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1. ABSTRACT

Despite the wealth of longitudinal data on the
health dynamics of human populations, information on
covariates (risk factors) changes in those studies has not
been systematically and fully exploited. In this work we
use the 46-year follow-up of the Framingham Heart Study
to analyze dynamics of these risk factors in survival models
that go far beyond the standard linear dynamic formulation.
We focus on improving the inferences about the physiology
of human aging processes and its plasticity and on
modeling state trajectories for individuals considering the
effect of nonlinear interactions among covariates. We find
that using standard statistical methods to construct models
describing the age dependence of health status might give
rise to surprising results with highly “diluted” dynamics,
but with significantly improved statistical criteria. It is
found that problems with the dynamics are a consequence
of the intrinsic nonlinear nature of these models. We show
that evolution of the risk factors measured in the
Framingham study is more complicated for females than
for males (i.e., female health status is more sensitive to
nonlinear interactions among risk factors). We suggest that
this is due to the rapid rate of decline of estrogen
production after menopause.

2. INTRODUCTION

It is important to understand how the operation of
human physiological systems changes with age. To
examine these processes in a human population, one must
develop statistical models of those physiological dynamics
appropriate to available data and longitudinal observational
plans.

Large amounts of epidemiologic and
demographic data have been collected to link health
changes over time. For example, the original Framingham
the study of a cohort of 5,204 persons (aged 29 to 62)
began in 1949-1950, with follow-up exams done every two
years. The initial purpose of the study was to determine the

relation, over time, of disease risk, especially of cardio
vascular disease, to several potential (in 1950) risk factors
(such as serum cholesterol, blood pressure, smoking, body
mass index (BMI), etc). In addition, longitudinal risk factor
studies of long standing have been conducted in community
studies (in Charleston, South Carolina and Honolulu,
Hawaii), in national studies (the MRFIT program and the
CHS and ARIC studies), and in international studies (the
seven-country study (1) among others). In Framingham
new studies were initiated (in 1972) on the offspring of the
original cohort members.

Despite this wealth of longitudinal data on the
health dynamics of human populations, the information on
state variable changes in those studies has not been
systematically and fully exploited. As a consequence, some
of the conclusions based on those studies proved either to
be incorrect or to require serious qualification. For
example, the linkage of total cholesterol to cardiovascular
morbidity and overall health was found to be too crude. It
was determined that at least three components of
cholesterol needed to be identified (i.e., high density
lipoproteins, the good type of cholesterol that transports
lipids away from atherosclerotic plaques; low density
lipoproteins, the “bad” type of cholesterol that enters
plaques and becomes oxidized that should be reduced; and
triglycerides, the component of total cholesterol that is
most responsive to dietary factors (carbohydrate intake).

Although diets emphasizing low fat consumption
were strongly promoted for a while, it became clear that
there were important differences in the types of fats
consumed, how they were metabolized, and thus how they
impacted the risk of specific diseases. High carbohydrate
diets ran the risk of elevating triglycerides and, in recent
meta analyses, may have been implicated in the current
obesity pandemic in the U.S. (2).

Indeed, the lipid profile is more complex than
even this three-part decomposition. Other factors, such as
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APOE allelic variation and Lipoprotein A levels, may play
significant roles, as may C-reactive protein, inflammatory
mechanisms, and immunological responses. Unfortunately,
these details about lipid profiles and inflammatory proteins
have only been recently translated into better measurements
in studies. The cruder measures, however, followed over
long time periods and across a wide range of ages, may, by
using appropriately specified structural models, provide
additional and different insights into the age variable
biological effects of factors, such as cholesterol, on total
health (3).

In addition many experimental and clinical
studies have been made of human disease processes – again
without systematically exploiting the evidence on the
dynamics of the phenomena being studied. Perhaps more
importantly, there have been few attempts to link the
various types of information in more comprehensive
(multi-level) dynamic models of human physiology in
natural human populations. Furthermore, in the models that
have been considered a linear paradigm was usually
employed. A linear paradigm is unlikely to be a satisfactory
description of a well-integrated complex physiological
system where the effects of some parameters of the systems
are dependent on the values of others (i.e., “field” effects).

The models used to analyze the various types of
data were often incorrectly specified in terms of describing
state dynamics, and thus could not correctly characterize
disease risks. This is, in part, a conceptual problem because
factors in both types of studies were sought that increased
risk and that could be “avoided”. Far less emphasis was
placed on finding factors that actively reduced risk by
increasing the vitality of the organism. Even less attention
was paid to the fact that one variable (because of field
effects, nonlinearity, or interactions with other variables)
could both enhance and reduce the same disease risk
simultaneously by operating through different mechanisms
or structures. Thus, the conceptual model employed was
predominantly one of “independent” risk factor avoidance,
rather than of systematic health improvement or global
functional regeneration.

Below we use the 46-year follow-up of the
Framingham Heart Study to analyze state dynamics in
models that go far beyond the standard linear dynamic
formulation (4) and to improve the inferences about the
physiology and plasticity of human aging processes that
can be made from longitudinal studies of human
populations. In this paper we concentrate on improving our
modeling of state trajectories for individuals. In subsequent
papers we will focus on modifying the mortality component
of the model to make better predictions for entire
populations.

3. DATA

The Framingham Heart Study began with a
cohort of 5,209 persons (2,336 males and 2,873 females),
aged 29 to 62, recruited in 1950. People were assessed
biennially. Our database consists of up to 23 records for
each person (i.e., 46 years of follow-up). For each wave of

measurement, the biological measures we had available for
each record were: gender, age, sex, diastolic blood
pressure, systolic blood pressure, serum cholesterol, vital
capacity index, hemoglobin (or hematocrit), cigarette
consumption, body mass index, blood glucose, ventricular
(heart) rate, and left ventricular hypertrophy.

