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1. ABSTRACT

Leukocyte transendothelial migration during
homing and inflammation requires drastic cell
morphological changes, involving cytoskeletal-directed
clustering of adhesion receptors in specialized protrusive
membrane structures in leukocytes and endothelial cells.
Extravasation is an active process not only for leukocytes
but also for endothelial cells, which promote the rapid and
efficient entry of leukocytes to the target tissues, without
disturbing the integrity of the endothelial barrier. Herein,
we have revised the specialized protrusive structures
(microvilli, endothelial docking structures, leukocyte
lamellipodia and uropod) involved in the different stages of
leukocyte extravasation. The adhesion receptor
redistribution, cytoskeletal remodelling and intracellular
signaling events that participate in this phenomenon are
also discussed.

2. INTRODUCTION

Cell adhesion receptors regulate many cellular
processes such as activation, migration, growth,
differentiation and death (1, 2), by both signal transduction
and the modulation of intracellular signaling cascades
triggered by different growth factors (3). Cellular

interactions are critical for regulation of hematopoiesis (4,
5) and inflammatory responses (6, 7). The coordinate
function of adhesion receptors, cytoskeleton and signaling
molecules is crucial for leukocyte extravasation, a central
process in immunity. Hence, the correct integration of
“outside-in” and “inside-out” signals in leukocytes and
endothelium during each stage of extravasation is critical to
allow the completion of this phenomenon, the so-called
“multi-step paradigm” (6, 8). The present review focuses
on the molecular mechanisms and the specialized
protrusive structures that govern this dynamic process in
both leukocytes and endothelial cells.

3. INITIAL INTERACTIONS BETWEEN
CIRCULATING LEUKOCYTES AND THE
ENDOTHELIUM: TETHERING AND ROLLING

Free-flowing leukocytes contact with and adhere
to the vascular wall under shear forces to initiate an
inflammatory response or to migrate into a secondary
lymphoid organ (homing). Leukocyte tethering and rolling
on activated endothelial cells are the first steps of the
sequential process of extravasation, followed by the firm
adhesion and transendothelial migration of leukocytes (9).
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Figure 1. The first step of  the extravasation process. As shown in the diagram, free-flowing leukocytes establish transient
contacts with activated endothelial cells (tethering), being slowed down. These initial contacts allow leukocytes to roll on the
endothelial wall to become activated and finally arrest. The main molecules that participate during this process are presented in
detail in the inset: E- and P-selectin in endothelium as well as L-selectin and PSGL-1 in leukocytes are localized at specialized
protrusions (microvilli) supported by the actin cytoskeleton, which is linked to the adhesion receptors via ERM proteins, alpha-
actinin and other cytoskeletal components. All these molecules interact with their corresponding receptors through carbohydrate
residues such as Sialyl Lewisx. Thus, L-selectin binds to several endothelial counterreceptors (E-selectin among them) and
leukocyte PSGL-1 interacts with endothelial E- and P-selectin. In addition, The binding of PSGL-1 with its ligands allows the
recruitment of the tyrosine kinase Syk via ERM proteins, which triggers signaling cascades that culminate in the activation of
expression of several genes (e.g., SRE and c-fos) in leukocytes.

These initial contacts are largely mediated by selectins and
their ligands. All the issues addressed in this chapter are
schematically depicted in Figure 1.

3.1. Selectins and their ligands as critical mediators of
tethering and rolling

Selectins (P-, E- and L-selectin) are cell adhesion
molecules that predominantly mediate the initial
interactions of leukocytes with endothelium. They are type
I transmembrane glycoproteins that bind to sialylated
carbohydrate moieties present on ligand molecules in a
calcium-dependent manner. Selectins and their ligands
interact with variable affinity, and due to their rapid
association and dissociation rates mediate transient contacts
between leukocytes and endothelium (“tethering”) (10, 11).
Tethering results in the slowing of leukocytes in the
bloodstream and their rolling on the surface of
endothelium, which favors subsequent interactions with
endothelial cells mediated by integrins and their ligands,

increasing the adhesiveness of leukocytes, that leads to
their final arrest on the vessel wall (12).

