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1. ABSTRACT

Atherosclerosis is a complex, chronic disease
state that usually arises from the converging action of
several pathogenic processes, including hypertension,
hyperlidemia, obesity and insulin resistance. Significantly,
due to the increasing incidence of type 2 diabetes
worldwide, several aspects of the renin-angiotensin system,
including the capacity for angiotensin II synthesis and
binding are increased in human and animal models of type
II diabetes, and potentiate vascular lesion formation.
Angiotensin II, an important vasoactive peptide of the
renin-angiotensin system, profoundly accelerates
atherosclerosis in animal models of diabetes.  Conversely,
in both human and animal studies, inhibition of angiotensin
II synthesis or activity has been shown to significantly
reduce atherosclerosis and cardiovascular mortality.
Cardiovascular protection is independent of blood pressure
and baseline activity of the renin-angiotensin system,
suggesting an important and direct role for the vascular
renin-angiotensin system in atherosclerotic progression.
Angiotensin II appears to accelerate atherosclerosis through
activation of several distinct signal transduction pathways,
and via these mechanisms can function as a vascular
growth and migration factor, a pro-inflammatory cytokine
and an oxidative stress agent. Thiazolidinediones, a class of
oral insulin-sensitizing agents in broad clinical use for the
treatment of type 2 diabetes, have been shown to ameliorate
cardiovascular disease in animal trials and clinical studies.
Thiazolidinediones also appear to regulate angiotensin II
signaling at multiple levels, significantly reducing the
expression of  the angiotensin II type 1 receptor and
repressing signal transduction through this receptor to
suppress vascular remodeling, lesion formation, and
oxidative stress.

2. INTRODUCTION

Angiotensin II (AngII) is a major proatherogenic
factor through its actions to elevate blood pressure, induce
inflammation in the vessel wall, and stimulate the growth
and movement of vascular cells. (1-4). Physiological
effects of AngII are mediated by its binding to and
activation of two separate seven transmembrane domain
receptors, designated as the AngII type-1 (AT1) and type-2
(AT2) subtypes (5). Tissue levels of AngII are regulated
through the activity of the renin-angiotensin system (RAS)
(6). Peroxisome proliferator activated receptor gamma
(PPAR-gamma) is a member of the nuclear hormone
receptor superfamily that is expressed in all vascular cells
relevant to the development of atherosclerosis: vascular
smooth muscle cells (VSMC), endothelial cells, and
monocytes/macrophages (7-10). Activation of PPAR-
gamma in mouse models of atherosclerosis significantly
attenuates lesion development (11-15). Inhibition of
atherogenesis by PPAR-gamma may result from its effect
to block the proliferation of VSMCs and/or the migration
of VSMCs and monocytes (16-21). Interactions between
AngII and PPAR-gamma signaling in the vasculature are
poorly understood but may have an important influence on
atherosclerosis. Understanding such interactions will have
important clinical ramifications as pharmacologic blockade
of the RAS and administration of insulin-sensitizing PPAR-
gamma ligands are widely used to treat persons with type 2
diabetes, who have  increased risk for atherosclerosis.

3. THE ROLE OF ANGIOTENSIN II IN
ATHEROSCLEROSIS

Historically, the renin-angiotensin system (RAS)
has been known as a regulatory system involved in blood
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pressure control, water and sodium homeostasis and
neurohumoral modulation (22, 23). Blockade of the RAS,
through angiotensin I converting enzyme (ACE) inhibition
or AT1 receptor (AT1R) antagonism, effectively improves
pathological conditions such as hypertension, renal disease
and congestive heart failure (4, 24). In the past decade, data
from clinical and experimental studies have accumulated
suggesting a direct role for the RAS in the pathogenesis of
atherosclerosis.