We used this longitudinal data to analyze the
dynamics of state variables and determine how they relate
to the health status of persons as it changed over 46 years,
from ages 30-62 (at study start) to ages 76-108 (at our
“end” of follow-up). The individual risk factors are:

Age (x1). Statistically, age (number of years) is
one of the most important risk factors describing
physiological activity and reflecting the process of
senescence; it is, however, not directly informative about
specific biological mechanisms. Some researchers have
attempted to interpret age as a process by making it a
nonlinear function of chronological time (a Weibull or
Gompertz curve) that had an interpretation as a specific
type of human “failure” process (5). Sometimes such
functions were interpreted in terms of macro-molecular
thermo dynamics (e.g., denaturation or unfolding of protein
molecules under thermal stress (6)). We assume that age
and calendar time are equivalent for making the
coefficients of our model time-dependent.

Pulse pressure (x2). Rather than dealing directly
with systolic blood pressure, we consider the difference
between diastolic and systolic blood pressures, which is
called pulse pressure and is measured in millimeters of
mercury (mmHg). Pulse pressure is less strongly correlated
to diastolic blood pressure than systolic blood pressure. Its
increase is a major risk factor for stroke and its decrease
may reflect loss of heart pump capacity with age.

Diastolic blood pressure (x3). Diastolic blood
pressure (mmHg) has a tendency to increase with age—
possibly due to the degradation of arterial elasticity and
hemostatic changes. It increases the risk of stroke,
atherogenesis, and renal damage.

Body mass index (x4). Body mass index
( 10 /QI weight height= × ; /kg m ) accounts for the health risk
of obesity. Low BMI may be an indicator of caloric
restriction and has been found (in literature) to be an
indicator of enhanced longevity and to lower disease risks
in animal models (7). In humans, the relation of BMI to
body mass is likely complex and multi-dimensional. Its
effects may be better identified by examining the change of
its covariance (or other higher order cross-moments) with
other risk factors (e.g., high blood glucose, cholesterol,
blood pressure).

Serum cholesterol (x5). Increased plasma, insulin,
and obesity accelerate lipolysis, increasing circulating free
fatty acids and triglycerides that cause serum cholesterol
(milligram/100 milliliters; mg/100 ml) to increase until late
middle age, after which it declines. The lipid components
of cholesterol have conflicting functions (HDL vs. LDL),
and their levels are controlled by hepatic metabolism (e.g.,
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HMCOGA enzyme). Thus we must, in analyzing the 46
year follow-up, concentrate on examining the temporal
change in the covariances of cholesterol with other risk
factors.

Blood glucose (x6). Elevated blood glucose
(milligram/100 milliliters; mg/100 ml) is indicative of
diabetes, which increases the risk of death because of
multiple diseases. Elevated blood glucose is an indicator of
insulin resistance and can cause damage to many different
tissue types (e.g., retina and kidneys).

Hematocrit (x7). Hematocrit (%) affects
hemostatic and rheological factors in thrombosis, elevates
cholesterol, and might be related to the inhibition of the
relaxation of coronary artery endothelium by stimulating
free radical production. It might be an indicator of diseases
related to oxidation processes such as arterial plaque
formation (8).

Vital capacity index (x8). The vital capacity index
is calculated as 10 ×  vital capacity in deciliters / height2

( 210 /deciL m× ). This measure of pulmonary capacity is
believed to be one of the biomarker's most directly related
to senescence (9) possibly because of the direct exposure of
pulmonary tissue to the environment.

Smoking (x9). Smoking risk is exacerbated by the
smoking rate, which is described as the mean number of
cigarettes consumed per day. Similar to elevated blood
glucose and hematocrit, smoking accelerates multiple age-
related processes. In females it may also affect the fertility
of both the mother and the female fetus by reducing the
number of viable oocytes.

Left Ventricular Hypertrophy (x10) (LVH). LVH
prevalence is a consequence of hypertension, loss of
cardiac catecholamine receptors, and obesity. With
appropriate blood pressure (Ace inhibitor), hormonal
control, and physical activity, LVH may now be reversible.

Pulse rate (x11). Pulse rate (beats/minute) reflects
physical fitness. Resting heart rate predicts cancer risk
independent of physical activity.

These variables define a J=11 dimensional risk
factor space, which is conditioned on male and female
status -- also on potent state variables in that many of the
above variables are either controlled by, or interact with,
various gender-dependent hormonal factors. Gender may
also have a genetic effect (e.g., because of gender
difference in the cytochrome P450 enzyme system in the
liver).

4. MODELS

We constructed a stochastic process from the J
variables, jx x≡ , measured on I individuals up to N

times. As the number of observations over time increases,
the discrete time stochastic process can be better
approximated by a continuous-time, continuous-state

process (10). This is relevant because, in the stochastic
process to be constructed, we will need information on the
slopes of state trajectories. One issue is: how many
measurement points are needed to approximate those
durations. The model must describe the movement of a
person i (i=1,2,…I) in a J dimensional state space. In the
process, the evolution of the continuous time, vector state
process, x(t), is governed by a J dimensional stochastic
differential equation,

( ) ( ) ( ) ( ), ,i i idx t u x t dt x t d tσ ξ= + . [1]

The probability of death at a point in the J dimensional
space is,

( ) ( ) ( ), , ,i i idP x t x t P x t dtµ= − , [2]

where ( ),ix tξ  is a Gaussian vector process; ( ),iu x t  and

( ),ix tσ  are drift and diffusion coefficients; ( ),iP x t  is the

probability of surviving to time t for a person i and ( ),ix tµ
is the mortality rate.

Equation [1] shows that the time changes in J=11
risk factors of each person (xi) are a function of
deterministic (first term) and random (second term)
components. The second equation reflects the survival
probability, decaying in time exponentially with the
mortality rate µ .

