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1. ABSTRACT

Activator protein-1 (AP-1) is a transcription
factor involved in many aspects of the brain physiology and
pathophysiology. In spite of strong engagement in a
transcriptional regulation of the brain gene expression, only
a few, if any, downstream AP-1 targets have unequivocally
been identified so far. In the review we discuss only the
best characterized AP-1 target genes in the brain, and we
highlight the shortages of our understanding of AP-1 action
in the central nervous system as well as indicate what could
be done to ameliorate the situation.

2. INTRODUCTION

Understanding of neuronal and glial gene
expression is of utmost importance to approach brain
physiology and pathology. During the recent years one may
witness an eruption of studies on gene expression patterns
in the brain. Especially abundant are data on transcription
factors encoded by the immediate early genes. However,
despite the fact that these results are very important in
suggesting possible processes which are controlled by the
transcription factors, the thorough understanding of their
role in brain functions and dysfunction requires application

of other experimental approaches, such as intervening ones
allowing to modify the levels and/or protein function.
Unfortunately, direct means to affect genes in the brain in
vivo, such as homologous recombination, application of
antisense oligos, etc., all are flawed with numerous
technical difficulties (see 1, 2). On the other hand, it is
fortunate that in the case of transcription factors we may
follow their well defined biological functions, and thus to
identify their target genes, what in turn should help to
elucidate the biological roles of transcription factors
themselves. In this review we are focusing on activator
protein-1 (AP-1), one of the most often studied
transcription factors in the central nervous system.

3. AP-1 AS A TRANSCRIPTION FACTOR

AP-1 is a dimeric transcription factor (TF)
composed of c-Jun and its homologs JunB, and JunD
complexed to c-Fos or its related proteins FosB, DeltaFosB,
Fra-1, and Fra-2. All of them are encoded by immediate
early genes belonging to the bZIP superfamily, what means
that they dimerize via their leucine zipper domains and
bind DNA by N-terminally located basic region. Jun
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proteins can form stable homodimers, but Fos family
members apparently cannot (3). c-Jun was a first oncogenic
product for which transcription factor activity was defined
(4). c-fos is an immediate early gene, coding for proto-
oncogenic transcription factor protein c-Fos
heterodimerizing with Jun to form AP-1. The other
members of Jun and Fos families that have been discovered
later were named because of their homologies to the
originally discovered prototypes.

Various AP-1 components show non-uniform
stimulus responses and the dimers formed display a diverse
stability, DNA binding specificity and affinity (5, 6, 7, 8).
Moreover, transcriptional activity of AP-1 can be affected
by different transcriptional coactivators such as cAMP
response element binding protein (CREB)-binding protein
(CBP) and Jun activation domain binding protein 1 (JAB 1)
(9, 10). The AP-1 can either induce or inhibit the
expression of a given gene (11, 12, 13, 14). JunD/c-Fos and
JunD/FosB  have the highest transactivational and DNA
binding activity in vitro  of all complexes (15), whereas
JunD/ATF-2 have apparently a repressive action (16).
Probably for technical reasons, the evidence for AP-1
dependent increases in gene expression is much more
abundant. Interestingly, however, in the brain, the major
inducible AP-1 components are c-Fos and JunB (see,
e.g. 17, 18, 19, 20) and it has been elegantly shown that
JunB appears to display a gene silencing, rather than
gene activating properties (21). On the other hand,
phosphorylated c-Jun seems to act as a transcriptional
activator. In adult brain an upregulation of AP-1
components occurs in response to seizures, lesions,
sensory stimulations and behavioral trainings of various
kinds, etc. (17, 20, 22, 23, 24, 25, 26, 27). In this
context, it might be worth mentioning e.g. that in the rat
visual cortex, under basal conditions FosB and JunD
comprise the AP-1 components (17). Sensory
stimulation of the visual cortex results in an AP-1
activation with a dynamically changing composition,
containing P-c-Jun as well as c-Fos, and JunB,
detectable only at two hours after the stimulation,
whereas JunB persists at least up to 6 hrs (17, 22).