3.1. Clinical Data
The Heart Outcomes Prevention Evaluation

(HOPE) trial demonstrated forcefully the
pathophysiological link between AngII and human
atherosclerotic disease (25). The HOPE study randomized
9297 high-risk patients who had clinical evidence of
vascular disease, or diabetes and one other cardiovascular
risk factor, to either the ACE-inhibitor ramipril or placebo.
The primary endpoint after a mean follow-up of 4.5 years
was a composite of myocardial infarction, stroke or death
from cardiovascular causes. A significant 21% decrease in
the primary endpoint was observed with ACE-inhibition.
Cardiovascular events, such as myocardial infarction and
stroke, were clearly reduced in the ramipril group. Ramipril
only modestly reduced blood pressure (3.5/ 1.5mmHg),
which could not account completely for the risk reduction
observed. Therefore, this data suggests that inhibition of an
endogenous RAS directly modifies fundamental
pathological processes during atherogenesis in the vascular
wall.

A substudy of the HOPE trial – the Study to
Evaluate Carotid Ultrasound Changes in Patients Treated
with Ramipril and Vitamin E (SECURE) – randomly
assigned a total of 732 patients (vascular disease, or
diabetes and at least one other risk factor) to receive
ramipril and vitamin E or a matching placebo (26). Effects
of ACE inhibition on atherosclerosis progression were
studied by using duplicate B-mode carotid ultrasound to
assess intima-media thickness of the carotid artery.
Progression of atherosclerosis was reduced by 37% after 5
years of treatment with ramipril, and was largely
independent of blood pressure reduction. These data clearly
indicate that RAS blockade by ACE inhibition exerts direct
beneficial effects on the vascular atherosclerotic process.

Direct favorable effects of RAS inhibition on
cardiovascular pathology are further supported by the
Losartan Intervention For Endpoint Reduction in
Hypertension Study (LIFE),  in which the AT1R antagonist
losartan was compared to the β-blocker atenolol for their
abilities to reduce cardiovascular events in hypertensive
participants with left ventricular hypertrophy (27). Losartan
reduced cardiovascular morbidity and death more than
atenolol given a similar reduction in blood pressure. This
benefit may result from increased protection against direct
pathological effects of the RAS on cardiovascular
structures.

ACE inhibition does not reduce all sources of
AngII, since chymase and cathepsin G are also able to
catalyze the hydrolysis from angiotensin I to AngII (28).

Thus a combination of ACE inhibition and AT1R blockade,
to prevent AT1R binding of residual AngII, should enhance
the beneficial effects of each drug alone. Beneficial effects
of the combination (AT1R-blocker and ACE-inhibitor)
have already been shown in patients with heart failure (29).
Ongoing trials (e.g. –The ongoing Telmisartan Alone and
in Combination with Ramipril Global Endpoint Trial) are
currently evaluating whether this combination might also
impact atherosclerotic cardiovascular events (30).

In summary, the data from clinical studies
suggest a direct pathophysiological role of the RAS,
independent of blood pressure control, in the development
and progression of atherosclerotic cardiovascular diseases.

3.2. Animal Model Data
Infusion of AngII into a hypercholesterolemic

atherosclerosis-prone mouse model dramatically
accelerates the rate of lesion formation  (1, 31).  In two
separate studies, aortic surface lesions increased by ~20-
fold after 4- or 8-week subcutaneous infusions of AngII
into apoE-deficient (apoE-/-) mice (1, 31).  Elevation of
blood pressure to a similar degree with norepinephrine,
however, produced only one-quarter of the atherogenic
stimulus provided by AngII (1).  Direct vascular actions of
AngII, rather than pressor effects, likely account for the
majority of AngII’s proatherogenic activity.

Diabetes is a strong cardiovascular risk factor,
and RAS-associated mechanisms may explain much of the
severity of this response. ACE activity is significantly
enhanced in both diabetic subjects and animal models of
type 2 diabetes (32). AT1R expression is also significantly
upregulated in the vasculature of diabetic rat models (33,
34), suggesting that elevated AT1R expression could
potentiate the AngII atherosclerotic activity in type 2
diabetes. Finally, at the signal transduction level, diabetes-
associated hyperglycemia has been shown to induce VSMC
nuclear factor (NF)-kappaB activation (35), which is
known to regulate several inflammatory mechanisms
involved in atherosclerosis, including AT1R signal
transduction (36).