The random walk and mortality equations for
individuals can be combined to generate the Fokker-
Planck-Kolmogorov (FPK) (11) equation for temporal
changes in the multivariate state variable density function
f(x) due to drift and diffusion. It was generalized to
represent state dependent mortality (12),

( ) ( ) ( ) ( ) ( ),
, j

j
j jj j

u x tf x f x
u x t f x

t x x
∂∂ ∂

= − −
∂ ∂ ∂∑ ∑

(deterministic change)

( ) ( )
2

,
,jj

j j j j

x t f x
x x

σ ′
′ ′

∂  +  ∂ ∂∑
(diffusion) [3]

( ) ( ),x t f xµ− . (mortality)

Rigorous analysis requires numerical integration
of equation [3]. The numerical problem can be simplified
by making two assumptions: a.) risk factors are measured at
fixed times and are linearly related, and b.) the data are
normally distributed. Under these assumptions and
following the random walk specification (13), we can write
the linear dynamic equations for J variables as,

1t tx u Rx ε+ = + + , [4]

and for mortality as a quadratic function of x,
0 .T T

t t tq x x Qxµ µ= + + [5]
Under these conditions (linear dynamics,

quadratic mortality), this multivariate Gaussian state
variable distribution remains Gaussian over time−even with
mortality selection. Scalar 0µ , vector q, and matrix Q are
estimated by maximum likelihood. Equation [5] may be
generalized by multiplying each coefficient by an age

functional (such as the Gompertz, Ageeθ ) to reflect age-
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correlated latent variables increasing mortality at θ % per
year.

Equation [4] describes how changes in each of
the J state variables are related to linear superposition on
their prior values. Linear models are widely used because
of their simplicity and ease of interpretation. However, they
are often too simple to correctly predict an organism’s
future health status because they may not capture essential
features of underlying, linked processes. Due to
interactions among the components of a system, realistic
multi-parametric biological, social, and other complex
systems are often nonlinear. Their dynamics can also be
affected by unobserved processes reflecting nonlinear
interactions and/or correlation among the system
components (i.e., by “field” effects) so that standard linear
models cannot fully describe data originated from these
systems. For example, it was recently shown that the
Framingham data do not support a linear paradigm (14). In
this case, nonlinear analysis is essential. Application of
nonlinear methods to the analysis of state dynamics for
individuals is the primary goal of this paper. Extensions to
nonlinear models, including mortality, are beyond the
scope of this paper. However, given large differences in the
structural physiological dynamic models we found below,
we believe that the additional effects captured as
nonlinearities may be larger than mortality effects within
measurement intervals. Mortality rates will, however, be
essential for forecasting population health.

Nonlinear time series analysis has recently gained
attention (15). Any model that is not linear with respect to
system variables (i.e., when the superposition principle is
violated) is considered to be nonlinear in variables (versus
parameters), or simply nonlinear. Comprehensive nonlinear
models consider a.) the degree of nonlinearity, and b.)
memory effects (i.e., how important is the system
“prehistory” to assess future health). A general nonlinear
model is,

( )1 ,..., ,t t t m
j j j j j jx u f x x α ε+ −= + + , [6]

where m is depth of memory, jα  is a vector of parameters,

and ( )f ⋅  is a nonlinear function of the variables and

perhaps of the parameters. Such nonlinear models are
widely used to model and predict nonlinear time series and
belong to the class of models known as “neural networks”
(16).

To be useful and interpretable, such a general
system needs to be substantially restricted. Here we present
and study the simplest type of nonlinear model. In addition
to the assumption of the linear superposition of all risk
factors on future health, we assume that each risk factor can
“interfere” with others inducing additional changes
(positive or negative, depending on goodness of fit and the
substantial importance of their interaction) in future health.
Interference of two variables can be represented by their
scalar product. We also start by assuming that only prior
values of risk factors affect health. This requires re-
specifying the system of 11 dynamic equations as,

1t t t t
j j jj j jj j j j jx u R x C x x ε+

′ ′ ′ ′′ ′ ′′= + + + , [7]

The problem now is twofold: on one hand, any
nonlinear model for dynamics of risk factors violates our
assumption of the normal distribution of the data; on the
other hand, we have to study whether such a generalization
is necessary and which terms are essential. A question that
should also be answered is whether the nonlinear terms are
new state variables reflecting the so-called “field” effect
(due to possible unobserved processes) in the generalized
linear model prescribed below. If so, our ability to identify
state variables from measurements will increase, compared
to using a latent variable procedure, such as principal
component, which extracts only information on latent
variables from second-order moments (covariance matrix).
To justify applicability of nonlinear models for estimating
survival functions, we note that adjustment for non-
normality can be accomplished by using Monte Carlo
simulation of individual trajectories and fitting simulated
distributions at each time interval (17).

We generalize the problem by treating products
of original state variables as new variables, 

j j jy y x x′ ′′≡ =

to produce the system of dynamic equations,
1

1

,

.

x x x x
t t t

y y y
t t

x u R x C y

y u R y

ε

ε
+

+

= + + +

= + +
[8]

This can be written in a more compact form by defining a
new vector X:

[ ]TX x y= , [9]

which consist of 11 original state variables and 66 new
ones:

Xt +1 = ˜ u + ˜ R Xt + ˜ ε , [10]

Unlike system [7], system [10] is linear with respect to the
expanded set of variables. Systems [4], [7] and [10] are
studied below.

