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1. ABSTRACT

The use of macroscopic electrostatic models to
calculate the relative energetics of protonation states and
the pH-titration properties of ionizable groups in proteins is
described. These methods treat the protein as an
irregularly-shaped low-dielectric object containing
embedded atomic charges immersed in a high-dielectric
(solvent) medium. The energetics of altering protonation
states then involves the electrostatic work of altering the
embedded atomic charges. The governing electrostatic
equation is either the Poisson or linearized Poisson–
Boltzmann equation, which generally requires numerical
solution. A tutorial approach is taken, the main aim of
which is a thorough understanding of the method.

2. INTRODUCTION

The prediction of the pH-titration properties of
ionizable sidechains in proteins using macroscopic
electrostatic models has been important for the
development and validation of models of protein
electrostatics. As these calculations have enjoyed more
success, they have also become a useful tool for a
quantitative understanding of protein function, particularly
where internal proton transfers or the maintenance of
unusual protonation states is important for protein function.
The focus of this article is the use of models that combine
macroscopic electrostatics with the details of the atomic
structure of proteins. We refer to this class of models by the
acronym MEAD, for macroscopic electrostatics with atomic

detail. The quintessential MEAD model (1) depicts the
protein as a region of low dielectric constant with partial
atomic charges at the positions of the nuclei, surrounded by
a high dielectric medium, the solvent. The boundary
between the interior, low-dielectric region and the exterior,
high-dielectric regions is a surface defined by the atomic
coordinates and radii of the protein. Typically, Connolly’s
definition of the molecular surface (2) is used, though other
definitions (3) are also possible.

Although many papers and several reviews have
appeared reporting the use of such a model to predict pH-
titration properties and the relative energetics of
protonation states in proteins (4,5), they have usually only
described the methods briefly. The significant formal and
practical difficulties that arise in formulating these methods
in detail have either not been discussed, or are mentioned
only in passing. It has been the author’s experience that this
lack of a deeper description of the method is often an
obstacle for researchers new to the methods who wish to do
such calculations for themselves. It is therefore the aim of
this article to bring these details out from the in-house lore
of a few research groups, or the internals of specialized
software, so that the methods can be more accessible, and
their pitfalls and possibilities better understood by a wider
audience.

We begin with a brief introduction to the
macroscopic Poisson equation for non-uniform dielectric
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environments, the linearized Poisson–Boltzmann (LPB)
theory for electrolytes, and the use of Green functions as a
way of exploiting the linearity of these equations. The
calculation of electrostatic energy is discussed in some
detail, with particular attention paid to the problem of
point-like charges embedded in a macroscopic media, and
need to cancel out spurious infinite terms in calculations of
energy differences. The finite-difference method of solving
the Poisson or LPB equation is discussed next, not so much
to detail the method itself as to point out some issues
particular to the use of this or other numerical methods to
implement MEAD models. Before describing the application
of these ideas to protonation states in proteins, we describe
their application to the closely related problem of small-
molecule solvation and p aK .

Nearly all of the methods described here are
implemented in the author’s computer program suite,
MEAD. (Typewriter typeface distinguishes the program
suite, MEAD, from the model, MEAD). MEAD is available in
source-code form through the author’s web site,
http://www.scripps.edu/bashford, or by anonymous FTP
from ftp.scripps.edu, in the directory pub/electrostatics.
Modification and redistribution of MEAD is allowed under
the terms of the GNU General Public License (6). Soon,
MEAD will be available from a new web site to be
established at the institution to which the author has
recently moved, Saint Jude Children’s Research Hospital.
Contact Don.Bashford@stjude.org for details.

3. MACROSCOPIC ELECTROSTATICS

In vacuum electrostatic theory, the electric field
E  is determined by Gauss’s law, which, in its differential
form, states that the divergence of the electric field is
proportional to the charge density; specifically,

4πρ∇ ⋅ = .E (1)

(In these expressions, and elsewhere in this article, we use
the Gaussian system of units, in which a factor of 4π
appears in the Gauss law, but not in the Coulomb law (7).)
The further condition that E  is curl-free implies that it is
the gradient of a scalar potential. It is conventional to
define the electrostatic potential by φ= −∇E . Substitution
leads to the vacuum Poisson equation,

2 4φ πρ∇ = − . (2)

The macroscopic version of the Gauss law is

4πρ∇ ⋅ = ,D (3)
where D  is the electric displacement, defined by ε=D E ,
where ε  is the dielectric constant. Substitution to obtain
D  in terms of φ  leads to,

[ ]( ) ( ) 4 ( )ε φ πρ∇ ⋅ ∇ = − ,r r r (4)

which is the macroscopic version of the Poisson equation.
The simple proportionality of D  to E  involves the

assumption that the polarization of the medium is
proportional to the electric field. That is, linear response is
assumed.

3.1. Outer Boundary Conditions
Eqs. 2 or 4 are not enough to define the potential

uniquely. For example if φ  satisfies Eq. 2, then one can
add to it any function φ′  for which 2 0φ′∇ = , and the
resulting function will still satisfy the Poisson equation. In
order to define a unique solution within some region, one
must also specify boundary conditions, relations that φ
must satisfy at the boundary of the region. The most
common kind are Dirichlet boundary conditions, in which
the value of the potential on the boundary is specified.
Examples are,

( ) 0φ =s (5)
( ) ( )fφ = ,s s (6)

where f  is a function defined on all surface points, s . The
first expression, in which the potential is required to be
zero on the boundary is called a homogeneous Dirichlet
boundary condition. The second is a general Dirichlet
condition. It can be shown that for any charge distribution
and any Dirichlet boundary condition, there exists one and
only one solution to the Poisson equation.
Another type of boundary condition is the von Neumann
type, in which the derivative of the potential in the
direction perpendicular to the boundary is specified all
around the boundary. Again there are both homogenous
(the derivative is zero) and more general variants. The von
Neumann conditions only define the potential to within an
additive constant, since adding a constant to φ  does not
change its derivative. However, the physical significance of
φ  comes only from its derivatives (which determine the
electric field force) or from differences of φ  at different
points (which determine the work of moving a charge from
point to point), so adding a constant to φ  has no physical
significance.

The boundary condition we shall generally be
concerned with here is that φ  must go to zero as points
become infinitely far from the charge distribution under
consideration. This is a boundary condition of the
homogenous Dirichlet type.

3.2. Linear Response and Green Functions
For a potential determined by the Poisson

equation and a homogenous Dirichlet boundary condition,
the manner in which a charge distribution produces an
electric field or potential is linear. This means that
increasing the charge by some factor increases the field by
that same factor. It is also additive in that the field or
potential produced by the sum of two charge distributions
is equal to the sum of the potentials or fields that would be
produced by the individual charge distributions.
Mathematically, these properties arise from the fact that the
equations for the potential, Eqs. 2 or 4, are linear and
homogenous in φ  and ρ . Linearity in φ  (or ρ ) means
that in all terms in which φ  (or ρ ) appears, only linear
operations are applied to it. A linear operation is one that
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has the property that if it is applied to a linear combination
of operands, the result is an equivalent linear combination
of the results of applying the operator to the individual
operands. That is, if f  and g  are functions to which a
linear operator L  can be applied, and a  and b  are
constants, then

( ) ( ) ( )L af bg a Lf b Lg+ = + . (7)

Differentiation of a function, or multiplication by
a constant are examples of linear operators. One can easily
verify that the operations on φ , 2∇  in Eq. 2 or ε∇ ⋅ ∇  in
Eq. 4, are linear; and the multiplication of ρ  by 4π−  in
both equations is also linear. Homogeneity in φ  and ρ
means that every term is either linear in φ  or linear in ρ
(but not both: there are no ρφ  terms). By exploiting these
properties, it easily can be shown that if,

1 14ε φ πρ 
  ∇ ⋅ ∇ = − (8)

2 24ε φ πρ 
  ∇ ⋅ ∇ = − (9)

then
[ ]1 2 1 2( ) 4 ( )a b a bε φ φ π ρ ρ∇ ⋅ ∇ + = − + . (10)

This is the mathematical statement of the linear
and additive character of the potential’s dependence on the
charge.

The linearity of the vacuum Poisson equation (2)
arises from fundamental physics. However, the linearity of
the macroscopic Poisson equation (4) arises because the
polarization of the medium is assumed to be a linear
function of the electric field. This is an example of linear
response, and is generally only valid if the fields are
sufficiently small.

