho and Rac through different domains of Dsh.
Rho and Rac in turn regulate the activity of Rock and Jun
N-terminal kinase (JNK), respectively (34-36). Much of
our current understanding of the molecules governing this
pathway comes from studies in Drosophila as several clear
effects of the PCP pathway, such as hair follicle and bristle
orientation, can be readily assessed in this organism. In
addition, the existence of mutant genes that affect planar
polarized structures in Drosophila have been exploited to
study the processes governing PCP. Planar cell polarity was
recently demonstrated in a mammalian system. It was
shown that in the mammalian cochlea, the PCP pathway
initiated by Wnt-7a, governs the unidirectional orientation
of sensory hair cells necessary for unimpaired hearing (37).
The PCP pathway is also involved in regulating cell
polarization during vertebrate gastrulation movements (24,
36, 38, 39) where activation of both Rho and Rac are
required for convergent extension (36). Thus, although
differences exist between vertebrate and invertebrate
pathways, the core components of the pathway are
conserved through evolution (34, 37).
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Figure 1. Signal transduction pathways activated by Frizzled receptors.

4.3. Wnt/Ca++ Signalling
In addition to the polarity pathway, Winklbauer

et al. (40), provide compelling evidence that another branch
of non-canonical Wnt/FZD signalling (the Wnt/Ca2+

pathway, Figure 1c), activated by the Xenopus homolog of
FZD7 (Xfz7), is essential for tissue separation during
vertebrate gastrulation. The Wnt/Ca2+ pathway involves
signalling through the known Ca2+-sensitive kinases PKC
and CamKII (26, 27). Wnt-5a was the first Wnt ligand
identified to signal down this pathway and, in a series of
elegant studies, was shown to require coupling to G-
proteins (41, 42). Interestingly, the Wnt/Ca2+ pathway
activated by Wnt-5a, antagonizes the Wnt/beta-catenin
pathway (38, 43-45). One mechanism of inhibition is via
CamKII, where CamKII activates the MAP kinase-related
Nemo-like kinase (NLK) to phosphorylate TCF/LEF and
prevent beta-catenin/TCF/LEF-mediated transcription (43,
46, 47). In addition, PKC, activated by the Wnt/Ca2+

pathway, blocks the Wnt/beta-catenin pathway by
phosphorylating Dsh (48).

5. WNT/FRIZZLED FUNCTION

5.1 Functional Classification of Wnt/Frizzled.
Since their discovery Wnt ligands have been

classified into two functional groups. Ectopic expression of
one group, referred to as the proto-oncogenic or
transforming group (e.g. Wnt-1, -3A, -8 and –8B), induces
a secondary axis in early Xenopus embryos (44) and
transforms C57mg mammary epithelial cells (28, 49).
Transforming Wnts also promote the stabilization of beta-

catenin in some cultured mammalian cells (50) and thus, in
general, can activate the Wnt/beta-catenin pathway. This
initial link between beta-catenin stabilization and cellular
transformation, and the association of the tumour
suppressor gene, APC [adenomatous polyposis coli (51)],
with regulation of beta-catenin, cemented interest in the
oncogenic potential of the canonical or Wnt/beta-catenin
pathway (52). Other Wnts (e.g. Wnt-4, -5a and –11) do not
elicit axis duplication in Xenopus embryos (44) and cannot
transform C57mg cells (49). However, these Wnts alter cell
movements and reduce cell adhesion when over-expressed in
Xenopus embryos (44, 53) and are referred to as
morphogenetic Wnts. These Wnts can activate non-canonical
Wnt pathways, including the Wnt/Ca2+ pathway and the
Wnt/JNK/Rock pathway, and can antagonise the activity of the
transforming Wnts (38, 43-48). Similarly, the FZD receptors
can be classified into groups based on their basal signalling
activity when ectopically expressed in Xenopus. In this
context, in the absence of ectopic ligand, members of the FZD
family preferentially activate either the beta-catenin pathway
(induce the expression of beta-catenin target genes, Xnr-3 and
siamois) or the Ca2+ pathway (activate CamKII and PKC).
R(Rat)fz-1, M(Mouse)fz-7 and Mfz-8 strongly activate
expression of Xnr-3 and siamois, but do not activate either
CamKII or PKC. Conversely, Rfz-2, Mfz-3, Mfz-4 and Mfz-6
activate both CamKII and PKC but do not appreciably induce
expression of Xnr-3 and siamois (41).