5. DYNAMICS OF LINEAR AND NONLINEAR
MODELS

In matrix form a linear system of ordinary
differential equations (ODE) is written,
dy Ay
dt

= , [11]

where y is a vector of state variables and A is a matrix of
coefficients, independent of y. This system has the solution

( )0 expy y t= Λ , [12]

where y0 is a vector of initial conditions and Λ  is a
diagonal matrix of eigenvalues λ  of matrix A. Depending
on whether eigenvalues are real, complex, or purely
imaginary, there are three different types of system
evolution: exponential, exponential with oscillations, and
oscillatory. The sign of the real part of system eigenvalues
determines whether there is exponential growth or decay. If
the real part of at least one eigenvalue is positive, the
stationary solution of the system (i.e., when 0Ay = ) is
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unstable. That is, any small perturbation of this solution
gives rise to exponential divergence. In contrast, when all
the real parts in Λ  are negative, the solution is stable and
phase trajectories eventually converge to this solution −
irrespective of the starting point in the state space (i.e.,
irrespective of initial conditions 

0y ). Classically, the loss of
function with age in humans has been viewed as monotonic
and as leading increasingly to an exponential increase in
mortality. In the system described above, short term
changes (during transient) need not be monotonic (i.e., age
reversals of the trajectories of the measured and state
variables are possible).

An example of such behavior in biology is given
by the well-known logistic equation:

( )dN b N
dt

µ= − ,

where N is a number of members in a population; b is a
birth rate, and µ  is a mortality rate. Note that b and µ
are constants and do not depend on N.

In nonlinear models, things are more complex. In
general, a nonlinear system of ODE is,

( ),dy f y
dt

α= , [13]

where α  is a vector of parameters and ( )f ⋅  is a vector of

nonlinear functions of state variables and parameters.
Equation [13] can be rewritten in the same form as [11], but
with coefficients dependent on y.

Since ( )f ⋅  is nonlinear, system [13] can have

more than one solution. Hence, the phase space can be
composed of several basins of attraction or repulsion. This
could correspond to multiple modes of failure or to
different disease processes as causes of death. Starting from
different initial conditions, the phase trajectory can settle
onto one or another solution, depending on which basin of
attraction/repulsion a particular set of initial conditions
belongs to (e.g., a person genetically predisposed to
diabetes is likely to die of circulatory disease). This gives
rise to qualitatively different results during the transient
(and after the transient has died out) constituting the first
qualitative difference between linear and nonlinear models.
A second difference is that the rate of convergence to (or
divergence from) a certain solution can no longer be
ascribed to the eigenvalues of any matrix composed from
the coefficients of the original nonlinear system [13].
System behavior can, however, be predicted locally (i.e., in
the vicinity of a solution).

Suppose we have a stationary solution that is a
fixed point of [13], for example., / 0dy dt = . Vectors of
solutions are given by ( ), 0f y α = . For each fixed point in

phase space y , using only the first two terms, we can carry
out a Taylor series expansion of ( ),f y α  in its

neighborhood.

( ) ( ) ( ), ,
y y

dff y f y y y
dy

α α
=

= + − . [14]

Since by definition ( ), 0f y α =  at each fixed point, we

obtain,
dz Bz
dt

= , [15]

where z y y= −  and 

y y

dfB
dy =

=
 is a Jacobian matrix that is

independent of the variables. Hence, [15] is a system of
linear ODE, like [11], that is obtained from the original
nonlinear system [13] linearizing it in the neighborhood of
solution y . The behavior of the phase trajectories in the
vicinity of this solution is governed by the eigenvalues of
B, which are called Lyapunov exponents jλ  (where j is

number of equations, or degrees of freedom). They show
whether the trajectory converges to (or diverges from) this
solution, as was described for eigenvalues of the linear
problem. The difference between this and the linear case is
that [15] predicts only short term behavior, while
eigenvalues in Λ  in equation [12] govern long term
evolution.

The time of settlement of the trajectory onto the
solution, the transient, can be “large.” This is the case for
systems with small “dissipation” and, as a limiting case, for
Hamiltonian systems (i.e., systems attempting to conserve,
for instance, energy). In the latter systems, the sum of all
the eigenvalues (i.e., trace of matrix A or B), ideally, is
zero, which conserves the volume of the state space over
time. A particular case is a system with neutral stability
when all Re 0λ = . Then, if Im 0λ = , the system remains
on the initial conditions irrespective of time. When
Im 0λ ≠ , the system evolves periodically, with amplitude of
oscillations given by the initial conditions. In the former
case, the trace is close to zero, but is negative. Hence, each
set of initial conditions in Hamiltonian systems has its own
trajectory that is not attracted to another set. In systems
with small dissipation all trajectories are attracted to each
other, converging to a solution, but the transient time to
reach it can be large; so the final state cannot be reached
during a reasonable time of integration.

A famous example of such systems in population
biology is the so-called predator-prey model constructed by
Lotka and Volterra:

( )

( )

1
1 1 1 2

2
2 2 2 1

,

.

dN N r b N
dt

dN N r b N
dt

= −

= − +

The constant b1 describes the death rate of prey eaten by
predators; constant b2 measures the skill of the predator to
catch prey; r1 denotes the rate of prey increase in the
absence of predators; and r2 denotes the natural (without
prey) mortality rate of the predators.

Apart from the trivial solution (
1 2 0N N= = ), this system has

a nontrivial (
1,2 2,1 2,1/N r b= ) solution that has neutral

stability. For this solution, all Re 0λ = , while Im λ  is
purely imaginary, and 

1 2Im i r rλ = ± . Hence, this model
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shows oscillatory behavior being an image of a family of
closed curves in phase space in which each curve
corresponds to a different initial condition.

This discussion is also valid for a system of
difference equations (i.e., a system similar to equation [7])
for which corresponding critical eigenvalues are equal−not
to 0−but to 1 because ( )/ /t t tdy dt y y t+∆≈ − ∆  and, assuming

1t∆ = , the matrix of eigenvalues ′Λ  for the system of
difference equations is I′Λ = Λ + , where I is a unit matrix.