 P-selectin, which is constitutively expressed by
platelets and endothelial cells in secretory granules, is
translocated to the cell surface within minutes upon cell
activation (13). Once expressed on the surface of
endothelial cells, P-selectin is rapidly internalized by
endocytosis. Therefore, this adhesion receptor has an
important role in early leukocyte recruitment during
inflammation (14). E-selectin is also expressed by
endothelial cells, but it is synthesized de novo upon cell
activation (15). After stimulation with IL-1 or TNF-alpha,
it is maximally expressed on the membrane at 4h, and then
is slowly internalized and degraded (16). L-selectin is
constitutively present in most leukocytes, but it is rapidly
shed upon cell activation, thus facilitating the progression
to adhesion and transendothelial migration (TEM) (17-19).
It was first described as a lymphocyte homing receptor, but
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it also participates in leukocyte recruitment at later stages
of the inflammatory response (20).

The best characterized selectin ligand is PSGL-1
(P-selectin glycoprotein ligand-1), a homodimeric
sialomucin expressed by almost all leukocytes (21) and
platelets (22). PSGL-1 is an important functional ligand in
vivo for all three selectins (23-26). In addition, CD24 and
ESL-1 (E-selectin ligand-1) seem to be ligands in myeloid
cells for P-selectin and E-selectin, respectively (27-29).
Finally, it has been described that E-selectin, GlyCAM-1,
MAdCAM-1, CD34 and Sgp200 specifically interact with
L-selectin (reviewed in 30).

Although selectins and their ligands are the
primary mediators of leukocyte rolling, alternative cell
adhesion pathways are involved in this phenomenon. It has
been described that alpha4beta1 (VLA-4) and alpha4beta7
integrins can also mediate leukocyte tethering, rolling and
arrest through their interaction with VCAM-1 and
MAdCAM-1 in the absence of selectins (31). On the other
hand, the interaction of LFA-1(alphaLbeta2)/ICAM-1
cooperates with L-selectin in leukocyte rolling by
stabilizing the tethering phase and decreasing the rolling
velocity (32, 33). In addition, the chemokines CX3CL1
(fractalkine) and CXCL16 also mediate both rolling and
firm adhesion by interacting with CX3CR1 and CXCR6,
respectively (34-37).

3.2. Membrane topography of adhesion molecules
involved in rolling

Adhesion receptor distribution on cell membrane
has a key role in leukocyte interactions and is an important
regulatory mechanism for leukocyte trafficking (38).
Selectins are clustered at the tips of microvilli, and this
localization is critical for tethering and rolling.

L-selectin is anchored to the actin cytoskeleton
through the constitutive association of its cytoplasmic tail
to alpha-actinin, and its cell activation-dependent binding
to moesin (39, 40). Although the association with alpha-
actinin is not essential for its targeting to microvilli (39), its
cytoplasmic anchorage to the actin cytoskeleton is
necessary to control L-selectin function (41, 42). PSGL-1 is
also localized at the tips of microvilli, and this subcellular
distribution has been found to be important for the
initiation of tethering and rolling of leukocytes (43, 44).
Furthermore, the capability of alpha4, but not beta2
integrins, to initiate leukocyte adhesion under flow is also
explained by its selective topographic localization at
microvilli (30). Finally, less is known about the
involvement of cytoskeleton in the efficient presentation in
microvilli of E- and P-selectin by endothelial cells.
However, it has been described that leukocyte adhesion
induces E-selectin linkage to the actin cytoskeleton through
alpha-actinin, paxillin, vinculin, and FAK, but not talin
(45).