Inhibition of the RAS has also been shown to
attenuate atherosclerosis in a number of experimental
animal models.  In apoE-/- mice, the ACE-inhibitor
fosinopril decreased the average size of atherosclerotic
lesions by more than 70% after a three-month treatment
period (37).  Similarly, in apoE-/- mice made diabetic with
streptozotocin, ACE inhibition with perindopril suppressed
the resulting diabetes-associated accelerated atherosclerosis
and elevated aortic ACE expression (32).  ACE inhibitors
have proven to be equally efficacious in suppressing
atherosclerosis in Watanabe hypercholesterolemic rabbits
and in minipigs (38, 39).  Because ACE inhibitors can
elevate levels of the vasodilator bradykinin, in addition to
decreasing AngII formation, it has been difficult to
unequivocally ascribe their antiatherogenic activity to a
blockade of the RAS.  To address their uncertainty, several
investigators have examined the effect of AT1R blockers
(ARBs) on atherogenesis.



 AngII, PPAR-gamma and Atherosclerosis

361

Similar to ACE inhibitors, ARBs have potent in
vivo antiatherogenic activity. In cholesterol-fed
cynomolgus monkeys, the ARB losartan substantial
attenuated atherosclerosis across the aorta (40). Attenuation
of atherosclerosis in atherosclerosis-prone apoE-/- mice and
hypercholesterolemic rabbits has also been observed using,
respectively, the ARBs irbesartan and valsartan (41, 42).
Acceleration of atherosclerosis by administration of AngII
and its inhibition by both ACE inhibitors and ARBs
underscore the potent proatherogenic effect of AT1R-
mediated AngII signalling on the vessel wall.

3.3. Cellular mechanisms
3.3.1. Angiotensin II as a vascular growth and
migration factor

Inflammatory processes play a key role in the
development and progression of atherosclerosis (43). The
hypothesis that AngII serves as a proinflammatory protein
inducing an inflammatory reaction in the vessel wall and,
thereby, initiating the atherosclerotic process has been
supported by several in-vitro and in-vivo studies.
Proinflammatory actions of AngII have been described in
all vascular cells.

The first step in vascular lesion formation is the
recruitment and transmigration of monocytes into the
vascular subendothelium, a multifactorial process that is
regulated by AngII at multiple levels (44). Angiotensin II
potently induces the expression of adhesion molecules,
such as vascular cell adhesion molecule-1 (VCAM-1),
intercellular adhesion molecule-1 (ICAM-1) and E-selectin,
on endothelial cells, resulting in enhanced monocyte binding to
the vascular endothelium (45-47). Monocyte chemotactic
protein-1 (MCP-1) is a chemokine that attracts adherent
monocytes to the site of the vascular lesion. Deficiency of
MCP-1 or the major MCP-1 receptor CCR2 reduces
atherosclerosis in apoE-/-  mice (48, 49). Angiotensin II
treatment stimulates the expression of MCP-1 in vascular
smooth muscle cells (15). In addition, AngII itself serves as a
chemotactic protein for human monocytes, enhancing the
extravasation of these cells into the vessel wall (50).

The next step of atherogenesis is the
accumulation of cholesterol into vascular tissue
macrophages and subsequently the formation of foam cells
(51). The oxidative modification of cholesterol/ LDL
cholesterol in the vessel wall is a prerequisite for its uptake
by macrophages (51). Angiotensin II directly promotes the
oxidation of LDL cholesterol and stimulates its uptake by
macrophages through induction of the scavenger receptor
CD36 (52). Moreover, oxidized LDL induces potentially
proatherosclerotic effects in endothelial cells via binding to
the endothelial lectin-like oxidized LDL receptor-1 (LOX-
1) (53). Binding of oxidized LDL to LOX-1 leads to the
impairment of endothelial nitric oxide formation, induction
of adhesion molecule expression and apoptosis (53).
Angiotensin II also induces LOX-1 expression in
endothelial cells exponentiating the proatherosclerotic
effects of oxidized LDL (54).