If there is no stationary solution, we can still
characterize divergence (or convergence) between two
different trajectories, which start from initially near points,
estimating Lyapunov exponents numerically − even if the
trajectories do not settle onto any attractive solution
(attractor) (18). The set (spectrum) of Lyapunov exponents
can be defined following Wolf et al., (19) in terms of the

length of the ellipsoidal principal axis ( )jp t  as a limit in

the long term evolution of the “spherical” initial volume in
J-dimensional phase space as,

( )
( )2

1lim log
0

j
j t

j

p t
t p

λ
→∞

=
, [16]

where ( )0jp  is initial length.

While the existence of limit [16] has been
questioned (20), the orbital divergence of any data set can
be quantified. This divergence defines how the range of
physiological diversity can expand with age (without the
selection of the mortality effect). Even if this limit does not
exist for the underlying system or if it cannot be
approached due to predicting only short term behavior or to
having only finite amounts of data, the Lyapunov exponent
estimates still provide a useful characterization of data (19).

Unlike the linear problem, to find Lyapunov
exponents for a nonlinear model, we need the derivatives of
the nonlinear functions ( ),f y α . Unfortunately, difference

equations do not provide this information. This is the case
of our prediction nonlinear model in the form of equation
[7]. This system alone is not sufficient to find Lyapunov
exponents. It gives us a function connecting consecutive
data points, but says nothing about the derivatives of this
function at each point. To avoid this difficulty, we can
either use different fitting techniques (18) or convert [7] to
a system of ODEs,

( )
1 1t t

j j j t t t
j jj j jj j j j j

dx x x
u R I x C x x

dt t t
ε

+

′ ′ ′ ′′ ′ ′′

−
 ≈ = + − + + ∆ ∆

, [17]

where 
1t tt t t+∆ = −  and I is a unit matrix.

6. LINEAR RISK FACTOR DYNAMIC RESULTS

One way to estimate coefficients of the drift
vector (u) and regression matrices (R, C) is to use ordinary
least squares (OLS). While there are more elaborate
techniques (21, 22), employment of OLS in our studies is
justified because we are using the discrete time

approximation of the continuous-time stochastic process.
The improved efficiency of more sophisticated estimation
procedures can give unsatisfactory or misleading results in
our approximate model.

We find (23, 24) linear dynamics crucially
sensitive to methods for filling in missing data points. The
most satisfactory results are obtained when filling in
missing data by the Monte Carlo method (MC). Such
procedures are consistent with the Missing Information
Principle or Paradigm (25). A comparison of the dynamics
using the MC method with different initial seeds, which
randomize the magnitudes of the filled data, gives
essentially the same result in that the dynamics do not
significantly change. Hence, the percentage of missing data
in the Framingham Study approaches a critical level at
which special caution should be paid when choosing the
method of imputation.

Coefficients of equation [4] for the 46-year
follow-up are in Table 1 for males and females. They are
estimated over all ages, starting from ages 28 to 62 at the
beginning of the study. Persistence for Framingham risk
factors varies little by gender. Drift and regression
coefficients correlate well both for this model and for the
model for 11 risk factors estimated for the 34-year follow-
up (4). They are also consistent with the corresponding
coefficients for an 8-risk factor model for the 20-year data
(26).

Figure 1 depicts the predicted linear dynamics of 10
risk factors with age for males and females. Pulse pressure first
declines and then, after age 35, rises (until age 100) for males
and females. The male mean is higher before age 47. It crosses
the female mean at this age, decreases, and then rises slightly,
diverging more slowly at advanced ages. Diastolic blood
pressure increases by age 40 (48 in observed data) and then
declines - regardless of gender. The age dependence of BMI
reach a maximum at age 55 for males and 60 for females (the
maximum for males is 6% higher than for females), after
which they both decline. Cholesterol rises until age 42 for both
males and females, and then declines. The rate of decline is
larger for males. Male blood glucose first decreases (by age
35) and then increases (until age 100). At all ages it remains
higher than for females. Postmenopausal female hematocrit is
flat, but slightly decreasing. Male hematocrit reaches a
maximum of 48% at age 40 (declining to 43% by age 95). The
vital capacity index declines to age 100 because of a negative
drift coefficient (Table 1). Smoking is projected to end at age
98 for both males and females. Male LVH prevalence is higher
at ages 30 through 80. Pulse rates first increase (until age 40)
and then decline. The male pulse rate declines slightly faster.
The female pulse rate is higher, which compensates for lower
hematocrit. Since these dynamics do not take into account
mortality, they deviate from the model for the 34-year follow-
up at advanced ages when mortality grows rapidly.

7. NONLINEAR MODELS, EXTENDED LINEAR
MODELS AND DYNAMIC ANALYSIS RESULTS

In Equation [7] 
jj jC C ′ ′′≡  is a tensor of rank 3

(11x11x11), with 1331 coefficients. Due to the symmetry
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Figure 1. Predicted dynamics (model) and mean values over individuals for given ages in the Framingham data base (DB) of 10
risk factors for basic linear model for females (F) and males (M).

of the problem, with respect to the permutation of the last
two indices ( j′  and j′′ ), the number of coefficients in
Equation [7] can be reduced to ( )( )2 1 / 2 1 726J J − + = . Hence,

even a simple quadratic restriction on the nonlinear terms
significantly extends the number of the parameters to be
estimated. Fortunately, the Framingham database has
enough records for OLS to be used.

In considering a new (nonlinear) model, we need
a criterion to compare it with our base (linear) model. One
possibility is the Akaike Information Criterion (27),

2

1

2 ˆlog ( ) 1 2
N

n
n

AIC N x x M
N
π

=

 
= − + + 

 
∑

, [18]

where N is the number of observations and M is the number
of free parameters. x̂  is the mean of the given jx  over all

samples.