3.3. Selectins and PSGL-1 as signaling receptors
It has been demonstrated that L-selectin activates

multiple signaling pathways involved in the reorganization
of the actin cytoskeleton, such as the MAPK cascade (46),

the tyrosine kinase p56lck and Ras (47) or the Rho GTPase
Rac2 (48). In this regard, it has been described that
neutrophils from Rac2-/- mice show deficient actin
polymerization and L-selectin-mediated rolling (49). On
the other hand, PSGL-1 activates the MAPK pathway (50),
and acts as a negative regulator of human hematopoietic
progenitor cells (5). In addition, it has been demonstrated
that PSGL-1 induces a rapid synthesis of uPAR and
different cytokines such as TNF-alpha, IL-8 and MCP-1 in
neutrophils, monocytes and T cells (51-54). Moreover, it
has been shown that PSGL-1 induces activation of beta-2
integrins and binding to ICAM-1 in neutrophils (55, 56).
Our group has also described the interaction of PSGL-1
with ERM proteins, which link membrane molecules with
the actin cytoskeleton (57, 58). This interaction is of critical
importance for the leukocyte activation that occurs before
extravasation, because it allows the recruitment of the
tyrosine kinase Syk by association to ERM proteins
through their phosphorylated ITAM-like motifs. Therefore,
after PSGL-1 ligation to P-selectin or E-selectin, Syk
conveys rolling-emanating signals to the activation of gene
expression programs (59).This phenomenon suggests that
the intracellular signals induced through PSGL-1 have a
priming effect on leukocyte activation, up-regulating the
expression of different molecules further involved in
extravasation and effector functions (60). Since it has been
demonstrated that the cytoplasmic tail of L-selectin also
interacts with moesin (40), it is very likely that selectins
use a similar strategy to trigger intracellular signaling
cascades. In this regard, it has been shown that E-selectin is
dephosphorylated upon endothelial cell interaction with
leukocytes, supporting its role as a signal transduction
molecule (61). In addition, P-selectin also functions as a
signaling receptor, mediating stimulation through its
interaction with ligands expressed by leukocytes (62).

4. ACTIVATION, ARREST AND FIRM ADHESION
OF LEUKOCYTES

During their rolling, leukocytes are stimulated by
chemokines and integrin ligands expressed on the surface
of endothelial cells. These outside-in signals induce an
important increase in the affinity and/or avidity of
leukocyte integrins (inside-out signals) that allows the
shear-resistant arrest of these cells and their firm adhesion
to activated endothelium. The adhesion mediated by
integrins and their ligands, and their subsequent signaling
processes involve a profound remodelling of cytoskeleton
in both endothelial cells and leukocytes. In Figure 2, the
major adhesive, structural and signaling molecules that
participate in the leukocyte firm adhesion to endothelium
are summarized.

4.1. Chemokines trigger the arrest of leukocytes on
endothelium

The main in situ modulators of integrin function
are chemokines. These chemotactic cytokines act through
G-protein-coupled receptors (GPCR), and induce an array
of activatory signals within fractions of seconds, leading to
an enhancement of adhesion and shape changes in
leukocytes (63, 64). Since it is unlikely that soluble
chemokine gradients present in the blood flow regulate
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Figure 2. Activation, arrest and firm adhesion of leukocytes on endothelium: The slowing-down of leukocytes facilitates their
interaction with chemokines exposed on endothelium, triggering the activation of leukocyte integrins by increasing their affinity
and avidity to allow the final arrest of adherent leukocytes. This activated state involves a drastic morphological change from the
round shape of circulating leukocytes to the polarized shape typical of migrating cells. The acquisition of polarity implies the
segregation of adhesion molecules (ICAM-1, ICAM-3, CD43, CD44, PSGL-1, etc) to the rear pole of the cell (uropod), which is
lumen-orientated for the recruitment of bystander leukocytes; whereas the integrins localized to the contact area with
endothelium to allow the spreading of the cell body onto the vascular wall. On the other hand, the endothelium also plays an
active role in firm adhesion by creating docking structures around the attached leukocytes. These endothelial docking structures
are formed as a result of VCAM-1 and ICAM-1 engagement by their integrin counterreceptors (VLA-4 and LFA-1, respectively),
and are supported by a cortical actin scaffold in which ERM proteins, alpha-actinin, vinculin,VASP and other actin-related
proteins participate. In addition, members of the tetraspanin family also cooperate with the endothelial adhesion receptors in the
docking structure formation. The principal regulatory molecules involved in the formation of the above-mentioned structure and
in leukocyte integrin activation (as discussed in the text) are also shown in the inset.