Systematic explorations of the ways in which
linearity and additivity can be exploited can be carried out
using Green functions. The Green function associated with
a particular Poisson equation and homogenous Dirichlet
boundary condition is the function whose value ( )g ′,r r  is
equal to the potential that would be produced at point r  if
a unit point charge were placed at the position ′r ,
assuming the potential is governed by that particular
Poisson equation and boundary condition 1. For example,
the green function for the vacuum Poisson equation and the
boundary condition, ( ) 0φ →r  as →∞r , is the familiar
Coulomb formula for a potential due to a unit charge:

1( )g ′, = .
′−

r r
r r

(11)

For the macroscopic Poisson equation (4) the
Green function depends on the details of the dielectric
properties of the space, as expressed through the function

( )ε r .

For a distribution of point charges: 1q  at position,
1r , 2q  at 2r , etc., the properties of linearity and additivity

mean that the total potential can be expressed in terms of
the Green function as,

( ) ( )
N

i i
i

q gφ = , .∑r r r (12)

For a continuous charge distribution ρ  an
analogous formula applies:

( ) ( ) ( )
V

g dφ ρ ′ ′ ′= , ,∫r r r r r (13)

where V  is a volume that contains the charge distribution.
The Green function depends only on the dielectric
properties of the space and the boundary conditions around
that space, and not on the charges. The potential arising
from any charge distribution can be obtained by summation
or integration using the Green function.

4. ELECTROLYTES AND THE LINEARIZED
POISSON–BOLTZMANN (LPB) EQUATION

Let ρ  denote the fixed charge distribution, and
φ  the potential arising from both the fixed and mobile
charges. Let ( ) ( )A Bn n, , ...r r  represent the local number
density of mobile ion species, A, B, ..., having valence

A BZ Z, , ... . Overall electro-neutrality of the solution
requires that

0A A B BZ c Z c+ + = ,L (14)

where the c  are the average concentrations of the species,
expressed as numbers of particles per unit volume. In
regions where φ  is negative, the local concentration of
positive ions should increase, while the concentration of
negative ions should decrease; and vice versa in regions of
positive φ . These local changes should follow Boltzmann
statistics, so we expect ( ) exp( ( ) )A An eZ kTφ∝ − /r r , where
e  is the proton charge, and k  is the Boltzmann constant.
In regions far from the fixed charge, φ  should become
zero because of the overall electro-neutrality of the solution
and An  is expected to revert to its average value Ac . The
relation of An  to φ  that satisfies these requirements is

( ) exp( ( ) )A A An c eZ kTφ= − /r r . This means that the overall
charge density, including both the fixed and mobile
densities, is

[ ]tot iacc( ) ( ) ( ) exp( ( ) ) exp( ( ) )A A A B B BeZ c eZ kT eZ c eZ kTρ ρ φ φ= + Θ − / + − / + ,r r r r r L

(15)

where iaccΘ  is a step function whose value is 1 in ion-
accessible regions, and 0 in ion-inaccessible regions, such
as the interior of a macromolecule. To obtain an equation
for φ  that accounts for its dependence on both fixed and
mobile charges, totρ  is substituted for the ρ  in the
macroscopic Poisson equation, 4:

[ ]iacc4 exp( ) exp( ) 4A A A B B Be Z c eZ kT Z c eZ kTε φ π φ φ πρ∇ ⋅ ∇ + Θ − / + − / + = −L

(16)

This is the Poisson–Boltzmann equation (8).
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Unlike the Poisson equation, the Poisson–
Boltzmann equation is non-linear because of the
appearance of φ  in the exponential terms. This means that
the linear superposition properties discussed in Sec. 3.2 do
not apply, nor do the energy expressions to be developed in
Sec. 5. The Poisson–Boltzmann equation is only an
approximation to the effect of mobile ions, because in its
derivation, the effect of hard-sphere repulsion between ions
and the effect of ion–ion correlations have been neglected.

The Poisson–Boltzmann equation, 16, can be linearized by
expanding the exponentials in powers of φ :

21exp( ) 1 ( )
2A A AeZ kT eZ kT eZ kTφ φ φ− / = − / + / −L (17)

If terms of order 2( )AeZ kTφ/  and higher are neglected, the
Poisson–Boltzmann equation becomes,

2 2
iacc4 4A A B B A A B Be Z c Z c Z c e kT Z c e kTε φ π φ φ πρ ∇ ⋅ ∇ + Θ + + − / − / − = − L L

(18)

Because of the electro-neutrality condition (Eq. 14) the
zero-order terms, such as A AZ c , sum to zero. The result can
be written as

2( ) ( ) ( ) ( ) ( ) 4 ( )ε φ κ ε φ πρ∇ ⋅ ∇ − = −r r r r r r (19)
where

2
2

iacc
8( ) ( )
( )

e I
kT

πκ
ε

= Θr r
r

(20)

2 21 [ ]
2 A A B BI Z c Z c= + +L (21)

The last expression is the standard definition of
the ionic strength in units of ion numbers per volume.
Equation 19 is the Linearized Poisson Boltzmann equation
(LPB).

We now have an equation for the potential that
includes electrolyte effects (albeit approximately) and is
linear. Therefore, the linear and additive properties
discussed in Sec. 3.2 can be exploited and analyzed in
terms of Green functions.

The theory outlined here is often referred to as
Debye–Hückel theory (9). Its more familiar formulae,
which provide a meaning for κ , are obtained in the special
case where the dielectric constant has the same value ε
throughout all space and the mobile ions are free to move
everywhere. Eq. 19 then becomes,

2 2 4πρφ κ φ
ε

∇ − = − (22)

and its Green function is,
exp( )( )g κ

ε
′− | − |′, = .

′| − |
r rr r

r r
(23)

In contrast to the long-ranged Coulombic potential, the
potential in an electrolyte dies off exponentially with a
characteristic length 1κ − , which is inversely proportional to
the square root of the ionic strength. Eq. 23 is often called
the Debye formula, and 1κ −  is called the Debye length.

5. ELECTROSTATIC ENERGY AND MOLECULES

Most applications of the MEAD model to
molecular properties, including the prediction of p aK
values and protonation states, involve calculation of the
electrostatic work required to assemble some particular
charge distribution within some specified dielectric and
electrolyte environment. Since the charge distribution
typically includes point charges, the resulting electrostatic
potential will include Coulomb singularities: points where
the potential rises to infinity as one approaches the point
charge like the limit of 1 r/  as r  goes to zero. When
analytical solutions for the potential are available, these
singularities can simply be omitted based on the argument
that they merely represent the (infinite) work needed to
squeeze a finite amount of charge onto an infinitesimal
point—a process in which we are not interested. However,
in typical applications the potential must be solved for by
numerical methods such as finite differences, which do not
give the potential separated into singular and non-singular
parts. Rather, the singularities are mixed into the result as
finite (but large) contributions to the potential whose value
is an artifact of the numerical method. This means that in
developing methods, one must keep track of singularities
and arrange a suitable subtraction that removes them. The
Green function formalism introduced in Sec. 3.2 is well
suited to this purpose.

In applications to molecules one is often
interested in the free energy associated either with moving
a molecular charge distribution from one environment to
another (as in the case of solvation of polar molecules), or
with alteration of the charge distribution within some fixed
environment (as in the case of electron transfer or proton
transfer). For either case, a useful starting point is the
electrostatic work of creating a charge distribution in an
environment of fixed dielectric and electrolyte properties
(represented by ( )ε r  and 2 ( )κ r ) that is initially empty of
charge and in which the initial electrostatic potential is
zero. This quantity corresponds to a free energy if we
regard the charge distribution being built up as a
mechanical extensive variable (10).
The incremental work of adding an increment of charge
δρ  is

3( ) ( )
V

W dδ φ δρ= ∫ r r r (24)

where φ  is the potential due to the charge already present.
Assuming that the governing electrostatic equations are
linear (e. g., the Poisson or LPB equations), the dependence
of φ  on the density already present can be expressed in
terms of the Green function for the dielectric and boundary
environment, leading to

3 3( ) ( ) ( )
V V

W g d dδ ρ δρ′ ′ ′= , .∫ ∫ r r r r r r (25)

The total work W  of creating the charge
distribution ρ  is found by integrating this expression over
the δρ , from a zero charge distribution to the full charge
distribution. This gives,
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3 31 ( ) ( ) ( )
2 V V

W g d dρ ρ ′ ′ ′= , ,∫ ∫ r r r r r r (26)

which can be understood as the electrostatic interaction of
the charge distribution ρ  with itself, via the interaction
kernel provided by the Green function g . Using equation
13, this can be written,

31 ( ) ( )
2 V

W dρ φ= ,∫ r r r (27)

which means that the work required to create the
distribution ρ  can be found by first solving the Poisson
equation for the potential due to the distribution, and then
applying the above formula 2.