Estimating all the coefficients in [7], we obtain a
model called a full nonlinear (FN) model. We can also
estimate, as in the previous section, coefficients of an
extended linear (EL) model [10].

Applying OLS to both systems and averaging results over

all age intervals, we find xu u= , xR R=  and xC C= .
This can be understood by recognizing that
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Table 1. Coefficients ju  and jjR ′  of the linear regression model [4]: Estimated for males and females followed for 46 years

with biennial exams in the Framingham Heart Study
State at time t

100X ×
State
at time
t+1

Gender u X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11

M -0.3 24.7 65.9 8.8 -0.2 0.2 1.5 -4.7 -1 1.8 3.2 0.3
X2

F -2.3 29.1 62.5 8.1 1 0.5 1.8 -6.5 -1.8 1.4 2.8 0.5

M 20.5 -10.1 3 66.5 1.1 0.3 -0.1 8.5 0.2 -1.3 -0.7 4
X3

F 20.7 -10.7 2.8 65.9 1.4 0.7 -0.5 9 -1.2 -1.7 0 4.5

M 29.8 -9.1 -3 0.7 89.6 0.2 -0.4 12.2 0.2 -2 -1.1 -2.4
X4

F 21.4 -6.9 -1.9 3.1 92.2 -0.4 -0.4 9.5 0.1 -5.2 -2.8 -1.6

M 80.7 -33.1 -0.6 -1.1 -0.9 72.1 -3.1 6.5 -0.3 -0.3 -4 6
X5

F 67.2 -15.8 0.7 11 0.4 71.9 -1.9 2.9 -3 -1.9 -6.3 4.4

M 17.2 28.6 14 -2.2 6.4 -1.8 49 -20.3 -1 -3.4 -1 9.9
X6

F 22 28 9.5 1 3.8 -0.8 49.7 -24 -0.2 6.9 3 6.1

M 21.6 -1.9 -0.5 1.2 0.2 0 0 53.3 -0.4 1.2 -0.5 0.9
X7

F 19.1 0.1 -0.6 1.8 0.4 0 0.1 48.9 -0.4 3.4 -0.4 1.1

M 47.1 -21.5 -2.2 2.1 -0.1 0 -0.4 -7.4 77.4 -3.7 -1 -6.5
X8

F 46.4 -18.5 -3.2 -0.8 -1 -0.2 0.2 -6 74.7 -2.8 -1 -4.3

M 3.6 -5.3 0 -2.6 -0.4 -0.1 0 6.7 -0.7 86 0.5 1.9
X9

F 1.4 -2.4 0 -0.6 -0.2 0.1 0 2.8 -0.2 92.2 0.2 0.3

M -2.2 1 7 2.6 -0.3 -0.3 0.1 -2.1 0.1 0 77.8 -1.3
X10

F 2.4 1.9 4.4 1.8 -0.4 -0.5 0.6 -6.7 -0.9 2.2 83 -1.3

M 28.4 -6.9 0.4 10.9 -0.7 0.7 0.8 7.9 -3.4 5.1 -0.6 54.2
X11

F 32.4 -6.5 0.1 8.3 -0.3 0.5 0.5 4.8 -2.9 4 -1.1 53.6

equation [10] is composed of two subsystems (see [8]).
Residuals for all jx  in both models will be the same. Since

the number of parameters estimated and the number of
observations are identical for both models, AICs will be the
same. The dynamics of jx , however, will be different

because the EL model captures dynamics of y, and the
calculated value of y is used in the equation for x in the EL
model. In other words, the EL model takes into account
possible “field” effects that originated from unobserved
processes, interactions, and/or correlations among the risk
factors.

Figure 2 shows the dynamics of 10 risk factors
with age for males and females using both FN and EL
models. Comparing dynamics described by the linear
(Figure 1) and EL (Figure 2) models, we conclude that the
“field” effects might be more important at “young” and
advanced ages when the homeostasis of the organism is
tightly controlled.

While AICs for 9 risk factors (excluding 8x )
improved for the FN and EL models, in comparison with
the base linear model (see Table 2), “propagation” is more
reasonable for the EL model-for all risk factors (Figure 2).
This has two consequences: First, analyzing the standard
statistical criteria of nonlinear models may not be sufficient
to determine which of them is the “best” model. To choose
a “best fitting” model analysis of “predicted” behavior is

important. Second, due to inherent features of nonlinear
models, averaging drift and regression coefficients over all
ages can lead to unsatisfactory predictions of risk factor
behavior (see Section 5). To show this, we estimated the
Lyapunov exponents. Use of equation [17] for our problem
can be justified because the dynamics predicted by [7] and
[17] are nearly identical numerically.

Four representative Lyapunov exponents are
plotted for males and females in Figure 3. This gives
surprisingly good results by explaining the significant
deviation in the dynamics of x9 and x10. Eight Lyapunov
exponents are negative, regardless of age and gender (as
shown for 

2λ  and 
5λ ). Two are positive at “young” ages.

As long as they are positive, our model will be sensitive to
initial conditions - even when they belong to the same basin
of attraction (or repulsion, if Lyapunov exponents are
positive). If the underlying model allows long term
dynamics, this gives rise to complex behavior. Because our
model can predict only short-term evolution, strong
dependence on the initial conditions does not lead to
complex, possibly chaotic, behavior, but it is the reason that
our predictions become imprecise (with regard to the
dynamics of smoking cigarettes and LVH risk). To
understand this, recall that we do not know exact (or true)
values of the initial conditions for which equation [7] was
designed (i.e., drift vector and regression matrix were
estimated) because this is the model of a stochastic process.
Starting from even slightly different initial conditions
causes exponential divergence (at the rate given by the
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Figure 2. Dynamics of 10 risk factors for the FN, RN64 and EL models for (a) males and (b) females. Note that propagation for
LVH for the FN models is linked with the right axis.