leukocyte trafficking to specific target tissues, it is thought
that chemokines mainly function immobilized at the
emigration site (65). At sites of inflammation or in
secondary lymphoid tissues, chemokines are present in the
subendothelial tissues, as well as in the luminal surface of
endothelium. These chemokines are synthesized or
transported (transcytosis) by endothelial cells and bound to
glycosaminoglycans (GAGs) and, possibly, to the Duffy
antigen/receptor for chemokines (DARC) (66). Chemokine-
binding sites are concentrated on endothelial microvilli, as
occurs with chemokine receptors in leukocytes (67). The
presence of particular subsets of chemokines on
endothelium contributes to the selective recruitment of
leukocytes, a critical phenomenon for the inflammatory
response and lymphocyte homing (reviewed in 68).
Chemokines may differentially modulate distinct integrins
in the same microenvironment, leading to transient or

sustained adhesion of leukocytes (69). Furthermore,
CXCL12 (SDF-1alpha), CCL19 (MIP-3beta), CCL21
(SLC) and CCL20 (MIP-3alpha) have all been shown to
induce LFA-1-mediated cell arrest in different lymphoid
subpopulations (63, 65, 70). In addition, SDF-1alpha up-
regulates VLA-4 affinity for VCAM-1, promoting
monocyte arrest (71). The mechanism involved in such
regulation is not clear, but may involve small Ras GTPases
such as Rap1 (72-74), Rho GTPases (75) and other
signaling molecules.

4.2. Integrin affinity and avidity changes as leukocyte
strategies to achieve firm attachment and spreading

Integrins comprise a family of alpha-beta
heterodimeric transmembrane molecules whose activation
can be tuned to bind to different Ig-like or extracellular



Protrusive structures in leukocyte extravasation

1853

matrix ligands. Integrin-mediated cell adhesion is tightly
regulated by conformational changes (affinity) and
clustering (avidity), being independent of surface
expression levels (76). Circulating leukocytes avoid non-
specific contacts with vascular walls by maintaining their
integrins in non-adhesive states. The in situ activation of
integrins during leukocyte rolling can be driven by multiple
factors. Among affinity regulatory signals, divalent cations
such as Mn2+, Mg2+ or Ca2+ (77-79) rank as important
elements at least in vitro. On the other hand, the binding of
integrins to endothelial ligands can be enhanced
independently of integrin affinity by increasing receptor
density (avidity) at the contact area. Integrin avidity can be
defined as a rapid interplay between preformed, ligand-
induced, and chemokine-triggered avidity states (reviewed
in 42). Other potential modulators of VLA-4 and LFA-1
avidity at dynamic contacts, requiring concomitant
chemokine triggering, seem to be CD47 and L-selectin (80,
81). There is still another level of regulation known as
integrin cross-talk. Thus, the interaction of high affinity
VLA-4 with VCAM-1 may trigger LFA-1 clustering,
enhancing its avidity to ICAM-1, and promoting leukocyte
firm adhesion to endothelium. On the contrary, LFA-
1/ICAM-1 engagement decreases the binding of VLA-4 to
VCAM-1, allowing leukocyte migration towards the
transmigration sites (82, 83).

The clustering of integrins is dependent on their
release from the actin cytoskeleton. In this regard, there are
relevant differences between VLA-4 and LFA-1. LFA-1
may preform microclusters stabilized by H-ras and
cytohesin-1, which are activated via PI3-K or PKC (84-86).
However, the macroclustering of LFA-1 prior to ligand
engagement is prevented by cytoskeleton anchorage, with
the involvement of non-phosphorylated PKC substrates and
talin. Consequently, it is necessary the activation of  PKC
and calpain to release LFA-1 from the actin cytoskeleton
(87). Conversely, VLA-4 clustering cannot be induced
prior to ligand binding. Furthermore, although PKC signals
participate in the release of VLA-4 from cytoskeleton,
calpain or PI3-K are not implicated. In addition, it has been
described that VLA-4 constitutively interacts with paxillin,
while LFA-1 is able to interact with alpha-actinin
(reviewed in 42).