In typical applications to molecules, ρ  is a
molecular charge distribution that is confined to a
molecular interior that has some uniform dielectric constant

inε , and is not accessible to the mobile ions of the
electrolyte (i.e., 2 ( ) 0κ =r  in the interior). In this case it
can be shown that the Green function always has the form:

in

1( ) ( )rg g
ε

′ ′, = + , ,
′−

r r r r
r r

(28)

where it is understood that both r  and ′r  are confined to
the interior. The first term is the Coulombic green function
and has a 1 r/  singularity; and the second term is the
reaction potential term and is smoothly varying and free of
singularities in the interior region. The reaction potential
arises due to the presence of dielectrics different from inε
in the exterior region and from the electrolyte. In the case
where in 1ε =  (a non-polarizable interior) the reaction term
is the potential at r  due the polarization and mobile ion
rearrangement in the external environment that is produced
in reaction to a unit charge at ′r . For in 1ε >  it is related to
the difference between the exterior polarization and the
polarization that an exterior medium of dielectric inε  would
have. The electrostatic work expression becomes

3 3 3 3

in in
in

1 ( ) ( ) 1 ( ) ( ) ( )
2 2 rW d d g d dρ ρ ρ ρ

ε
′

′ ′ ′ ′= + , ,
′−∫ ∫

r r r r r r r r r r
r r

  (29)

where the integration volume is confined to the interior
region.

Typically, the molecular charge distribution is
given as a set of point charges (such as atomic partial
charges) located at the positions of the atomic nuclei. To
pass from the continuous ρ  form of the charge distribution
to a point-like form, consider a distribution in which for
each atom i , there is an atomic charge iq  distributed
uniformly in a small sphere of radius iR  about the atomic
nucleus located at ir . If the sphere radii are very small
compared to interatomic distances, then to a very good
approximation the work expression can be integrated to
obtain a simple summation over charges and charge pairs:

2

in in

1 1 ( )
2 2 2

i ji
i j r i j

i ij j i iji i j

q qqW q q g
Rε ε, ≠

+ + ,
−∑ ∑ ∑ r r

r r
(30)

2

in in

1 ( )
2 2

i ji
i r i

i ij j i ii i j

q qq q
R

φ
ε ε, >

= + +
−∑ ∑ ∑ r

r r
(31)

The first term in Eq. 30 is the Coulombic
interaction of each sphere with itself; the second term is the
Coulombic interaction between spheres; and the third is the
interaction of the spheres with themselves and each other
through the reaction potential. In Eq. 31, the reaction term
is written in terms of the reaction potential using the
relation ( ) ( )r j r jj

q gφ = ,∑r r r  (see Eq. 12).

As the spheres containing the atomic charge are
made infinitesimally small ( 0iR → ), the approximations
used in Eq. 30 become exact, but the first term, the
Coulomb self-energy term, becomes infinite. As mentioned
above, such infinite terms are generally not of interest, so
one approach is to simply leave them out. But this can only
be done if the reaction potential rφ  is available in some
practical form. Here we take a more formal approach based
on the observation that one is usually interested in
calculating free energy differences, rather than the absolute
free energy of some particular electrostatic arrangements,
and in many cases the problematic Coulomb self-energy
terms cancel out. For example, calculation of solvation
energies (see Sec. 7) involves a difference of W  for two
different exterior dielectric environments, while inε  and the
charges and their positions remain the same. In that case all
but the reaction-potential terms cancel out. For the
electrostatic energy of a conformational change, the
charges and inε  again remain the same, but their positions
change and the shape of the boundary between interior and
exterior may change. In this case, both the reaction term
and the interatomic Coulomb terms change and contribute
to the difference. In general, the Coulombic self-energy
terms will cancel for the electrostatic free energy difference
associated with any process obeying the following
restrictions:

1. The internal dielectric constant inε  does not
change.

2. No charge is moved from the interior region to
a region with a different dielectric constant.

3. The the charges iq  are not altered.

For most processes of interest the first two
conditions are easily met. The third appears more
problematic, since protonation and deprotonation involve
changes of the atomic partial charge, but we shall see in
that this can be handled by reference to a model process in
which the relevant energies are presumed to by known or
calculable by other means.

6. THE FINITE-DIFFERENCE METHOD

The Poisson equation (Eq. 4) or the LPB equation
(Eq. 19) are examples of elliptic partial differential
equations, the numerical solution of which is a large branch
of applied mathematics whose review is beyond the scope
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of this article. We shall only deal with one particular
method that is commonly used to implement MEAD models,
the finite-difference method. It is relatively simple, and
quite flexible in terms of the dielectric and electrolyte
environments that can be handled, and it is competitive
with alternative methods in terms of computational cost for
many applications to biological molecules. Some accuracy
issues have been explored for the specific application of the
method to biomolecules (11,12,13). Rather than describe
the method fully or generally, we give the basic ideas, some
details of how they are applied to the Poisson or LPB
equations arising in MEAD models, and some discussion of
how the problem of infinite Coulomb self energies plays
out on the finite-difference grid.

The essential idea is to approximate derivatives
as differences between function values sampled at points a
finite distance apart. Consider only the x  component of the
double gradient, [ ]ε φ∇ ⋅ ∇  occurring in Eqs. 4 and 19, and
let h  be the distance between sampling points:

( )
( )

2

2

( )

( )

2

1 ( )( ) ( ) ( )
2

( )( )
2

1 ( ) ( ) ( )
( ) 2

( ) ( ) ( )
2

h

h

x y z

x y z

hx y z
x x h x

hx y z
x

hx y z x h y z x y z
h hx y z x y z x h y z

φε φ ε

φε

ε φ φ

ε φ φ

= + , ,

= − , ,

∂ ∂ ∂  + , , ∂ ∂ ∂   ∂
− − , , 

∂  + , , + , , − , , − − , , , , − − , , 

r

r

rr r

r

Note that samples of φ  and ε  are both taken at
intervals of h  but the ε  points are shifted by 2h/  relative
to the φ  points. Extending this idea to three dimensions
and replacing functions defined in three-dimensional space
by values defined on a three-dimensional cubic lattice with
spacing h , and lattice indices ijk , the LPB equation
(Eq. 19) becomes:

1 1 1 1
2 2 2 2

1 1 1 12

1
i jk i jk i j k i j ki jk i jk i j k i j kh
φ ε φ ε φ ε φ ε
 + − + −+ − + −

+ + + (32)

1 1
2 2

2 3
1 1 6 4ij k ij k ijk ijk ijk ijkijk ijkij k ij k q hφ ε φ ε φ κ φ πε ε+ −+ −

+ + − − = /

where ijkε  is defined as the value of ε  averaged over the
six surrounding half-integer grid points, and ijkq  is the
charge assigned to the grid point. Requiring this equation to
be satisfied for all ijk  (except the outer face points of the
grid) results in a large system of linear equations for the
values on the φ  lattice. The values of φ  on the outer face
points must be supplied as input. This corresponds to the
Dirichlet boundary conditions required to supplement the
Poisson or LPB equations. Perhaps the most straightforward
practical technique for solving this type of system is the
successive over-relaxation (SOR) method, but conjugate
gradient and multigrid methods are also commonly used.
Descriptions of these methods for the non-specialist can be
found in references (14) and (15), and more detailed
treatments can be found in (16).

Several points particular to the set-up of finite
difference problems for MEAD models deserve comment.

First, one usually is interested in the Dirichlet boundary
condition 0φ →  at infinity, but the finite size of the grid
forces one to define φ  on the the faces of grid. For the
Poisson–Boltzmann equation, setting φ  to zero on the
boundary can be a satisfactory simulation of the desired
infinite boundary condition provided there is an electrolyte-
filled region spanning several Debye lengths between the
molecule under study and the outer faces, since the
potential falls exponentially to zero at such distances (see
Eq. 23). Setting the boundary potential to zero in the
absence of electrolyte may be a poor choice, particularly
for charged molecules, because the true potential falls off
only as 1 r/ . A reasonable approximation in this case is a
Coulomb formula with the dielectric constant set to that of
the exterior region (e. g., the solvent) provided there is a
sufficiently long span of exterior region between the faces
and any part of the molecule under study. At worst, the
boundary potential will be off by a dipole term that falls off
like 21 r/ , and the worst errors in the potential will occur far
outside the molecule, whereas one is generally only
interested in the potential inside the molecule. In the
author’s experience, a 15 Å span provides reasonable
accuracy.