A later step in atherogenesis is the induction of
vascular smooth muscle cell (VSMC) proliferation and

migration by growth factors and cytokines present in the
atherosclerotic lesion (38, 55). We and others have
demonstrated that AngII is a potent inducer of VSMC
growth and migration, thereby contributing to the
progression of lesion formation (56, 57). Interleukin-6 (IL-
6) is one of the major cytokines expressed after vascular
injury and is secreted by monocytes and VSMC (58). IL-6
has been demonstrated to promote VSMC proliferation
through local paracrine actions (59). Its expression is
prominently upregulated by AngII in VSMC enhancing
AngII proliferative effects on lesional VSMCs (60).

Recent work has indicated a role for
cycloxygenase-2 (COX-2) in VSMC growth and migration
in response to AngII and inflammatory cytokines.  AngII-
stimulated COX-2 expression in VSMC is attenuated by
AT1R antagonism or ERK MAPK inhibition (61-63), and
AngII-mediated VSMC cell proliferation and migration are
blocked by treatment with the COX-2 selective inhibitors
NS-398 and nimesulide (61-63). AngII-stimulated COX-2
expression in VSMC is also attenuated by PPAR-alpha and
PPAR-gamma ligands (63).  Similar results were observed
in human and rat VSMC, however, AngII appears to
stimulate COX-2 mRNA expression in human VSMC (63),
and extend COX-2 mRNA half-life in rat VSMC (61).

Both COX-2 and inducible nitric oxide synthase
(iNOS) are induced by cytokines in several in vitro and in
vivo systems, which has lead to the theory of cross talk
between these two pathways.  IL-1beta, however, induces
both iNOS and COX-2 expression in rat VSMC, but  only
COX-2 expression in human VSMC (64).  Nitric oxide has
also been reported to influence the expression of COX-2.
However, reports of a potential regulatory interactions
between NO and COX-2 are contradictory.  Nitric oxide
has been reported to decrease COX-2 expression and
activity by several groups (65, 66), while others, using
similar experimental models, have found NO to increase
the activity and expression of COX-2 (67, 68).

3.3.2. Angiotensin II as a pro-inflammatory cytokine
Angiotensin II mediates its physiologic effects by

binding to two highly-specific transmembrane receptors,
referred to as the AT1R and AT2R subtypes, which are
both expressed on vascular cells (23). Most of the known
effects of AngII are related to AT1R activation, however,
recent studies have indicated a functional role for the AT2R
in AngII-mediated atherosclerotic processes. It has been
hypothesized that the functions of AT1R and AT2R
stimulation are mutually antagonistic (23, 69). Given the
pro-inflammatory actions of AT1R activation, a potential
anti-inflammatory role of the AT2R in these processes has
been recently studied in a model of vascular inflammation
using AT2R-/- mice (70). Treatment with the AT1R
antagonist Valsartan led to a significant decrease in MCP-
1, TNF-alpha, IL-6 and IL-1beta production, and
infiltration of inflammatory cells in cuff-injured arteries
(70). Interestingly, valsartan treatment was less effective in
the inhibition of inflammation in AT2R-/- mice, indicating
that AT2R activation is mediating, at least in part, the anti-
inflammatory effects of AT1R blockade (70). The anti-
inflammatory actions of the AT2R are further supported by
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the enhanced inflammatory reaction observed in AT2R-/-

mice after cuff-injury. Additional studies are required in the
future to delineate the function of the AT2R in AngII-
induced vascular inflammation and atherogenesis.

Further downstream mechanisms by which AngII
induces vascular inflammation have been studied
extensively. A key regulator of inflammatory gene
regulation is the transcription factor NF-kappaB (13, 71).
NF-kappaB is a highly inducible DNA-binding protein
sequestered in the cytoplasm by association with one of
several isoforms of the NF-kappaB inhibitor protein, I-
kappaB. Upon activation by various cytokines and growth
factors NF-kappaB is released from I-kappaB and
translocates to the nucleus. NF-kappaB regulates an array
of gene responses, many of which determine the degree of
the inflammatory response (36, 71). Angiotensin II has
pleiotropic actions at multiple levels of the NF-kappaB
signalling pathway. Angiotensin II induces the
translocation of cytoplasmic NF-kappaB to the nucleus by
stimulating proteolysis of I-kappaB (60). Angiotensin II
also enhances the binding of NF-kappaB subunits to DNA
recognition sites in the promoter regions of target genes
(60, 72). Several studies have shown that AngII-mediated
IL-6, VCAM-1 and MCP-1 expression is regulated by NF-
kappaB activation, demonstrating the functional importance
of the NF-kappaB pathway to AngII induced vascular
inflammation (2).