Once integrin avidity has been up-regulated and
an effective engagement with ligand occurs, the integrin
anchorage to actin cytoskeleton is restored and outside-in
signaling leads to actin remodelling and cell spreading.
Then, leukocytes undergo a profound change in their
morphology, acquiring a polarized, motility-related shape
(reviewed in 88). This cell shape change favors leukocyte
extravasation, and is also involved in the recruitment of
bystander leukocytes through the trailing edge (uropod)
(89).

4.3. The docking structure: the endothelial contribution
to the leukocyte  firm adhesion process

Endothelium had been considered as a mere
physiological barrier, a passive partner for leukocytes
during TEM. However, it is now evident that endothelium
is a key active element in different physiological processes,
including leukocyte extravasation. Our group has

contributed to gain insight into the molecular mechanisms
underlying the active role of endothelial cells in the TEM
of leukocytes. We have found that activated endothelial
cells generate “docking” structures that efficiently attach
leukocytes, partially engulfing them. VCAM-1 and ICAM-
1, together with cytoskeletal and signaling molecules, are
essential constituents of these cup-like structures based on
microspikes that emerge from the endothelial apical
surface, and which are dynamically involved in capturing
leukocytes prior to TEM (90).

4.3.1. VCAM-1 and ICAM-1 play an essential role in
leukocyte capture

VCAM-1 and ICAM-1, members of the Ig
superfamily, are the two major endothelial adhesion
molecules involved in the binding to leukocyte integrins
VLA-4 and LFA-1, respectively (91, 92). ICAM-1 but not
VCAM-1 is expressed at low levels in resting endothelium,
and both molecules are induced upon cell activation by pro-
inflammatory cytokines such as IL-1 and TNF-alpha(93,
94). We have recently found that these integrin ligands are
laterally associated with different tetraspanins (CD9, CD81
and CD151), forming protein microdomains in the apical
surface of endothelium (Barreiro and Yáñez-Mó,
unpublished data). Furthermore, it has been described that
VCAM-1 and ICAM-1 are anchored to the actin
cytoskeleton through members of the ERM family, mainly
ezrin and moesin (90, 95, 96). All these molecules, which
are clustered at endothelial microvilli and microspikes,
contact and surround the adherent leukocyte, as key
elements of the docking structure. The cytoskeletal linkage
of VCAM-1 and ICAM-1 is critical for the generation of
this structure upon leukocyte adhesion, but it is not
necessary for the proper presentation of VCAM-1 and
ICAM-1 at the apical surface, since this localization seems
to be independent of ligand engagement and actin
anchorage (Barreiro and Yáñez-Mó, unpublished data).

Dynamic experiments have demonstrated the
involvement of ICAM-1 (through its interaction with LFA-
1) not only in the firm adhesion of leukocytes but in their
transendothelial migration and subsequent movement
underneath the endothelial monolayer. Moesin has a similar
behaviour, suggesting that ICAM-1 is anchored to the actin
cytoskeleton via ERM proteins during the whole process.
On the contrary, VCAM-1 is excluded of the late steps of
leukocyte extravasation and only participates in the
formation of the endothelial docking structure that firmly
attaches the lymphocyte to the endothelium (90).

4.3.2. Structural components and signaling pathways
involved in the generation and maintenance of the
docking structure

The sequential steps involved in the generation of
the endothelial docking structure could be as follows. The
initial interaction of VCAM-1 and ICAM-1 with their
ligands (VLA-4 and LFA-1 integrins, respectively) triggers
their clustering at the leukocyte-endothelium contact area,
together with phosphorylated activated ERM proteins.
Then, these adaptor proteins in concert with alpha-actinin
and vinculin participate in the rearrangement of the actin
cytoskeleton to generate the docking structure. The
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participation of other focal adhesion proteins such as talin
or paxillin remains to be elucidated. On the other hand, it
has been also described that VASP, which cooperates with
the WASP-Arp2/3 complex in actin polymerization at
nascent protrusions (97), is concentrated at the docking
structure (90). These data suggest that this endothelial
structure is supported by actin polymerization. However,
microtubules do not appear to be involved in this process.
Interestingly, the endothelial docking structure seems to be
reminiscent of nascent complement receptor-mediated
phagosomes, in that the subcellular distribution of all these
structural proteins is similar in both structures (98).