These considerations often require the grid to
span a large volume, but since the cost of the calculations
rises rapidly with the number of grid points, this comes into
conflict with the goal of obtaining good accuracy in the
underlying finite-difference approximation for which one
would like to have a grid spacing h  that is small compared
to typical interatomic distances. (In the author’s experience

0 25h = .  Å gives reasonable accuracy.) For a cubic grid
having L  points along each edge, the memory required to
store the values on the grid obviously rises like 3L . The
processor time required for the solution of the finite
difference problem by the SOR method rises at a rate
between 4L  and 5L , Multigrid methods (15) provide much
better scaling of processor requirements at the expense of
more complex code and a modest increase in memory
requirements, and set-up overhead. A common way around
the grid-extent versus grid-spacing trade-off is to exploit
the fact that one is typically only interested in finding the
potential accurately in the interior region of the molecule or
some “interesting” part of a molecule (such as a titratable
protein sidechain). One can therefore make an initial
calculation with an grid of large extent and coarse spacing,
followed by calculations on finer grids of smaller extent
lying within the coarse grid’s extent and centered on the
interesting region. The boundary conditions for the fine-
grid calculations are obtained by interpolation from the
course grid. This technique is often called focusing (11),
and there can be multiple levels of focusing (i.e., finer grids
within the fine grids, etc.).

Another point particular to MEAD models
concerns the ε  grid. It would appear to require three times
as much storage as the φ  grid since ε  must be defined at
the halfway points along the x , y  and z  direction
between φ  grid points. However, MEAD models typically
have large regions of uniform dielectric constant separated
by sharp transitions (e. g., the boundary between the
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Figure 1. The Coulomb singularity and and its finite-
difference counterpart. The result of a finite difference
calculation for the potential in vacuum due to a unit charge
on the origin using a grid spacing, 1 0h = .  is shown
histogram style, together with the analytical solution 1 x/ .
The finite difference solution has a finite value, 3 18q h≈ . / ,
at the location of the charge.

molecular interior and exterior region), with the result that
the vast majority of the grid points are in regions where the
dielectric is uniform between the grid point and its nearest
neighbor. For such points, the values of 1

2i jkε + , etc. are all
identical to ijkε  and Eq. 32 can be simplified to

2 3
1 1 1 1 1 12

1 6 4 ( )i jk i jk i j k i j k ij k ij k ijk ijk ijk ijk ijkq h
h

φ φ φ φ φ φ φ κ φ π ε
 
 + − + − + − 

+ + + + + − − = / (33)

This means that ε  grid values actually only need
be stored for grid points near the dielectric boundaries.
Large savings in processor time are also obtainable since
the iterative methods need only evaluate an expression
similar to Eq. 33 rather than Eq. 32 at most grid points.
Exploitation of this can give a speedup factor of order 10.
Most general purpose elliptic finite-difference solvers do
not exploit this rather special property of the Poisson
problems arising from MEAD models, whereas the packages
specialized to molecular electrostatics (such as
MEAD(17,18) and DelPhi (19)) do exploit it and give
much better performance.

The Coulomb self-energy problem comes up in a
new guise in the finite difference method. The result of
making a finite difference calculation for the potential due
to a single charge on a central grid point and a uniform
dielectric constant is sketched in Figure 1 along with a plot
of the 1 r/  analytical form of the Coulomb potential. Rather
than rising to infinity as the center is approached, the finite
difference solution takes on a finite value at the central
point, and this value is dependent on the grid spacing —
specifically, it is inversely proportional to the spacing. This
means that if one attempts to use an expression analogous
to Eq. 27 using a potential calculated by the finite
difference method and a point charge distribution, the result
will contain large spurious “grid singularity” contributions
as well as the physically meaningful charge–charge

interactions and reaction field contributions. These spurious
contributions can be subtracted out in energy difference
calculations of the kind described at the end of Sec. 5, but
in addition to the restrictions listed there, the two
calculations must use grids with the same spacing and the
charges must be mapped onto the grids in exactly the same
way. Failure to observe these restrictions can lead to
calculated energy differences several orders of magnitude
too large. A common second calculation for the subtraction
is to simply calculate the finite difference solution for the
same charge distribution in a uniform dielectric of inε . For
this case, an analytical solution of the finite difference
equations is available, enabling significant computational
savings (20).

Of course, the finite-difference method is not the
only numerical method for solving the Poisson equation.
The 3-D finite-element method also makes use of a mesh of
points in three-dimensional space, but the points need not
be regularly spaced. This allows for meshes that are
customized to shapes of dielectric boundaries and the
location of charges, finer mesh in regions of more interest,
and so on. On the other hand, the algorithms are more
complex and require more computation per mesh point than
the finite difference method. Three-dimensional finite-
element solvers specialized to molecular electrostatic
applications have been developed (21,22) The Coulomb
self-energy issue arises in the finite element method much
as it does in the finite-difference method, and similar care
with subtractions must be taken. Another numerical method
is the boundary element method. It is specialized to systems
with regions of uniform dielectric separated by sharp
boundaries. The Poisson problem can then be recast into a
self-consistency requirement between charges induced on
the dielectric boundary elements and the electric field
across the boundary. The Coulomb self energies appear as
genuine singularities rather than finite artifacts of the
numerical method, and they can simply be left out in
practical calculations rather than arranging for them to be
subtracted away. In principle of course, the rules at the end
of Sec. 5 still apply. The surface element method has been
adapted to molecular applications by several workers
(23,24,25) including extension to the LPB equation (26).

7. SMALL-MOLECULE SOLVATION AND p aK

The calculation of the electrostatic component of
the solvation free energy of polar or charged molecules is
closely related to the problem of calculating the energetics
of protonation states, as well as being an important
application of the MEAD model in its own right. The
essential idea, illustrated in Figure 2, is to break the process
of bringing a molecule from vacuum to solvent into three
hypothetical steps: reduction to zero of the molecule’s
charges in vacuum; solvation of the purely non-polar
molecule; and restoration of the original partial charges in
the solvent environment. The overall solvation free energy
is then,

sol np v sG G W W∆ = ∆ − + , (34)
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Figure 2. Thermodynamic cycle relating solvation free
energy npG∆  to the work of charging in solvent versus

vacuum ( sW  versus vW ) and the free energy of solvating a
sterically equivalent non-polar molecule npG∆ .

where vW  and sW  are the work of charging in the vacuum
and solvent environment, respectively, and npG∆  is the free
energy of solvation of the hypothetical molecule with all
partial charges set to zero. For some small molecules, the

npG∆  term can be estimated as the solvation energy of a
sterically equivalent alkane. More often, empirical
formulae relating npG∆  to surface area and/or volume are
used (27,28).

In the MEAD model for the work-of-charging
calculations the solute molecule has an interior of dielectric
constant inε  (typically 2 to account for electronic
polarizability), the exterior has a dielectric constant of
either 1 (for vW ) or 80 (for sW  in water), and the boundary
between the two dielectric regions is the molecular surface,
as defined by Connolly (2). The difference calculation then
obeys the rules set out at the end of Sec. 5 (the charges and
interior dielectric calculations are the same in the two
charging processes). From Eq. 31 and the cancellation of
Coulombic terms it follows that

( )1 ( ) ( )
2s v i r s i r v i

i
W W q φ φ, ,− = − ,∑ r r (35)

where r sφ ,  and r vφ ,  are the reaction potentials in solvent
and vacuum, respectively. If the finite-difference method is
used to solve the Poisson equation corresponding to the
above MEAD model, the Coulombic contribution and the
reaction-field contribution are both in the φ  that is
obtained from the grid, and the Coulomb 1 r/  singularities
at the charge locations ir  are replaced by grid-dependent
Coulombic artifacts. Provided that the finite-difference
solutions for the potentials in solvent and vacuum, sφ  and

rφ , are obtained using grids of the same spacing and the
charges iq  are mapped onto them in the same way in both
calculations, the Coulomb contributions, including the grid
artifacts will cancel, and we can use, as the practical
expression for calculations,

( )1 ( ) ( )
2s v i s i v i

i
W W q φ φ− = − .∑ r r (36)

This method has been shown to provide good
accuracy for a wide variety of polar and charged solvents
given a suitable parameterization of the atomic radii used to
define the dielectric boundary, and the atomic partial
charges (27,28).

A more rigorous approach treats the solute
quantum mechanically, and demands self-consistency
between the electronic structure and the reaction potential.
Because electronic polarization is treated explicitly, inε
must be set to unity, and the reaction potential must be
included in the quantum-mechanical Hamiltonian. The
dependence of the reaction potential on the solute charge
distribution and hence, the electronic structure, gives rise to
the self-consistency requirement. The earliest applications
of this idea date back to Onsager (29) who used a
simplified spherical model. Application to more complex
molecular shapes has been pioneered by Tomasi and co-
workers (23,30) who used semi-empirical methods for
electronic structure calculations, and a surface-element
method to solve the Poisson equation. Extentions to ab
initio quantum mechanics have also been made
(31,32,30,33). The terms, polarized continuum model
(PCM), or self-consistent reaction field (SCRF), are
sometimes used to describe such calculations.