In summary, the pro-inflammatory actions of
AngII in the vessel wall provide a logical
pathophysiological scheme for direct proatherosclerotic
effects of AngII.

3.3.3. Angiotensin II as an agent of vascular oxidative
stress

Atherosclerosis as an inflammatory disease is
amplified by vascular oxidative stress, a process that results
in the formation of so-called reactive oxygen species (ROS)
(73). The reduction of molecular oxygen results in multiple
ROS, including superoxide (O2

.-), hydroxyl radicals (HO.)
and hydrogen peroxide (H2O2). The major source of ROS
in the vessel wall is the membrane-associated enzyme
NADPH oxidase, which consists of multiple subunits
(gp91phox, p22phox, p47phox, p67phox) that are
differently expressed in endothelial cells, VSMCs, and
fibroblasts (74). Increased NADPH oxidase activity results
in excessive production of ROS, leading to oxidative
modification of DNA and protein, lipid oxidation and
activation of redox-sensitive genes.

Angiotensin II potently activates vascular NADPH
oxidase, via AT1R stimulation, by increasing p22phox subunit
expression (75). In addition, AngII also enhances the
expression of other NADPH oxidase components, such as rac1
and the gp91phox homologue nox-1 (76, 77). Activation of
NADPH oxidase by AngII results in an increased production
of ROS in the vessel wall (78). ROS are central modulators of
AngII-induced proatherosclerotic responses including the
described inflammatory actions, and inactivation of NO by
AngII-induced ROS plays a pivotal role in the initiation of
atherosclerosis (78).

Dysregulation of the balance between vascular
AngII and NO activities leads to endothelial dysfunction,
the first step in lesion formation, decreasing vascular
vasodilatory capacity and increasing the activity of
monocytes/macrophages and platelets on the vessel wall.
Nitric oxide decreases VSMC growth (79), stimulates
endothelial cell growth and survival (80, 81),  decreases
platelet adherence to the endothelium (82), and suppresses
monocyte adhesion, invasion  and accumulation within the
vessel wall (83).

Angiotensin II also appears to alter NO
availability through regulation of VSMC iNOS expression.
Reports detailing AngII effects on iNOS expression,
however, present a complicated picture.  SHR rats, a rat
model of hypertension, demonstrate significantly elevated
vascular iNOS mRNA and protein expression, relative to
normotensive controls, which is reversed upon treatment
with the ARB candesartan (84).  An earlier in vitro study,
however, did not detect AngII stimulation of iNOS
expression in rat VSMC, and instead found that AngII
suppresses IL-1beta stimulated iNOS expression via an
AT1R-dependent mechanism (85).  In humans, ACE
administration was found to stimulate VSMC iNOS and
AT1R expression, while decreasing vascular ACE (86).

A second consequence of vascular ROS induction
by AngII is the induction of redox-sensitive gene
expression. Endothelial VCAM-1 is a redox-sensitive gene
that has been shown to be upregulated by AngII (45).
Recently, it has been demonstrated that AngII-induced
intracellular H2O2

 production followed by NF-kappaB
activation is required for VCAM-1 induction in rat aortic
endothelial cells, clearly corroborating the relevance of
oxidative stress in these processes (45). Other redox-
sensitive genes involved in AngII-induced vascular
inflammation are ICAM-1 and MCP-1 (78).

Production of O2
.- in the vessel wall by AngII

also promotes the oxidative modification of LDL
cholesterol facilitating its uptake into lesional macrophages
(87).

Another redox mechanism of AngII-induced
atherogenesis is based on the function of NADPH-derived
ROS as second messengers. It has been shown that AngII-
induced activation of the mitogen-activated protein kinases
p38 kinase and the cell survival kinase Akt (protein kinase
B) in VSMCs involves the activation of NADPH-oxidase
and production of ROS (88, 89). The p38 kinase and Akt
are central regulators of VSMC growth and apoptosis, both
processes which determine the number of lesional VSMC.
The parallel increased production of ROS enhances AngII-
induced downstream signalling resulting in a boost of
AngII-mediated VSMC growth and promoting the
progression of atherosclerosis.