Regarding the signaling pathways involved in the
generation and maintenance of the docking structure, it has
been described the preferential accumulation of PI(4,5)P2 at
the tips of the microspikes of this structure, where could
participate in the activation of the ERM proteins.
Furthermore, the essential role of the Rho/p160 ROCK
signaling pathway in the formation of this protrusive
structure, has been also documented (90). These results
concur with the regulation of the VCAM-1, ICAM-1, and
E-selectin clustering by the GTPase Rho during monocyte
adhesion (99). Finally, further analyses are necessary to
understand the mechanisms underlying the disruption of the
endothelial docking structure to allow leukocyte diapedesis.

4.3.3. VCAM-1 and ICAM-1 outside-in signaling
VCAM-1 and ICAM-1 are capable of transducing

signals after ligand binding. VCAM-1 is involved in the
opening of the “endothelial passage” through which
leukocytes can extravasate. In this regard, VCAM-1
ligation induces NADPH oxidase activation and the
production of reactive oxygen species (ROS) in a Rac-
mediated manner, with subsequent activation of matrix
metalloproteinases and loss of VE-cadherin-mediated
adhesion. This signaling pathway can be blocked by
TGFbeta1 and IFNgamma (100-103). On the other hand,
cross-linking of both VCAM-1 and ICAM-1 induces a
rapid increase in intracellular Ca2+ concentration (62, 104).
ICAM-1-mediated calcium signaling has been mostly
studied in brain endothelial cells. In this cellular model, it
has been found that ICAM-1-mediated calcium increase
triggers activation of Src and subsequent phosphorylation
of cortactin (104). ICAM-1 is also able to activate RhoA
inducing stress fiber formation (105) and phosphorylation
of FAK, paxillin and p130Cas, which in turn trigger
different signaling pathways involving JNK or p38 (106-
108). Moreover, ICAM-1 cross-linking stimulate c-fos and
rhoA transcription (105). As reported for PSGL-1 (59),
ICAM-1 might enhance c-fos expression through the
recruitment of Syk to the ICAM-1/ERM complex, but such
possibility deserves further investigation. Finally, the
ICAM-1 cross-linking can induce its own expression as
well as that of VCAM-1, as a regulatory mechanism to
facilitate leukocyte TEM (109).

5. TRANSENDOTHELIAL MIGRATION

The signals involved in the firm adhesion of
leukocytes to endothelium must be reverted, weakening the
original contact sufficiently to allow the migration and

extravasation of leukocytes. During TEM, endothelial
junctions must be loosen to a limited extent, thereby
avoiding cell monolayer damage or important changes in
permeability. Thus, the leukocyte and endothelium
membranes are kept in close contact and show prominent
associated cytoskeletal structures. Subsequently, the
endothelial membranes reseal their connections over the
trailing end of the leukocyte.

5.1. Leukocytes undergo drastic cytoskeletal
rearrangements to extravasate across the endothelial
barrier

In leukocytes, integrin-dependent adhesion is
required for changes in cytoskeleton plasticity and cell
motility (110). In addition, it has been recently described
that immobilized chemokines play a pivotal role in this
process, since SDF-1alpha presented on the apical surface
of endothelial cells can trigger lymphoid TEM under shear
stress conditions in the absence of a chemoattractant
gradient across the endothelium, whereas soluble
chemotactic gradients do not. This process has been
designated as “chemorheotaxis” (111). However,
monocytes (112) and neutrophils (113) do not require
endothelial apical chemokines to undergo TEM, hence
postulating this phenomenon as lymphocyte-specific.