7.1. The Born model of ion solvation
If the geometry of the solute molecule is simply a

sphere with a charge at the center, as in the case of a simple
ion, the Poisson equation can be solved analytically.
Consider a sphere with dielectric constant inε  inside and

exε  outside and a charge q  at the center. Because of
spherical symmetry, the potential can only be a function of
the distance r  from the sphere center. In the interior and
exterior regions the Poisson equation is satisfied by

in
in

q a
r

φ
ε

= + (37)

ex
qb c
r

φ = + , (38)

where a , b  and c  are constants to be determined by
boundary conditions. Since φ  must go to zero as r  goes to
infinity, 0c = . At the dielectric boundary, classical
electrostatics (7) gives the boundary conditions that φ  and
the perpendicular component of the electric displacement
D Eε⊥ ⊥= , must be continuous. That is,

in ex( ) ( )B BR Rφ φ= (39)

in ex
in ex

B BR R

d d
dr dr
φ φε ε= , (40)

where BR  is the radius of the dielectric sphere. Substituting
Eqs. 37 and 38 (with 0c = ) leads to the solutions:

in
in ex in

1 1

B

q q
r R

φ
ε ε ε

 
= + − 

 
(41)
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Figure 3. Cycle for absolute p aK  calculations.

ex
ex

q
r

φ
ε

= . (42)

Note that inφ  has the expected separation into a
Coulombic part (first term) and a reaction part, that in this
case is simply a constant throughout the interior. Applying
Eq. 35 or 36:

2

ex

11
2s v

B

qW W
R ε

 
− = − − . 

 
(43)

This formula was first derived by Born using a
somewhat different procedure (34).

7.2. Small molecule p aK
Nearly all p aK  calculations for ionizable groups

in proteins are made with reference to model compounds of
known p aK , but for small molecules whose gas-phase
proton affinity can be calculated by quantum chemical
methods, an absolute p aK  calculation is possible.
Considering the cycle of Figure 3, one finds,

solv solv solv2 303 p (AH) (A ) (H )a dgRT K G G G G− +. = −∆ − ∆ + ∆ + ∆ . (44)

Here, the free energy of the dissociation reaction
in the gas phase dgG∆  is related to the proton affinity by
the entropy of the liberated proton (26 eu) and a small
correction ( 0  to 5 eu) for the entropy difference between
A and AH. The solvation free energies of AH and A can be
calculated by the methods of Sec. 7, but the solvG∆  of a
proton cannot. An experimental value for solv (H )G +∆
would depend on the absolute potential of the standard
hydrogen electrode, which itself is only known
approximately. On this basis, values of solv (H )G +∆  ranging
from 259.5 to 262.5 kcal/mol have been suggested (35,36).

Lim et al. (35) explored the above approach to
absolute p aK  calculation using different charge and radius
parameters. Because the magnitudes of dgG∆  for small
organic acids and bases range from 200–400 kcal/mol, and
the solvation energies of the charged species are typically
of order 100 kcal/mol, small percentage errors in the
estimation of any of these terms can lead to substantial
deviations from experimental p aK  values (one pK  unit is
equivalent to 1.4 kcal/mol at 300 K). Thus, Lim et al. found
significant sensitivity to the choice of charge and radius
parameters and to the details of solute geometry. An SCRF
approach in which the geometry and solute charge is

handled quantum mechanically leaves only atomic radii as
empirical parameters, and yields reasonable estimates of
p aK  for a number of small organic molecules (31,37). The

SCRF method has also been extended to p aK  calculations of
unusual species in protein active sites, such as a water
molecule liganded to a manganese ion in superoxide
dismutase (38). In this case, “solvation” means transfer
from vacuum to an in 1ε =  cavity within a protein active
site, and the calculation must include the charges and
dielectric constant of the remainder of the protein as well as
the surrounding solvent dielectric. Facilities for the
classical electrostatic part of such calculations are provided
in the MEAD program suite.

8. PROTONATION STATES AND p aK  IN
PROTEINS

Rather than the more first-principles approach
outlined in Sec. 7.2, calculations of protonation states and
p aK  values in proteins have generally used an approach
based on model compounds of known p aK , and
electrostatic models to calculate shifts from the model
compound values. Calculations of this general kind were
introduced nearly 80 years ago by Linderstrøm-Lang (39)
who modeled the protein as a sphere with the charges of the
ionizable groups spread uniformly over its surface. As it
become understood that proteins were not fluid globules
but contained more specific structures, Tanford and
Kirkwood (40,41) developed a model of protein ionizable
sites as point charges uniformly spaced at a short fixed
distance beneath the surface of a sphere. As actual protein
structures became known, the Tanford–Kirkwood model
was adjusted to use charge placements derived from the
actual structures (42), and empirical corrections for
differential solvent exposure were introduced (43,44).

The modern MEAD-based models described here
(45), which have nearly displaced the sphere-based models,
can be thought of as the natural extension of Tanford and
Kirkwood’s ideas to more detailed and realistic molecular
surface shapes and charge distributions (Figure 4).
However, several qualitatively new energy terms are
included: the Born-like interaction of the ionizing group
with the polarization that its ionization produces in the
surroundings; and the interaction with non-ionizing groups
in the protein, such as the backbone dipoles. In contrast, the
Tanford–Kirkwood model only explicitly includes the
electrostatic interactions between ionizing sites; the other
terms, which could not have been explicitly calculated
without more atomic detail, were left to be implicitly
subsumed into the model compound p aK .

The fundamental assumptions behind the
methods described here are as follows: (1) The free energy
of ionization can be divided into an internal part that
includes bond breaking and other electronic structure
changes and is confined to a relatively small number of
atoms within the ionizing functional group, and an external
part that includes interactions with the larger surroundings.
(2) The internal part is the same for both the ionizing group
in the protein and the corresponding model compound, but
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Figure 4. MEAD model for p aK  calculations for proteins.
The charges of the titrating site in protein or model
compound (black circles in grey region) are changed from
protonated to deprotonated values. Interactions occur with
the site’s own reaction potential; non-titrating polar groups
in both the protein and model compound (open circles) and
other ionizable groups in the protein (black circles in white
areas).

the external part may differ. (3) Since the steric changes in
protonation/deprotonation are subtle, and similar in both
the protein and model compound the steric contribution to
the difference of the external part can be neglected. (4) The
remaining difference in the external part is purely
electrostatic. (5) A MEAD model is adequate to describe this
electrostatic difference. As a practical matter, other
simplifying approximations are often introduced as well,
such as neglect of conformational change and
simplification of charge models; but these approximations
can be lifted without changing the basic ideas.

8.1. One-site case
Consider a protein that contains only one

ionizable chemical group, and suppose one wishes to
calculate its p aK  given the protein structure and modpK ,
the p aK  of a small model compound containing that same
chemical group. The one-site protein is a useful
hypothetical construct because it removes the complication
of interactions with other groups whose ionization states
are pH dependent. In particular, we will adopt Tanford’s
definition of the “intrinsic pK ” or intrpK , as the p aK  that
a site in a protein would have if all other ionizable sites
were held in some reference charge state, typically a
neutral-charge state. We also neglect the conformational
flexibility of the protein, except to the extent that it is
included implicitly in the protein dielectric constant inε .

According to the fundamental assumptions listed
above, the desired intrpK  value is the modpK , modified by a
suitable difference in electrostatic work of the protonated
versus deprotonated states in the protein versus the model
compound:

( ) ( ) ( ) ( )

intr modp p
2 303

p d p d
p p m mW W W W

K K
RT

   
   
   

− − −
= − ,

.
(45)

where the W  are the work of creating either the charge
distribution of the protonated or deprotonated state ( ( )p  or
( )d  superscripts) in the protein or the model compound
( p  or m  subscripts). As discussed in Sec. 5, each of these
work terms potentially contains contributions that go to
infinity in the point-charge limit and care must be taken to
ensure that these cancel in the final calculation. To this end,
we begin with Eq. 30, in which the small-sphere energies
that lead to these infinities is explicit, and we distinguish
the small set of charges Q  that differ between the
protonated and deprotonated and deprotonated states (filled
circles in Figure 4) and the remaining charges q  (open
circles) that do not. The result is:

2( ) ( ) ( )
( ) ( ) ( )

in in

1 ( )
2 2

p p p
p p pa a b

p a b r p a b
a ab b a aba a b

Q Q QW Q Q g
Rε ε ,

, <

= + + ,
−∑ ∑ ∑ r r

r r
( )

( )

in

( )
p

a p i p
a p i r p a i

ai aia i

Q q
Q q g

ε
,

, ,+ + ,
−∑ ∑ r r

r r
2

in in

1 ( )
2 2

m i jm i
p i p j r p i j

i ij j i iji i j

q qq
q q g

Rε ε
,,

, , ,
, <

+ + + , ,
−∑ ∑ ∑ r r

r r
(46)

where the indices a  and b  label the titrating-group’s
charges, i  and j  label the non-titrating charges of the
protein (the pq ), and r pg ,  is the reaction potential term of
the Green function for the protein (see Eq. 28).