Taken together, the induction of vascular
oxidative stress by AngII is an additional proatherogenic
stimulus, which is amplifying the pro-inflammatory actions
of AngII. Angiotensin II´s oxidative properties together
with its inflammatory effects provide striking mechanistic
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evidence for a central pathophysiological role of this
peptide in the atherosclerotic process.

4. PPAR-GAMMA AND ATHEROSCLEROSIS

Atherosclerosis is the major macrovascular
complication of type 2 diabetes and the principal cause of
mortality in that population (90-92). Recent studies suggest
that metabolic abnormalities related to the Insulin
Resistance Syndrome may trigger vascular damage that
contributes importantly to the increased risk of
atherosclerosis associated with diabetes (93-95). This
emerging link between insulin resistance and
atherosclerosis has focused attention on potential vascular
benefits to be derived from insulin-sensitizers used to treat
type 2 diabetes. Thiazolidinediones (TZDs) are oral insulin-
sensitizers in broad clinical use to enhance insulin-
stimulated glucose uptake into peripheral tissues (20, 96-
99). Through pleiotropic activities to improve
cardiovascular risk factors associated with the Insulin
Resistance Syndrome and exert direct antiatherogenic
effects on vascular cells, TZDs have the potential to retard
the atherosclerotic process (8).

TZDs are ligands for the nuclear receptor,
peroxisome proliferator activated receptor gamma (PPAR-
gamma). All of the principal cell types presents in
atherosclerosis lesions express PPAR-gamma, including
intimal macrophages and vascular smooth muscle cells (16,
17, 19, 100). Direct vascular effects of TZDs, therefore,
likely result from activation of PPAR-gamma in the arterial
wall. Rosiglitazone and pioglitazone are the two currently
available TZDs used clinically to ameliorate insulin
resistance. Direct vascular effects of rosiglitazone,
pioglitazone, and other nonclinical PPAR-gamma ligands
that are relevant to the development of atherosclerosis
include: inhibition of VSMC growth (19, 20); inhibition of
VSMC and monocyte migration (16-19); and attenuation of
proinflammatory responses by macrophages and T
lymphocytes (101-103).

In addition to their direct effects on vascular
cells, TZD PPAR-gamma ligands also increase HDL and
reduce triglycerides (104, 105). Both rosiglitazone and
pioglitazone modestly lower blood pressure in animal
models of hypertension (106, 107), while rosiglitazone has
been reported to exert a similar effect in humans (108).
Reduced levels of circulating plasminogen activator
inhibitor-1 (PAI-1), small dense LDL particles and C-
reactive protein (CRP) have also been documented after
treatment of type 2 diabetic subjects with troglitazone
(109). Favorable effects of PPAR-gamma ligands on the
vasoactive, inflammatory, thrombotic and dyslipidemic
milieu as evidenced in clinical trials further buttress their
promise to retard or prevent atherosclerosis.

Cardiovascular outcome studies in humans with
PPAR-gamma ligands (rosiglitazone and pioglitazone)
analogous to the HOPE trial for ACE inhibitors, will
ultimately determine if this class has clinical
antiatherogenic activity. Encouraging, although not
necessarily predictive, results are provided by studies