The regulation of the deformation of the
leukocyte cytoskeleton during TEM has not been well
studied. The possible activation of regulators of the actin
cytoskeleton such as small Rho GTPases by integrins or
chemokines remains to be elucidated. However, an
attractive hypothesis would comprise the activation of
Cdc42 by integrins or chemokines, which would cause the
extension of a thin exploratory pseudopodium between
endothelial cells that, by sequential Rac1 activation, would
evolve into a lamella squeezed within an endothelial
monolayer gap. This leading lamella and the leukocyte
membrane in contact with endothelium are enriched in
LFA-1 (114, 115). Finally, the stretching of cell body and
tail retraction would result from delayed, tail-oriented
RhoA-ROCK activation and actomyosin-based contraction
(116).

5.2. Endothelial cell lateral junctions regulation
 The components of the endothelial lateral

junctions can be divided in tight, adherens and gap
junctions, each containing distinct molecular constituents,
although they do not exhibit a well-organized basolateral
organization as in epithelium. These molecular complexes
are dynamically organized, associate with the actin
cytoskeleton and, except for gap junctions, actively
participate in leukocyte TEM. Recent reports strongly
suggest that leukocytes and endothelium communicate each
other during TEM. The most characterized intracellular
signals generated by TEM in endothelium are the
mobilization of intracellular Ca2+ and the reorganization of
actin, myosin and associated molecules (117, 118).

Figure 3 establishes a comparison between the
interendothelial junctions in the vascular wall and the
heterotypic leukocyte-endothelium interactions during
transendothelial migration. The morphological changes that
leukocytes undergo to pass across the endothelial barrier, as



Protrusive structures in leukocyte extravasation

1855

Figure 3. Comparison between the interendothelial junctions in the vascular wall and the heterotypic leukocyte-endothelium
interactions during transendothelial migration. Only the molecules involved in both processes are shown, including members of
the tight junctions (ESAM and the JAM family), the VE-cadherin complex and other molecules such as PECAM-1 and CD99. Most of
them interact homophilically, being express by the endothelium as well as by leukocytes. On the other hand, the processes of
lamellipodia formation at the leukocyte leading edge and tail retraction, the phenomenon of chemorheotaxis and the existence of a
subendothelial soluble chemoattractant gradient to guide the extravasated leukocytes to the target tissue are also illustrated.

well as the effect of chemokines and chemoattractant
gradients in this process, have been also specified.

5.2.1. Tight junction proteins: role of JAM family in
transendothelial migration

Among the components of tight junctions
(occludin, claudins, ZO-1, -2, -3, etc), two novel groups of
adhesion molecules belonging to the Ig superfamily have
been recently identified: ESAM (Endothelial cell-Selective
Adhesion Molecule) and JAM (Junctional Adhesion
Molecule) proteins. In contrast with other members of tight
junctions, they play a role in paracellular permeability as
well as in lymphocyte homing and TEM. ESAM is
involved in the homotypic interaction of endothelial cells,
but no heterophilic ligands have been described yet (119,
120).To date, three members of the JAM family have been
identified: JAM-1, huJAM-2 (which corresponds to
mJAM-3) and huJAM-3 (which corresponds to mJAM-2)
(reviewed in 121). JAM-1 is expressed in epithelium,
endothelium, erythrocytes, PMNs, monocytes, lymphocytes
and platelets; huJAM2 is preferentially expressed in high
endothelial venules (HEV); and JAM3 is detected in
endothelium and activated T lymphocyte subsets (122-

27). All members of the family contain a PDZ-binding
motif in their cytoplasmic tail, which is involved in their
association with components of the tight junctions such as
ZO-1 and AF-6, suggesting a role for these molecules in
recruiting and stabilizing JAMs to site of junction
formation (128, 129). The JAM family proteins can
interact homophilically at endothelial tight junctions to
regulate paracellular permeability or heterophilically with
counterreceptors from leukocytes to support TEM. In this
regard, it has been described that JAM-1 is capable to
interact with itself or with LFA-1 (130). huJAM-2 and
huJAM-3 are binding partners, and this interaction could
have relevance for lymphocyte homing, due to the
restricted expression of huJAM-2 in high endothelial
venules (124). Furthermore, huJAM-3 is also capable to
interact with itself (131) and with alphaMbeta2 and
alphaXbeta2 integrins (132). In turn, huJAM-2 interacts
with alpha4beta1 integrin (133). The fact that all the
members of the JAM family interact with leukocyte
integrins and that are relocalized towards the apical
surface upon endothelium activation argues for their
fundamental role in the regulation of leukocyte
adhesion.
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5.2.2. Adherens junction disappearance at leukocyte
contacts: proteolysis or displacement?