Figure 3. Estimations of the four Lyapunov exponents for males (solid line) and females (dashed line).
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Table 2. The difference between AICs of the given nonlinear and the base linear models
Model Gender X2 X3 X4 X5 X6 X7 X8 X9 X10 X11

M -107 -402 -86.9 -136 -166 -77.7 11.9 -2130 -1100 -117FN F -0.111 -136 -81.3 -220 1.76 -3.28 -102 -1240 -2310 -51
M -110 -396 -72.1 -138 -156 -80.5 7.91 -975 -842 -118RN64 F -194 -879 -160 -517 -346 -153 -110 -928 -1420 -151

Table 3. Coefficients ju  and jjR ′  of the full nonlinear regression model [7]: Estimated for males and females followed for 46

years with biennial exams in the Framingham Heart Study
State at time t

100X ×
State
at time
t+1

Gender u X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11

M -19.4 52.0 85.0 19.6 1.4 -2.4 -5.2 25.5 10.2 2.0 7.7 -23.0X2 F -7.2 62.9 64.4 24.7 0.8 -1.5 8.6 -73.3 -2.2 0.8 12.1 5.1
M -12.8 60.1 8.6 60.0 11.8 0.9 9.0 -2.4 -2.3 -6.6 1.8 7.3X3 F -28.5 73.5 26.9 61.2 6.4 0.9 1.7 29.6 6.1 -3.2 -4.8 19.0
M -18.3 29.5 21.7 -15.9 112.3 0.3 -1.7 21.2 4.5 -27.1 -6.4 9.6X4 F -36.2 58.6 10.7 21.3 86.7 -0.4 27.9 92.7 -1.3 -8.1 -24.2 15.0
M -138.0 160.8 -33.7 2.8 35.2 97.1 17.9 263.7 14.7 44.2 -18.9 48.9X5 F -72.1 213.7 10.4 -1.4 6.7 109.1 12.2 -10.9 16.0 6.6 1.5 41.9
M 33.5 29.8 -12.6 103.1 -13.5 6.7 49.3 -207.2 9.3 3.4 16.5 17.0X6 F 67.9 68.7 -8.6 9.9 -9.8 2.6 -2.2 -148.3 7.4 -27.1 33.0 23.3
M 19.4 -3.8 1.9 4.5 2.6 2.0 -0.9 32.8 1.0 1.0 -4.2 0.8X7 F 25.4 -1.1 -0.6 4.6 0.6 -0.2 0.3 13.9 -1.3 2.4 1.1 4.3
M -0.8 38.2 -11.7 -12.4 6.8 -5.9 -4.8 60.9 115.5 -24.2 11.9 -4.1X8 F -8.2 38.7 -14.9 -15.2 5.6 -0.7 -1.7 27.1 123.9 6.4 12.5 16.5
M -18.1 51.1 -4.0 -1.9 3.5 0.6 -1.2 -17.3 10.6 147.7 0.9 -9.1X9 F 1.4 3.5 -1.0 3.0 0.6 0.0 -0.5 -8.8 -2.6 116.5 -3.7 -1.5
M 27.2 0.8 -30.2 -46.4 4.1 0.0 10.3 -63.9 -4.7 15.6 312.8 11.5X10 F -3.8 -1.6 23.9 -19.2 2.2 -1.3 -4.2 -10.7 11.8 -7.2 310.5 5.0
M 13.8 18.9 7.3 31.3 1.2 -2.8 1.1 -5.2 0.8 7.4 8.4 49.3X11 F 32.3 -14.6 15.8 25.4 -4.5 -1.3 0.7 18.8 -9.6 17.3 5.4 48.7

positive Lyapunov exponent) of the current phase trajectory
from the “true” one (i.e., the trajectory that started from
exact or true initial conditions).

The Lyapunov exponents do not necessarily
govern the dynamics of original state variables, but rather
their superposition, since they are eigenvalues of a
linearized system near a solution. However, we found a
good correlation of certain Lyapunov exponents with risk
factors, as we see in Figure 3. We concluded that Lyapunov
exponents are negative for all risk factors except smoking
cigarettes and LVH. For x9 and x10 they are positive in the
30-to-37 year age range (males) and the 30-to-38 year
range (females) for smokersand in the 30-to-40 age range
(both males and females) for LVH. Moreover, the range in
which 10λ  is positive is correlated with domains of fast
divergence of the phase trajectories for x10 from the “true”
one (compare Figure 2 and Figure 3). Such findings can be
understood if quadratic (i.e., diagonal) coefficients in R
dominate an interaction (off diagonal) and nonlinear
coefficients. For the FN model, the clearest

dominance is seen for diagonal elements for LVH (males
and females [Table 3]). For that reason 

10λ  is better
correlated with LVH than with 

9λ  for x9. The rate of
divergence of the dynamics of LVH and smoking cigarettes
is related to the magnitude of positive Lyapunov exponents

9λ  and 
10λ . Since 

9λ  is small and positive and the diagonal
element 

9,9R  does not clearly dominate, we observe sharper

growth for the risk of LVH than for smoking.