These classifications are based on specific
functional assays however; these classifications are not
exclusive even within these functional assays. Although
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Figure 2. Schematic demonstration of the analogies of
patterning and nuclear beta-catenin expression in sea urchin
gastrulation and colonic neoplasms. The first phase of
gastrulation with epithelio-mesenchymal transition
corresponds with the patterning of invasion with tubular
reconstruction in colonic adenocarcinomas. Strong nuclear
beta-catenin expression (dark red) is found. The second
phase of gastrulation is similar to the patterning of tubular
branching. Here weaker nuclear beta-catenin expression
(light red) is seen. Adapted from Kirchner and Brabletz
(111).

Wnt-5a is classified as a morphogenetic/non-transforming
Wnt, when co-expressed with a sub-group of FZDs
[namely, h(human)fz-5, Mfz-8 and Xfz-8] it can induce
axis duplication (17, 27). This is supported by the
demonstration that Wnt-5a can interact with Xfz7 to induce
the expression of beta-catenin target genes (20). Like Wnt-
5a, Xfz7 has also been extensively studied and shown to
activate multiple Wnt/FZD signalling pathways. It activates
the Wnt/beta-catenin pathway (20, 54-57), and the non-
canonical Wnt/Ca2+ (40, 41, 56, 58) and Wnt/JNK
pathways (24, 39). Thus a given FZD or Wnt does not
always activate one particular pathway. Instead, the
pathway activated by a Wnt/FZD is context-defined and is
likely to be influenced by co-expressed genes, for example
cofactors (59), and is thus context-dependent.

Developmental studies in Xenopus and zebrafish
suggest that efficient diverse signalling may underlie the
essential role that FZD7 pays during gastrulation (39).
Wnt-11 is also intimately involved in the regulation of
gastrulation. Importantly, Wnt-5a can mimic the function
of Wnt-11 in this process, thus both FZD7 and Wnt-5a
have the functional capacity to direct morphogenetic
processes during development. Another developmentally
important morphogenetic process that is dependent on
EMT is the formation of neural crest cells, an essential
prerequisite for the formation of the peripheral nervous

system (60). Wnt signalling initiated by Wnt-6 and FZD7 is
necessary and sufficient to induce the mesenchymal neural
crest cells in avian embryos. In this system, ectopic
expression of FZD7 ectodomain inhibits neural crest cell
induction (61). Thus, based on their role in embryonic
morphogenesis, mechanistically Wnt and FZD, particularly
Wnt-5a and FZD7, have the potential to direct
morphogenetic processes during tumour growth and
progression.

5.2 Developmental morphogenesis and the neo-
morphogenesis of tumours.

There is little evidence to support either loss of
function mutations or gain of function mutations of Wnt
and FZD genes, suggesting that genetic mutation is an
unlikely causative mechanism for Wnt/FZD-mediated
tumourigenesis (11). Nonetheless, Wnt and FZD are over-
expressed in diverse cancers (Table 1) and given that Wnt
and FZD govern morphogenetic developmetal processes,
such as gastrulation and neural crest cell induction (2), it is
highly likely that they have a similar tissue-remodelling
function in cancer.

Each branch of the Wnt/FZD signalling cascade
(Figure 1) regulates cellular processes that are essential for
normal vertebrate dorsoventral patterning and gastrulation.
During vertebrate gastrulation the early embryo is
reorganised into three germ layers: the outer ectoderm, the
inner endoderm and the mesoderm located between the
ectoderm and endoderm. This process is accompanied by
remarkable changes in cell adhesion, cell morphology and
cell migration, it is thus not surprising then that Wnt/FZD
signalling is critical during gastrulation (9). Importantly,
these same cellular processes are now recognised as pivotal
to tumour growth and progression, and striking analogies
between embryogenesis and tumorigenesis have been
identified (2, 5).

The shared patterns identified are cell
dissociation, reassembly, tubular reconstruction and
branching of neoplastic cells as the tumour tissue mass
grows (Figure 2). The epithelial cells at the ‘invasive front’
or leading edge undergo an EMT, which is characterised by
remodelling of the cytoskeleton to change cell shape and is
accompanied by a shift in gene expression from an
epithelial to a mesenchymal repertoire. This is
characterised by a switch from cytokeratin to vimentin
intermediate filament expression and a reduction in the
expression of cell adhesion molecules, particularly E-
cadherin (2). Cell division is either down regulated or shut
off before the initiation of morphogenetic changes during
development, and indeed, this is also observed in tumour
tissues. In colon adenocarcinoma, cancer cells at the
invasive front of tumours are less proliferative than the
cells at the core of the tumour (6). Detection of EMT
markers, rather than proliferative index, in cells at the
invasive front is now a well-recognised hallmark of cancer
progression characterising invasive and metastatic
carcinomas (2, 4).