Adherens junctions are primarily involved in the
regulation of endothelial cell monolayer permeability. The
main component of these molecular complexes is VE-
cadherin, which mediates Ca2+-dependent homophilic
adhesion with its extracellular domain and actin
cytoskeleton linkage through the interaction of its
cytoplasmic tail with alpha-, beta-, gamma-catenin, and
p120/100 (134). During leukocyte TEM, VE-cadherin
complexes are locally disrupted, generating a localized gap
necessary for leukocyte passage, which reseals after TEM.
According to these observations, VE-cadherin acts as a
“gatekeeper” for leukocyte transmigration. Whether or not
this disruption of adherens junctions involves protein
degradation has been extensively discussed (135-137).
However, the rapid recovery of adherens junctions after the
passage of leukocytes seems to point to the existence of a
zipper mechanism, which implies the local and transient
displacement of molecular complexes from the leukocyte-
endothelium area (“trapdoor model”) (138, 139). However,
the possibility of a certain degree of complex proteolysis
cannot be excluded. Moreover, other alternative
mechanisms such as transcytosis or preferential passage
through tricellular corners, where tight junctions and
adherens junctions are less organized, cannot be ruled out
(140-142).

5.2.3. Other molecules with a major role in the passage
of leukocytes across endothelium

Apart from the above-mentioned molecules, there
are other endothelial proteins critical for leukocyte TEM
that do not belong to tight junctions or adherens junctions
complexes. PECAM-1 is another member of the
immunoglobulin superfamily that is expressed in
endothelium as well as in leukocytes, and that actively
participates in TEM (143). It can associate homophilically
or with alphavbeta3 in cis- (144, 145). PECAM-1
transduces negative intracellular signals via the ITIM motif
of its cytoplasmic tail (146). In addition, PECAM-1 can
regulate adherens junctions by associating to beta-catenin
(147). Finally, a recent report describes the existence of a
molecular network just below the endothelial plasma
membrane that is connected at intervals with the junctional
surface. PECAM-1 has been found in this compartment,
constitutively recycling along the endothelium borders.
During TEM, PECAM-1 recycling molecules are targeted
to points of contact with leukocytes. This mechanism could
explain how endothelial cells change their borders rapid
and reversely, but remaining tightly apposed to leukocytes
to allow their migration (148).

CD99, a highly O-glycosylated type I
transmembrane protein, has been found to play a critical
role in monocyte TEM, acting at a later stage than
PECAM-1 (149). This protein is expressed in leukocytes,
where triggers the activation of alpha4beta1 integrin and
regulates the activity of LFA-1, and endothelium,
interacting homophilically at interendothelial contacts
(reviewed in 145). However, little is known about its
precise function on endothelial cells or its involvement in
signaling transduction .

6. CONCLUDING REMARKS AND PERSPECTIVES

Over the last decade, a huge effort has been made
for the study of the basic adhesive mechanisms underlying
vascular function. In this regard, the dissection of the
phenomena involved in leukocyte extravasation has
significantly improved our knowledge of different
pathophysiological conditions. The recent description of
new molecular complexes and subcellular structures
implicated in this process, as well as the characterization of
new intracellular signaling pathways or cytoskeletal
components, have added more complexity to the
extravasation mechanism and opened new insights to future
investigations. Furthermore, molecules that are newly being
involved in this process could constitute potential
molecular targets for therapeutic intervention. Finally,
some controversies and obscure points regarding, e.g.,
differences in the behaviour of monocytes, neutrophils or
lymphocytes during TEM or the regulation of
interendothelial junctions to allow the passage of
leukocytes still remain partially unsolved.
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