As we add variables (or their combinations) into
a model, we want to assess the importance of each variable
in equations for both prediction and propagation. We want
to know whether certain variables (or combinations of
them) can be ignored, little affecting the model; whether
the contribution of a variable is real and not random
variation; and whether the correlation of variables can
result in the contribution of a variable being enhanced or
diluted by including other terms, etc. To do this, there are
several techniques. Most frequently used are forward
selection and backward elimination procedures. In forward
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Table 4. Standard deviation sigma
X2 X3 X4 X5 X6 X7 X8 X9 X10 X11

Linear 11.59 8.12 18.75 31.91 23.27 2.964 11.66 3.362 11.75 10.47
FN 11.55 8.032 18.69 31.69 23.15 2.955 11.63 3.305 11.43 10.44F
RN64 11.55 8.033 18.69 31.69 23.15 2.955 11.63 3.325 11.55 10.44
Linear 10.43 7.943 16.87 28.59 25.79 3.054 12.72 6.444 13.07 10.43
FN 10.4 7.879 16.82 28.48 25.67 3.044 12.69 6.226 12.83 10.39M
RN64 10.4 7.88 16.82 28.48 25.68 3.044 12.69 6.337 12.88 10.39

selection, variables are successively added depending on a
criterion and are retained if the fit is significantly improved. In
backward elimination, variables are removed if their
combination is not significant. The aim is to find a “best fit”
model.

A more comprehensive approach is to examine all
possible models for a given set of variables. This is feasible only
for small models. This is not our case because, if we consider

only nonlinear terms in equation [7], there are 66 7262 2J× =
models. While the latter method seems unreasonable due to
computational restrictions, the former two strategies must be
used with caution going from linear to nonlinear models.

We combined nonlinear analysis with forward
selection or backward elimination techniques. The nonlinear
analysis provides substantial background to understand the
effects of the interactions.

From our nonlinear analysis, we determined that the
most crucial variables in our FN model are x9 and x10, which
dilute predicted dynamics. To simplify the problem, we
considered the integral effect of smoking cigarettes and having
LVH in combination with each health state risk factor in J-
dimensional state space. We did not analyze which risk factor is
most significantly enhanced or diluted by combining the effect
of x9 or x10 with each of the other variables. Since LVH
associated with Lyapunov exponent 10λ , the most significant

coefficient giving rise to divergence for LVH, is ,10,10jC . It is

reasonable to assume that 
,9,9jC  gives a considerable contribution

to the dynamics of cigarette smoking. To check this, we chose
the FN model as a reference and used backward elimination of
the contribution of each nonlinear term x9xj and x10xj. This
confirmed our assumption that a significant improvement of
predicted dynamics for LVH is achieved when we set 

,10,10 0jC = .

For smoking, none of the individual contributions from 
, ,9j jC ′

 is

so dramatic. Most significantly, the dynamics of smoking
cigarettes changes when 

,9,9 0jC = . Further contribution to the

dynamics is achieved when 
,9,1 0jC = . By setting ,9,9jC  and

,10,10jC  to zero and evaluating the remaining coefficients, we

obtain reduced nonlinear models that are free of divergent
dynamics (RN64m for males and RN64f for females [Figure 2]).
Dropping these coefficients improves the dynamics of other risk
factors.

Comparing linear and nonlinear models, the
distribution of the residuals is most changed for cigarettes

and LVH. Figure 4 shows this distribution for all risk
factors (for the RN64f model). We also show, by a dashed
line, residuals for cigarettes and LVH for the linear model.
For all nonlinear models, the standard deviation is smaller
(Table 4). Thus, the result of our nonlinear analysis
suggests how systems can be separated into dynamic sub
systems.

Models RN64m and RN64f give surprising results. For
males AICs for 2x , 5x , 7x , 8x  and 11x  are better than

corresponding AICs for the EL model; AICs for 3x , 4x
and 6x  are slightly worse. Elimination of 

,9,9jC  and

,10,10jC , makes AICs for 9x  and 10x  worse (Table 2). For

females, AICs for 9x  and 10x  are also worse than for the
EL model. For the remaining risk factors, AICs are
significantly better (Table 2). Because the number of
observations for these models and for the EL model is the
same, while the number of the estimated parameters is 76
instead of 78 (only slightly less), we conclude that
nonlinear models better fit the mean distribution of risk
factors over age for females. Hence, we speculate that
females’ health status is more sensitive to nonlinear
interactions than that of males. It appears that the different
age trajectories of hormonal status for females (here
unmeasured) might make their dynamics more complex
because of an interaction of estrogens and other sex
hormones with a number of physiological systems (e.g.,
oxidation processes in the arterial endothelium). It may be
that these are intrinsic genetic gender differences as well.
For example, cigarette smoking may have a greater effect
on females because of a certain Cytochrome P450 enzyme
that operates to produce more cancer promoting substances
in blood from inhaled combustion products of tobacco (28).

8. CONCLUSION

We have shown that considerable additional
information on human aging processes can be extracted if
one assesses nonlinear effects. However, if we go beyond
linear models to describe the age dependence of health
status, standard statistical methods might not be sufficient
to determine the best nonlinear model. Such models can
give rise to surprising behavior as a consequence of their
intrinsic nonlinear nature. It is necessary to choose a “best
fit” model in nonlinear analysis. Such an analysis of the
nonlinear models describing evolution of the risk factors
measured in the Framingham study reveals that age-
dependent risk factor dynamics for females are more
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Figure 4. Distribution of residuals for the RN64f model (solid line) and for cigarettes and LVH for females for the base linear
model.

complicated than for males (i.e., female health status is
more sensitive to nonlinear interactions among risk
factors). We suggest that this is due to the rapid rate of
decline of estrogen production after menopause.

We can suggest several ways to improve the
nonlinear models: 1.) account for the selective effect of a

risk factor, or its product, on dynamics; 2.) account for the
age-dependence of the coefficients in our regression by
estimating them at each 2-year step; 3.) account for higher
order nonlinear terms. We recommend the third approach.
The weakness of the first approach is that it requires a
significant increase of numerical power. That, however, is
still reasonable if we combine statistical approaches with
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nonlinear analysis. The weakness of the second approach
concerns lack of data at advanced ages. This can be
avoided by averaging the regression coefficients over
longer than 2 year-age intervals.
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