If the analogous expression for ( )d
pW  is written

down and subtracted from the above, it is immediately seen
that all terms involving interactions between the protein’s
non-titrating charges (the qq  terms) vanish. The
interactions between titrating and non-titrating charges can
be conveniently written down in terms of the potential due
to the titrating charges, ( ) ( )p j a p a ja

Q gφ = ,∑r r r , where
pg  is the total green function (including the Coulombic

part) for the protein, and superscripts can be added to the
Q  and pφ  to distinguish the ionization states as above.
The difference between the two work terms is then,

2 2( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

in in2

p d p p d d
p d a a a b a b

p p
a ab b aa a b

Q Q Q Q Q QW W
Rε ε, <

− −
− = +

−∑ ∑ r r

( ) ( ) ( ) ( )1 1( ) ( )
2 2

p p d d
a b r p a b a b r p a b

ab ab
Q Q g Q Q g, ,+ , − ,∑ ∑r r r r

( )( ) ( )( ) ( )p d
p i p i p i

i
q φ φ,+ − .∑ r r (47)

To complete the evaluation of the numerator in
Eq. 45, an analogous expression for the work of the charge
change in the model compound, ( ) ( )p d

m mW W−  must be
subtracted from the above expression. This leads to a
cancellation of all the Coulomb terms involving only the
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titrating charges (the QQ  terms), including the small-
sphere energies, so the problem of infinities in the point-
charge limit is resolved. The resulting expression is:

( ) ( ) ( ) ( )p d p d
p p m mW W W W   

   
   

− − − =

(48)
( ) ( ) ( ) ( )1 ( ) ( )

2
p p p p

a b r p a b a b r m a b
ab ab

Q Q g Q Q g, ,
 , − , 
 
∑ ∑r r r r

( ) ( ) ( ) ( )1 ( ) ( )
2

d d d d
a b r p a b a b r m a b

ab ab
Q Q g Q Q g, ,

 
− , − , 

 
∑ ∑r r r r

( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )p p p p
p i p i p i m k m k m k

i k
q qφ φ φ φ, ,+ − − −∑ ∑r r r r

The reaction QQ  terms do not cancel, since the
reaction part of the Green function is not the same in the
protein as in the model compound. These terms can be
written in the form a ra

Q φ∑ , where rφ  is the reaction
potential, as in Eq. 31. The expressions in the first set of
square brackets is then ( ) ( ) ( )( )p p p

a r p r ma
Q φ φ, ,−∑ , and an

analogous expression using the deprotonated charges is
obtained for the second bracketed expression. These are
very similar to Eq. 35 for the solvation case. The difference
is, instead of altering the external dielectric environment
from vacuum to solvent, we are altering the dielectric
environment from that of a protein in solvent to that of the
model compound in solvent. The rules at the end of Sec. 5
are satisfied as long is the titrating charges are in a region
of dielectric inε  in both cases. Therefore, as in the
discussion of solvation energy (see Eq. 36), we can
substitute the finite-difference calculated potential due to
the titrating charges for the reaction potentials to obtain a
practical expression for calculations.

We have seen that Eq. 48 contains two distinct
kinds of terms: the QQ  terms leading to expressions
similar to those for electrostatic solvation energy; and the
qφ  (or Qq ) terms corresponding to interactions of the
titrating charges with the non-titrating background. It has
become conventional to refer to these terms as the Born and
and background terms, respectively. The expression for

intrpK  is then written:

Born back
intr modp p

ln10
G GK K

RT
∆∆ + ∆∆

= − (49)

where,

( ) ( )
titr

( ) ( ) ( ) ( ) ( ) ( )
Born

1 ( ) ( ) ( ) ( )
2

p p p d d d
a p a m a a p a m a

a
G Q Qφ φ φ φ∆∆ = − − −∑ r r r r (50)

( ) ( )
protein model

( ) ( ) ( ) ( )
back ( ) ( ) ( ) ( )p d p d

m i p i p i m k m k m k
i k

G q qφ φ φ φ, ,∆∆ = − − −∑ ∑r r r r (51)

Note that the same four potentials are needed for
both the Born and background term: the potentials
generated by the titrating charges in both their protonated
and deprotonated states in both the protein and the model
compound. The potential generated by the non-titrating
charges need not be calculated — the non-titrating charges
enter the backG∆∆  expression only as charges that “feel” the
potential, not as charges that generate it.

It should be emphasized that the above is valid
only if the titrating charges are the same in the protein and
model compound and if the interatomic distances between
them are the same. Further, if finite-difference or finite-
element methods are used, the way that the numerical grid
is set up around the titrating charges, and the way that the
charges are distributed over them must be identical. When
calculations of this kind were first introduced (45) a further
precaution was taken along these lines: all the atomic
charges positions and radii of the model compound, even
“background” charges were made identical to
corresponding atoms in the protein. In other words, the
conceptual model of Figure 4, in which the model
compound appears to be “cut out” from the protein, was
followed strictly. This has the advantage of canceling some
of the errors in the finite-difference method that tend to be
more severe for interactions between near atoms, such as
bonded pairs within the model compound. But it has the
peculiarity that the calculations use a different model
compound coordinate sets for each site, even for sites of the
same residue type. Most subsequent calculations of this
kind have followed a similar practice. However, schemes
that include conformational flexibility of both protein
sidechains and model compounds need not have this
limitation (46).

8.2. Multiple interacting sites
In passing to the full model implied by Figure 4,

we must include the electrostatic interactions between the
ionizable groups. Strictly speaking, it is no longer possible
to rigorously define the p aK  of individual sites, so we shall
first consider the relative energetics of different protonation
states of the protein, and then the statistics of ensembles
over the possible states. This leads to predictions of the
degree of protonation of each site as a function of pH, and
these pH dependencies can usually (but not always) be
reasonably well described by a p aK -like quantity.

By “protonation state” of the protein, we mean a
specification of which sites are protonated and which are
deprotonated. If the protein has N  sites, each with two
possible protonation states, there are 2N  possible
protonation states of the protein. Let them be denoted by
the N -element vector, x  whose elements ix  take can
each take on values representing “protonated” or
“deprotonated.” Let 0  be a particular value of this vector
chosen as a reference state, for example, the state with all
sites in their neutral state, as in the definition of intrpK .
Consider the chemical equilibrium between some state x
and the reference state:

M(0) ( )H M( )ν ++ x x (52)

where ( )ν x  is the number of protons that would be
released on going from state x  to the reference state. The
free energy change for going to the right in this reaction at
some fixed pH is,

M M H

[M( )]( pH) ln ( ) (0) ( )( 2 303 pH)
[M(0)]

G RT RTµ µ ν µ +∆ , = − = − − − . ,
xx x xo o o (53)
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Figure 5. Titration curves of sites in Bacteriorhodopsin,
taken from the work of ref. (17).

where the µ o  are standard chemical potentials.

Suppose ( )i iP x  is the change in the protein’s
chemical potential for changing site i  from its reference
state to state ix , while all other sites remain in the
reference state. The expression for chemical potential will
then contain a sum of these iP , but more terms are needed
for the site–site interactions. Since the interactions are
presumed to be governed by linear equations (the Poisson
or LPB equations) these terms will be pairwise additive.
Therefore,

1( ) (0) ( ) ( )
2

N N

M M i i ij i j
i ij i j

P x W x xµ µ
, ≠

= + + , ,∑ ∑xo o (54)

where ijW  is the electrostatic interaction between sites i
and j , relative to the reference state. Inserting this into
Eq. 53 and writing ( )ν x  as a sum over sites, ( )i ii

xν∑ ,
gives,

H

1( pH) [ ( ) ( )( 2 303 pH)] ( )
2

N

i i i i ij i j
i ij i j

G P x x RT W x xν µ +

, ≠

∆ , = − − . + ,∑ ∑x o  (55)

Some consideration of the way in which P , ν  and intrpK
are defined in terms of a reference state leads to the the
relation, intrH

( ) ( )( 2 303 p )i i i i iP x x RT Kν µ + ,= − . , so that,

intr
1( pH) ( )2 303 (pH p ) ( )
2

N

i i i ij i j
i ij i j

G x RT K W x xν ,
, ≠

∆ , = . − + , .∑ ∑x (56)

The intrinsic p aK  values of each site, intrp iK , ,
can be calculated by the methods of Sec. 8.1. The

( )ij i jW x x,  can be calculated by considering the additional
electrostatic work to change site i ’s charges from the
reference state to ix  if site j  is in state jx  instead of its
reference state. By this definition, ijW  is non-zero only if
both ix  and jx  are different from their standard states 3. If,
for example, the deprotonated states of both i  and j  are
the standard states, then

site
( ) ( ) ( ) ( )(prot prot) [ ( ) ( )]

i
p d p d

ij a a j a j a
a

W Q Q φ φ 
 
 

, = − −∑ r r  (57)

site
( ) ( ) ( ) ( )[ ( ) ( )]

j
p d p d

b b i b i b
b

Q Q φ φ 
 
 

= − − ,∑ r r

where ( )p
iφ  is the potential produced by the site i  charges

in their protonated state, and so forth, and the sums run
over the atoms of the indicated site. Note that the four
different potentials needed here are are already available
from the calculations of the intrinsic p aK  calculations for
the two sites (Eqs. 49–51). Therefore the construction of a
function that gives the relative energies of all 2N  possible
protein protonation states requires just 4N  solutions of the
Poisson or LPB equation.