The analogy between tumorigenic and
developmental processes has provided new prognostic
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Table 1. FZD Expression in Human Cancers
Frizzled Cancer Reference
FZD1/2 Breast, colon, gastric-intestinal, head and neck,

mesothelioma, renal
Tothill et al., Peter MacCallum Cancer Centre, (95-97).

FZD3 Colon, ovarian, melanoma http://genome-www5.stanford.edu, (98-101).
FZD4 Melanoma http://genome-www5.stanford.edu, (98-101)
FZD5 Melanoma, head and neck, colon, ovarian http://genome-www5.stanford.edu, (86), (95), (98-101).
FZD6 Melanoma, renal http://genome-www5.stanford.edu, (98-101).
FZD7 Bladder/ureter, breast, colon, chondrosarcoma,

gastric, lung (squamous and adenoma),
oesophageal, melanoma, mesothelioma, ovarian,
pancreatic, prostate

http://genome-www5.stanford.edu, (98-106), Tothill et
al., Peter MacCallum Cancer Centre.

FZD8 Glioblastoma, ovarian http://genome-www5.stanford.edu, (98-101).
FZD9 Squamous cell carcinoma, melanoma http://genome-www5.stanford.edu, (98-101).
FZD10 Colon, ovarian, juvenile granulosa tumour http://genome-www5.stanford.edu, (98-101), (107).
Other
Wnt-5a Bladder/ureter, melanoma, breast, colon, gastric,

lung (squamous and adenocarcinoma), ovarian,
pancreas, prostate

http://genome-www5.stanford.edu, (86), (96), (98-101),
(105), (108), (109), Tothill et al., Peter MacCallum
Cancer Centre.

sFRP4 Colon, gastric, prostate. http://genome-www5.stanford.edu, (97-101), Tothill et
al., Peter MacCallum Cancer Centre.

 

Figure 3. A hypothetical model for the morphogenesis of
colonic adenocarcinoma. Cells are primed to receive
signals to undergo transition to an epithelial or a
mesenchymal phenotype. Adapted from Kirchner and
Brabletz (111).

markers and predictors of disease outcome. For example,
co-localization of nuclear beta-catenin and matrilysin in
colon tumour sections is a strong indicator for tumour
recurrence and these patients segregate to a group with less
favourable survival rates (62). Indeed, several genes that
are associated with EMT and/or cell migration and invasion

[e.g. matrilysin (MMP7) (63, 64), fibronectin (65),
vimentin (66)] are increased at the invasive front of colon
tumours and are targets of beta-catenin/TCF-mediated
transcription. Interestingly many of the genes disrupted in
colon cancer that have been extensively studied in terms of
cell proliferation, differentiation and apoptosis, are now
often assigned properties associated with ‘neo-
morphogenesis’ such as cell placement (tissue patterning)
and movement (cell-cell contact, cell polarity, cell-matrix
adhesion, migration and invasion). For example, c-src is a
potent regulator of cell proliferative responses, however,
elevated c-src is linked to altered cell-matrix adhesion
rather than proliferation in colon cancer cells, suggesting a
role for c-src in cell motility (67). This is corroborated by
the demonstration that c-src acts synergistically with LEF-1
to induce matrilysin (MMP7) expression and thus has the
potential to affect cellular invasion (68). Similarly,
expression of c-myc, another well-characterised regulator
of proliferation that is a beta–catenin target gene, correlates
with colon adenocarcinoma tumour size rather than cell
proliferative capacity (69).

One aspect of tumour metastases that has not been
appreciated until recently, and again stems from analogies
with developmental processes, is the requirement for the re-
instalment of epithelial characteristics for cell re-assembly
and reconstruction of the tumour at the site of metastases
[reviewed in (2, 5)]. Colon adenocarcinoma metastases,
which presumably arise from mesenchymal tumour cells
that dissociate from the well-differentiated colon tumours,
are also well differentiated. Thus the histology of the
metastases is similar to that of the primary tumour (6) and
indicates that a mesenchymal to epithelial transition (MET)
has occurred. This is supported by recent microarray
studies where the genetic profile of the metastases mirrored
that of the primary tumour (70, 71). Thus the gene clusters
that predict the ability to metastasise to distant sites are an
early and inherent genetic property of the primary tumour.
These findings argue against the widely accepted idea that
metastatic potential is acquired relatively late during
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Figure 4. Expression of FZD1/2 in colon cancer (E, F) but
not normal (B, C) colon tissue, as detected by
immunohistochemical staining (brown). A and D are
haematoxylin and eosin stained sections. Adapted from
Holcombe et al., (96).