examining the effect of PPAR-gamma ligands in mouse
models of atherosclerosis. PPAR-gamma ligands inhibit
atherogenesis in both LDL receptor-deficient (LDLR-/-) and
apoE-/- mice (12-15). When LDLR-/- mice are administrated
a high fat or high-fructose diet, they become
hypercholesterolemic and form early atherosclerotic
lesions, i.e. fatty streaks in their vessels (13). On a high-fat
diet, male LDLR-/- mice also become obese, insulin
resistant and over time develop hyperglycemia (12, 13). In
contrast, a high fructose diet does not trigger insulin
resistance or cause weight gain in this strain (13).
Troglitazone, the first TZD PPAR-gamma ligand used
clinically until its withdrawal for hepatotoxicity, suppresses
the atherosclerotic lesion formation by 30-40% in aortae of
LDLR-/- male mice fed either a high fat or high fructose
diet (13). In a separate study, rosiglitazone markedly
reduced lesion size in the aortic root of male LDLR-/- mice
fed a high fat atherogenic diet (12). Antiatherogenic effects
were associated with a reduction in the accumulation of
lesional macrophages and decreased vascular expression of
several proinflammatory genes, including TNF-alpha and
CCR2, the receptor for MCP-1 (12, 110, 111). Attenuation
of atherosclerosis by PPAR-gamma ligands appeared to be
uncoupled from any effect to normalize insulin resistance
or improve the dyslipidemia in LDLR-/- mice (12, 13).
Although PPAR-gamma clearly impacts many aspects of
arterial wall biology and metabolism in humans, results
from mouse models implicate anti-inflammatory effects as
a major mechanism for its antiatherogenic activity.

5. PPAR-GAMMA AND ANGIOTENSIN II
INTERACTIONS IN THE VESSEL WALL

Regulation of AngII signalling by PPAR-gamma
ligands can be inferred from their effect to modestly lower
blood pressure. PPAR-gamma can regulate AngII signaling
at several levels. Several different groups have shown that
PPAR-gamma ligands can repress transcription of the
AT1R gene, possibly by interfering with SP1 promoter
elements (112-114). Other studies have demonstrated that
PPAR-gamma ligands can block AngII signaling
downstream of the AT1R. Conversely, elevated AngII
levels, associated with increased atherosclerotic risk, may
attenuate the action of endogenous PPAR-gamma ligands
in the vasculature, since AngII-infusion has been shown to
downregulate PPAR-gamma and PPAR-alpha mRNA and
protein expression throughout the aortae of an apoE-/-

mouse model of atherosclerosis (115).

PPAR-gamma ligands block AT1R-mediated
activation of ERK MAPK, which is required for AngII
stimulation of VSMC growth and migration (116-119).
Activation of ERK MAPK may mediate many of AngII’s
proatherogenic effects in the vessel wall (120). It is
currently unknown whether PPAR-gamma ligands impact
increased oxidative stress in the vasculature mediated by
AngII.

In preliminary studies, PPAR-gamma ligands
were effective in inhibiting AngII-accelerated
atherosclerosis in LDLR-/- mice (121, 122). Rosiglitazone,
pioglitazone, and a non-TZD PPAR-gamma ligand all
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reduced atherosclerosis by ~60%. These effects occurred in
the absence of any significant change in cholesterol,
triglycerides, insulin, glucose, and blood pressure. The
failure of PPAR-gamma ligands to lower blood pressure
was somewhat unexpected because of their reported in vitro
effect to lower AT1R levels in VSMC (112-114).
Attenuation of lesion formation by PPAR-gamma ligands
did correlate with a pronounced downregulation of the
proinflammatory transcription factor Egr-1 and a
concomitant reduction in several Egr-1 target genes,
including TNF-alpha, ICAM-1, and MCP-1 (121, 122).
AngII is also a potent activator of NF-kappaB and AP-1,
two other transcription factors that function analogously to
Egr-1 as master orchestrators of the inflammatory response
(102, 123). PPAR-gamma can also repress transcription of
many NF-kappaB- and AP1-regulated genes that promote
inflammation, a process that likely also contributes to the
observed attenuation of AngII-accelerated atherosclerosis
by PPAR-gamma ligands.

6. CONCLUSION

AngII has emerged as a major culprit during
atherogenesis by elevating blood pressure, increasing
oxidative stress, and provoking an inflammatory response.
In addition to their important ability to ameliorate insulin
resistance, PPAR-gamma ligands may also protect against
atherosclerosis as revealed by studies in mouse models.
PPAR-gamma ligands may constitute a unique promising
class of therapeutics for treating diabetes-associated
cardiovascular disease through their pleiotropic activity to
target AngII-mediated processes in the vessel wall,
normalize metabolic abnormalities of the Insulin Resistance
Syndrome, and suppress vascular inflammation.
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