The pH-dependent protonation state free energy
function, ( pH)G∆ ,x  can be used to calculate probabilities
of protonation states and averages of quantities depending
on protonation state by formulae analogous to the canonical
distribution of statistical mechanics. For example, the
fraction of all protein M  that is in state M( )x  is

[M( )] exp[ ( pH) ]
[M] (pH)

G RT
Z

−∆ , /
= ,

x x (58)

where Z  is the normalization constant or partition function
given by,

2

(pH) exp[ ( pH) ]
N

Z G RT= −∆ , /∑
x

x (59)

where the sum runs over all possible protonation states.
Perhaps the most common average taken is the the average
protonation of a particular site:

21(pH) ( )exp[ ( pH) ]
(pH)

N

i i ix G RT
Z

θ ν= −∆ , / .∑
x

x (60)

Some illustrative plots of iθ  versus pH  are
shown in Figure 5. In most cases the curves are have an
approximately Henderson–Hasselbalch form, as in Figure
5a. One can then define halfpK , a quantity roughly
analogous to p aK , as the pH at which the plot crosses the
protonation fraction, 0.5. But strong couplings between two
sites titrating in overlapping pH ranges can lead to cases
where halfpK  is nearly meaningless; instead the pivotal pH
values are those that mark changes between no protons on
either site, a single proton shared between the sites, and
both sites protonated (Figure 5b). When three or more sites
strongly couple, it is even possible to have the
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counterintuitive result that one site may, within a limited pH
range, increase in protonation as pH increases (17) a situation
that has also been observed experimentally (48). The total
protonation of all sites, however, must always monotonically
decrease with increasing pH. Recently some methods of
disentangling the complexities of multi-site titration curves
have been presented by Onufriev et al. (49) Calculated titration
curves often have unusual shapes for the active-site groups in
proteins, because close proximity and, quite often, a solvent
shielded environment give rise to strong site–site couplings.
Recently, this has been used as a diagnostic to predict the
location of protein active sites (50).

If there are no more than 12 to 15 sites, averages
like iθ  can be evaluated directly from expressions like
Eq. 60, but as the number of sites N  increases, the cost of
evaluating the sums quickly becomes untenable. For such
situations, several approximate methods are available.
Rather than describe them in detail, we only outline them
here, with citations to papers that provide more thorough
descriptions.

8.2.1. Tanford–Roxby approximation
It is assumed that each site i  interacts not with

particular protonation states of other sites, j  but with their
(pH dependent) average protonation, jθ  (42). Tanford and
Roxby’s formulae can be derived from a mean-field
approximation in which correlations between the
protonation states of sites are neglected; and it can be
shown that this approximation breaks down in cases where
strongly coupled sites titrate in the same pH range (51).

8.2.2. Reduced Site approximation
For each pH value, a preliminary calculation is

done to determine which sites can be regarded as almost
completely protonated or almost completely deprotonated.
These sites are then regarded as fixed in the protonated or
deprotonated states, respectively, reducing the number of
variable sites in the calculation (51). This approximation is
quite accurate, except in the extreme-pH tails of the
titration curves. However, in typical applications the
effective number of sites is only cut by about half, so this
method is useful only up to about 30 ionizable groups. The
author’s implementation of this method is part of the MEAD
suite.

8.2.3. Monte-Carlo Methods
The application of Monte-Carlo methods to the

multi-site titration problems was introduced by Beroza et
al.(52) An initial protonation state is selected, then sites are
flipped at random between the protonated and deprotonated
states, and the flips are accepted or rejected based on the
change in ( pH)G∆ ,x  resulting from the flip. A two-site
flipping strategy may be needed to obtain convergence for
strongly coupled sites. The computational cost is a
polynomial in N  rather than an exponential, so it is usable
in practice for systems containing hundreds of sites. The
method is reasonably accurate if applied correctly, although
the titration curves produced are somewhat “noisy.”
Beroza’s implementation of the method (52,47) is available
on the Internet (ftp://ftp.scripps.edu/case/beroza)

8.2.4. Clustering methods
Variants of this idea have been introduced by

several authors (53,54,55). The idea is that in calculating
the protonation of site i , one can use a mean-field
approximation for weakly coupled or distant sites, and
more exact expressions for the strongly coupled (or nearby)
ones. The version of this idea developed in the author’s
group is called Iterative Mobile Clustering (IMC) and has
been described in detail and tested in a recent paper (55).
This method is also applicable to multi-conformational
problems. A general purpose implementation of IMC is
planned, but not yet written.

Tautomerism of sidechains such as histidine can
be incorporated into the above formalism by allowing the

ix  to take on appropriate values, such as “epsilon,” “delta”
and “protonated.” In that case, six Poisson or LPB solutions
would be required for each histidine residue so treated.
(Calculations incorporating tautomerism in essentially this
way were first done nearly a decade ago (56), but since the
two-state “protonated/deprotonated” scheme was hard-
wired in the software at that time, an equivalent scheme
using extra pseudo-sites was devised. This trick has been
described in detail by Baptista et al. (57).) It is also
possible to incorporate the binding of other ions to specific
sites, or oxidation-state changes into the above formalism.
This allows one to calculate, for example, the pH
dependence of redox potentials in proteins or the workings
of energy transduction proteins in which electron and
proton transfer are coupled (58,59,60). Ref. (55) provides
an extension of the above formal framework that covers
both tautomerism, binding of other ligands and redox
changes.

8.3. Conformational Flexibility
The above methods do not allow for

conformational flexibility, except implicitly through the
protein dielectric constant. But since the dielectric response
of the protein is supposed to be within the linear regime,
this implicit flexibility cannot involve much more than
modest localized fluctuations of dipoles. Significant global
conformational changes, such as unfolding or hinge-
bending, go unrepresented. Even changes confined to a few
sidechain degrees of freedom, such as the formation or
breaking of salt bridges, cannot be plausibly subsumed into
the dielectric response, especially insofar as they affect the
p aK  values of the sidechains themselves. One should
therefore expect the method to break down in cases where
conformational changes have a significant influence on
p aK .

The prediction of extreme p aK  values should be
taken as a possible indicator of such a breakdown. For
example, in the earliest calculations of this kind (45), a
p aK  of around 20 was calculated for Tyr53 of lysozyme.
However, the unfolding of lysozyme is known to be
coupled to the ionization of this residue (at pH 12). The
high calculated number should be understood as the p aK
that the site would have if the protein could somehow be
constrained to stay near its native conformation at very
high pH. On the other hand, some residues do have
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functionally important large pK  shifts that are correctly
predicted by the methods. Examples include bacteriorhodopsin
(17) and protein tyrosine phosphatase (61), though in some
cases the method over-predicts the magnitude of the shift.

The most desirable solution, in principle, is to
include conformational flexibility explicitly in the
calculation. However, this raises complex problems. The
free energy change associated with changing
conformational states now becomes part of the problem,
and this includes many non-electrostatic factors. For
example, in the alkaline denaturation example, the p aK
becomes higher to the extent that the forces stabilizing the
native state, such as van der Waals and hydrophobic
interactions, resist the driving force for alkaline
denaturation, which is proportional to the difference
between the pH and the p aK  that the still-protonated sites
would have in the unfolded state. For practical calculations
including flexibility, the number of conformers that should
be included, and how they should be selected is far from
obvious. For a fairly complete formulation emphasizing the
problem of enumerating the conformational states and
considering the correlations between distinct flexible
regions of a protein, see Ref. (55). Development of
methods to include conformational flexibility in titration
calculations has been a topic of active research using a
number of different approaches (46,47,62-68), and will not
be reviewed in detail here.