multistep tumorigenesis but support the notion that the
changes in tumour cell phenotype at the invasive front are
transient and reversible (Figure 3). Inducible transient
expression of mesenchymal gene in metastasising cells is
supported by the finding that vimentin-positive cervical
cancer tumours are more likely to have lymph node
metastases, but only a small percentage of the cells in the
primary tumour and the metastases are vimentin positive.
This suggests that the induction of vimentin expression is
reversed as the migrating cells re-establish in the invasive
clusters (72). Identifying the genes that facilitate or regulate
these phenotype transitions is the next important challenge.
Our current understanding of Wnt/FZD function in early
embryogenesis and organogenesis and their frequent
deregulation in cancer, make these molecules prime
candidates.

5.3. Wnt and Frizzled in human cancers
Genome profiling and expression studies are

powerful tools that continue to identify the FZDs and Wnts
that are aberrantly expressed in human cancers (Table 1).
However, translating aberrant expression into pathological
function has been a slow process to date. The proto-
oncogenic effects of Wnt were discovered some twenty
years ago (73), yet it was only recently demonstrated in a
transgenic mouse model that tumour growth is dependent
on Wnt-1 expression per se (74). The over-expressed Wnt-
1 is the wild-type molecule and is presumably signalling
through FZD receptor/s that remain/s to be identified.
Despite the slow beginning, this next phase is rapidly
gaining momentum and is propelled by genome profiling of

human cancers and experimentation in cell culture and
animal models systems.

Expression studies have uncovered some
intriguing surprises. Inactivation of APC appears to be an
obligatory step for the initiation of colon cancer as
inactivation of this tumour suppressor is an early event in a
vast majority of all colon adenocarcinomas (51). The
tumour suppressor function of APC has been largely
attributed to the role APC has in facilitating the degradation
of beta-catenin. Thus loss of APC in colon cancer has been
equated with loss of beta-catenin regulation (52). It may
seem surprising then that re-activation of ligands, receptors
and receptor inhibitors putatively up-stream of beta-catenin
are implicated by expression studies, in the progression of
colon cancer. However, several Wnts, FZDs (including
FZD1/2 shown in Figure 4) and sFRPs are indeed
expressed in colon tumours and colon adenocarcinoma cell
lines (references in Table 1) and recent evidence suggests
that it may in fact be the loss of functional APC that
induces their expression in colon cancer. For example,
several studies have demonstrated that colon cancer cells
express FZD7 (references in Table 1 and Vincan et al.,
unpublished data). The FZD7 gene promoter contains TCF
binding sites and FZD7 expression is elevated in response
to activation of beta-catenin/TCF-mediated transcription
(75). In addition to FZD, several FZD/Wnt pathway
molecules are also targets of beta-catenin/TCF-mediated-
transcription and are expressed in cancers with deregulated
Wnt/FZD signalling. These include transcriptional factors
[e.g. TCF-1 (76), LEF-1 (77), TLE/Groucho (75)] and
regulators/transducers [e.g. Axin-2 (78-80), DVL (81, 82)].
In this regard, the mutational inactivation of APC may
contribute to establishing the genetic makeup that
facilitates cell phenotypic changes induced by FZDs and
other factors (Figure 3). The recent observation that LEF-1-
induced EMT was dependent on inactive mutant APC (83)
strongly supports this notion. LEF-1 is known to initiate
EMT during normal development of several organs (84),
however in the context of cancer, both LEF-1 and loss of
APC are required for EMT. Interestingly, loss of APC
tumour suppressor function is also a precursor to invasive
adenocarcinoma of the oesophagus and thus, presumably
EMT in this cancer (85). APC is mutated in several other
cancers (11); hence APC inactivation may be a pre-
requisite for phenotype modulation in cancers other than
gastrointestinal cancers.

Although, the initial focus on the Wnt/FZD
pathway in oncogenesis stemmed from the recognition of
the oncogenic potential of beta-catenin and the canonical
Wnt/beta-catenin pathway, more recent evidence illustrates
the oncogenic potential of the non-canonical pathways. A
recent report has shown that Wnt-5a expression in
melanoma correlates with progression to metastatic disease
(86). In addition, in vitro studies revealed that over-
expression of Wnt-5a in melanoma cells increased cell
motility and invasion. No increase in nuclear beta-catenin
was detected but PKC activity was dramatically increased,
indicating that the Wnt/Ca2+ pathway, and not the
Wnt/beta-catenin pathway, was activated during this
phenotype transition. Furthermore, FZD5 was required for
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the Wnt-5a effects in vitro (86). Thus in this context, the
combination of Wnt-5a and FZD5 activates the Wnt/Ca2+

pathway and directly affects cell motility and invasion. The
identification of Wnt/FZD signalling pairs, and the
signalling pathways they activate, will help define the role
of FZDs in oncogenesis. Given the roles of the small
GTPases Rac, Rho and Cdc42, in the regulation of actin-
membrane interactions that are implicated in cell motility,
and the impact of these GTPases on the canonical
Wnt/beta-catenin pathway (87), direct evidence for the
involvement of the planar polarity branch of FZD
signalling in cancer is imminent.

The frequent detection of Wnts and FZDs in
diffuse or poorly differentiated cancers or cancers with a
high metastatic potential (references in Table 1), suggests a
role for Wnt/FZD in cell de-differentiation or induction of a
mesenchymal phenotype. This is supported by the
‘mesenchyme’ inducing role of FZD during development
(61) and is further supported by the tumour suppressive
effects of sFRP proteins in some cancers (25). For example,
membranous expression of sFRP4 is associated with a good
prognosis in pancreatic cancer, while ectopic expression of
sFRP4 in a prostate cancer cell line, induced a more
epithelial phenotype (88, 89). Several Wnt, FZD and sFRP,
including sFRP4, are expressed during foregut
development and are thought to govern epithelial-
mesenchymal interactions during pancreatic morphogenesis
(90). The dramatic over-expression of sFRP4 in pancreatic
cancer and the link to clinical outcome (88) suggests that
sFRP4 may have a similar role in regulating epithelial-
mesenchymal interactions during prostate cancer
morphogenesis.

It is also conceivable that FZDs may promote tumor
growth by invoking more epithelial characteristics so that
tumor cells can form cell junctions, reduce their potential to
migrate and remain cohesive for initiation of tumor growth
to occur. Several lines of evidence support a role for FZD7,
in particular, in promoting an epithelial phenotype in
‘oncogenic’ gastrointestinal epithelial cells. FZD7 is the
only FZD family member conserved in developing gut
systems through evolution from Hydra (18) to man (90,
106) where it is thought to contribute to the
establishment/maintenance of the epithelial lining.
Furthermore, the cytoplasmic tail of FZD7 (and FZD1, 2
and 4) interacts with molecules that govern apical-basal cell
polarity, the hallmark of the epithelial phenotype (91, 92).
The versatility of FZD7 as a signal transducing receptor
and the pivotal role it plays in developmental processes
(39) make this receptor and its Wnt ligands, such as Wnt-
5a, compelling candidates to contribute to the regulation of
the dynamic remodeling required for tumor morphogenesis.

The frequent detection of several Wnts and FZDs
in a particular cancer (Table 1) may at first imply extensive
redundancy. However, functionally distinct Wnts induce
different responses and have distinct effects on gene
expression in one cell type (93). Ectopic expression of
Wnt-1 but loss of function of Wnt-5a transforms C57mg
mammary epithelial cells. Microarray analysis of Wnt-1
and Wnt-5a (and/or Rfz-2) expressing C57mg cells

revealed that, in addition to several Wnt pathway target
genes that were up-regulated by either Wnt, expression of
two genes, mesothelin and stromelysin-1, was increased
exclusively in Wnt-1 and Wnt-5a/Rfz-2 C57mg cells,
respectively. In the Wnt-5a/Rfz-2 C57mg cells, there was a
moderate reduction in cell proliferation and phenotypically,
the cells were more spread out (93). Both these
characteristics are consistent with induction of a ‘relaxed
epithelial’ phenotype or partial EMT. Stromelysin-1 is a
matrix metalloproteinase known to induce EMT in
mammary epithelial cells (94) and the demonstration that
Wnt-5a/Rfz-2 can induce its expression provides a possible
mechanism for Wnt-5a function in some breast cancers.
Unravelling the function of each FZD in the context of each
cancer will no doubt reveal complex mechanisms that are
likely to be dependent on the environment of the cancer in
situ.

6. CONCLUSIONS

Developmental studies have demonstrated that
FZD receptors trigger signal transduction pathways that
govern cellular processes that are essential for cell
placement, adhesion and motility. The recognition that
these processes also govern tumour growth, invasion and
metastases, together with the frequent deregulation of FZD
in human cancers, is set to catapult FZD to the forefront of
cancer research. Indeed, both canonical and non-canonical
Wnt/FZD signal transduction pathways have been directly
linked to tumour invasion and metastases (5, 86). The
potential to block or manipulate the Wnt/FZD pathway
offers novel avenues to prevent the progression of cancer
and tumour recurrence.
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