However, we will present one easily
implemented method based on integration over binding
isotherms. It is quite useful for the case of pH-driven
unfolding (69), and it has also been applied to electron
transfer (58). It can be shown (70,71,72) that the pH
dependence of the free energy of a conformational change
from A to B can be expressed as

pH

pH
(pH) ( ) 2 302 [ ( ) ( )]pHAB AB B AG G RT Q pH Q pH dpH′ ′ ′∆ − ∆ = . − ,∫

o
o

 (61)

where the Q  are either the total charge or total number of
protons in the protein bound in state A or B. The integrands
can be calculated by the methods of Sec. 8.2 given
structural models for conformers A and B. Or, if one of the
conformers is the unfolded state, one might assume that its
residues titrate like independent sites with p aK ’s equal to
the modpK  values (69). Having ABG∆  at any one pH
allows its value at any other pH  to be calculated, in principle.
For example, if the pH  for acid unfolding (where 0ABG∆ = )
is known, then the stability of the protein at neutral pH can be
calculated. In effect, the problem of knowing the non-
electrostatic contributions to the conformational energetics has
been subsumed into the need to know ABG∆  at a particular
pH. Titration curves for individual sites (the iθ ) can be
obtained in a way that accounts for the conformational change
by weighting the contributions from the A-conformer and the
B-conformer in calculations of iθ  according to (pH)ABG∆ , at
each pH  point.

9. OPEN PROBLEMS

That electrostatic effects are the primary means
by which the protein environment modifies the H + -

titration properties of its ionizable groups is beyond
dispute, but one can certainly question whether the
approximations of macroscopic electrostatics are
permissable in the calculation of such effects, and if so,
what macroscopic parameters, such as dielectric constants
and boundary definitions, ought to be used. MEAD models
seem to be on fairly good ground in at least one area: the
treatment of solvent water as a region of high dielectric.
Calculations of small molecule solvation energies by the
methods of Sec. 7 have been quite successful, given some
modest efforts at parameterization (27,28,36,73).
Comparisons between molecular dynamics-based
thermodynamics calculation using an atomistic
representation of both solvent and solute, and a MEAD
model of solvation and H-bonding show that the two give
very similar results, at least when the the standard, low-cost
atomic models of solvent, such as TIP3P are used for small
molecules whose charges are no more than
monovalent(74,75).

The depiction of the protein as a macroscopic
dielectric medium is another matter. Theories that connect
microscopic models to a macroscopic dielectric assume an
orders-of-magnitude separation between the microscopic
length scale and the size of any region to which a dielectric
constant is assigned. Proteins are in a mesoscopic grey
zone, in that the characteristic protein distance (the protein
radius, say) is only a few times greater than the length scale
of the microscopic dipolar elements it contains (e. g.,
backbone amides). Furthermore, proteins do not appear to
be particularly uniform within their interior. There has been
some suggestion of addressing the non-uniformity problem
by assigning different dielectric constants to different parts
of the protein (76), but since these parts must necessarily be
smaller than the protein, the microscopic/mesoscopic
problem alluded to above is exacerbated. Some workers
(77) have criticized the protein dielectric idea as invalid,
particularly when the dipoles whose fluctuations constitute
the dielectric response are also present in the calculations,
as in Eq. 51. As an alternative, they advocate an approach
that resembles the standard microscopic molecular
dynamics approaches, but enforces linear response and
modifies electrostatic terms according to a scaling factor in
such a way that the resulting model appears quite similar,
in effect, to a MEAD model (78).

Recently, a series of papers by Simonson and co-
workers have presented some careful analysis of the
relationship between microscopic and macroscopic
representations of protein electrostatics. They performed
microscopic calculations of the response of the protein
medium to the insertion of a charge at various locations in
the protein interior and found that these were well matched
by a macroscopic model with a uniform dielectric constant
in the protein region (79). The best value of the dielectric
constant for such a match was in close agreement with that
calculated using a modified version of Kirkwood–Fröhlich
theory to relate protein dipole fluctuations in a microscopic
protein/water simulation to the protein dielectric constant
(80-84). This finding of consistency between various ways
of relating microscopic fluctuations and responses to
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macroscopic dielectric theory provides some support for
the extension of macroscopic ideas to proteins.

Even if the idea of a protein dielectric constant is
acceptable, there remains the question of its value. Many
early workers in the field, following the suggestion of
Tanford and co-workers (41,42) used values near 4, which
is consistent with measurements on dry protein powders
(85,86). Early molecular mechanics calculations using
Kirkwood–Fröhlich theory (80,81) to calculate the
dielectric constant from microscopic dipole fluctuations
supported similar values (87,88). More recent calculations,
in which increased computing power allows explicit
solvent to be included, seemed at first to suggest higher
values of the protein dielectric constant, such as 20 to 35,
but more detailed analysis showed that the large dipole
fluctuations were mainly due to the mobility charged
sidechains at the protein surface. If only the more buried
polar groups are considered, much lower values, such as 2
to 6, are calculated (82,83,84,89).

Antosiewicz et al. have taken a more empirical
approach to the protein dielectric question (90,91). For a set
of proteins for which the p aK  of a number of sidechains
was known experimentally, they made calculations by the
methods of Sec. 8 using various values of inε  and found
that the root mean square error was minimized with

in 20ε . In the present author’s view, the counter-
argument is as follows: Most ionizable groups are on the
protein surface where they are well exposed to solvent or
can become so with a sidechain conformational change,
and their p aK  values are only slightly shifted from those of
model compounds. Standard single-conformer MEAD
models tend to overestimate these shifts because the lack of
conformational flexibility eliminates a relaxation
mechanism that would allow for more “normal” calculated
titration properties. Raising inε  to high values tends to
minimize broad statistical measures of error simply because
it tends to make calculated shifts smaller. However,
important active-site residues are often unusual in that they
have large p aK  shifts, and a computational method that
tends to scale down all shifts risks missing these. Indeed,
we have computed several large, functionally important,
p aK  shifts in proteins that could not have been predicted
with a high inε  value (17,61,92,93).

Krishtalik et al. (94) have made an interesting
proposal to address the potential inconsistency (77) of
explicit inclusion of peptide dipoles when these same
dipoles’ fluctuations are treated implicitly as a dielectric
response. To state the problem as it relates to p aK
calculations, consider the one-site problem of Sec. 8.1. The
incremental work of adding an incremental charge to the
site is ( )W q V Vδ δ= + ∆o , where Vo  is the average
electrostatic potential at the site due to all other charges,
including protein dipoles, prior to any charge at the site,
and V∆  is the average change in that potential due to the
protein and solvent dipole’s reorientation in response to the
site’s developing charge. Macroscopic calculations of

BornG∆∆  (Eq. 50) correspond well to the V∆  term, as
shown by comparison to microscopic charging calculations

(79). However, it can be argued that for the calculation of
backG∆∆ , which should correspond to the the Vo  term, the

use of a protein dielectric higher than the optical dielectric
constant ( 2 ) constitutes a sort of double counting
because the coordinates in the calculation already reflect
the orientational polarization of the protein. Thus, it is
suggested that a low protein dielectric constant (1–2)
should be used for the backG∆∆  term while a higher
dielectric constant ( 3≥ ) may be used for BornG∆∆  to
reflect the changing orientational polarization as the charge
develops. This would appear to introduce an inconsistency
of its own — the use of two different dielectric constants
for one and the same material during the same charging
process — but a consistent scheme for implementing this
idea has been devised (95). It requires a detailed
microscopic model for the whole protein both before and
after the charge change at the site, and is therefore
considerably more complicated to implement, particularly
for a multi-site problem.

Many of the problems and ambiguities outlined
above can in principle be removed or ameliorated by a
proper treatment of conformational flexibility (Sec. 8.3).
Although the formalism and the means to overcome some
combinatorial problems have been developed (55), a good
general method to generate the important conformers
without creating an unmanageably large number of them
has yet to be developed. In this connection, workers in the
field might do well to look at the remarkable progress being
made in handling the combinatorics of sidechain
conformers in the field of protein design (96,97,98).
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Footnotes: 1 For those familiar with the formalism of the
Dirac delta function, g  is the solution of the Poisson
equation with the charge density, ρ  replaced by the three-
dimensional Dirac delta function ( )δ ′−r r . 2 The above
derivation is not valid in the case of the non-linear version
of the Poisson–Boltzmann equation. Suitable energy
expressions can be derived, but that is beyond the current
scope of this article. 3 Sometimes the reference state is
defined as having all ionizable group partial charges set to
zero. In that case all four ijW  may be non-zero. For

example, if the neutral state is dipolar, one ijW  is the
charge–charge interactions, two are charge–dipole and one
is dipole–dipole. Although it seems more complicated, such
a scheme has some practical advantages in calculations
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