Jun/Fos type AP-1 complexes bind
predominantly to its cognate sequence TGA(C/G)TCA,
named either AP-1 binding site or TRE (12-O-
tetradecanoyl phorbol 13-acetate [TPA] response
element), in many gene promoters and enhancers to
regulate the gene transcription. The binding is markedly
influenced by the TRE flanking sequences (5, 13) and
can be regulated by tissue-specific repressive elements
as evidenced by neuromodulin transcriptional regulation
(28). Notably, it appears that there is a crosstalk in the
regulation of the promoter activity between TRE and
cAMP-responsive element (CRE) (15, 29). Furthermore,
Jun and Fos proteins can form heterodimers with some
members of activating transcription factor (ATF) family,
and e.g., c-Jun/ATF2 dimers preferentially bind CRE
(TGACGTCA) in gene promoters and show low binding
activity to TRE (30), whereas CREB can be a
component of TRE binding complexes (31).
Unfortunately, these data have been collected in the in

vitro experiments often relying on recombinant proteins.
Hence, their biological significance remains largely
unknown.

4. TECHNICAL CONSIDERATIONS CRITICAL
FOR DEFINING AP-1-DRIVEN GENE EXPRESSION
IN THE BRAIN

There is a number of methods that have been
applied to suggest that a specific gene is possibly AP-1
dependent in the brain. The most popular is to show a
presence of TRE/AP-1 sequence in the vicinity of the
coding region of the gene under study. Unfortunately,
this is not a very revealing information as AP-1/TRE-
like sequences are quite abundant in the genome. Thus it
appears to be of a critical importance to show that under
the experimental conditions analyzed, the gene under
study contains the apparent regulatory sequence(s)
capable of binding the appropriate proteins in the
electrophoretic mobility shift assay (EMSA) aided by a
supershift approach with specific antibodies directed
against defined AP-1 proteins. It would be especially
useful to show that the apparent AP-1 binding site is
occupied indeed by Fos and/or Jun proteins in the brain.
Such an analysis could involve DNA footprinting
approach as well as application of DNA-protein cross-
linking methods.

Another, repeatedly raised argument relies on
spatial and temporal coincidence of the expression of
AP-1 proteins and the mRNA under question in
response to specific stimulation. This is, however, a
very indirect, although pivotal, support for the notion
under the investigation. Such colocalization studies can
be misleading. Especially so, if one uses methods that
do not allow to investigate both the mRNA and protein
at a single cell resolution.

As it has been mentioned above, lack of
appropriate technologies, allowing to affect the gene
expression in the brain prevents from providing a definitive
evidence in this regard. However, neuronal tissue cultures
can be useful in this context providing at least
circumstantial functional evidence. Especially, useful are
the studies involving primary neuronal or glia cultures
transfected with gene constructs containing mutated gene
promoters controlling expression of the reporters, such as
luciferase, chloramphenicol acetyltransfrease (CAT), and
LacZ, coding for beta-galactosidase. However, it is
important to recall results of the seminal in vivo study
employing transgenic mice with various variants of c-fos
promoter which only partially confirmed the in vitro data
showing specific response of defined regulatory elements
to various treatments (32). Hence, the use of transgenic
animals carrying the reporter gene under control of various
promoter variants of the investigated gene, as well as the
implementation of the studies on down-regulation of AP-1
function in vivo by means of dominant negative mutants
should always be considered. In addition, the consequences
of AP-1 overexpression in transgenic animal could also be
important to investigate.
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5. PUTATIVE AP-1 TARGET GENES

5.1. Genes encoding the transmembrane and
extracellular proteins
5.1.1. Tissue inhibitor of metalloproteinases-1 (timp-1)

An extensive evidence for AP-1-driven gene in
the brain is provided for timp-1 (33). TIMP-1 is an essential
component of the extracellular matrix remodeling system,
counter-balancing activity of matrix metalloproteinases.
Components of the system in the brain participate in the
regulation of neuronal plasticity and cell death, and when
deregulated, in pathophysiology of Alzheimer disease,
stroke, ischemia and epilepsy (34, 35). Nedivi et al. (36)
and Rivera et al. (37) reported that timp-1 expression raises
in response to neuronal excitation after peripheral treatment
with kainic acid (KA). Various studies implicated the AP-1
in control of timp-1 expression in non-neuronal cells (38,
39). Following that Jaworski et al. (33) analyzed timp-1
expression in rodent hippocampus in response to neuronal
excitation produced by either kainate (KA) or
pentylenetetrazole (PTZ)-evoked seizures. Using Northern
blot the authors detected marked increases in the levels of
timp-1 mRNA following the seizures. Furthermore, these
changes were dependent on de novo protein synthesis and
were following increases in c-fos mRNA. In situ
hybridization showed that a pattern of timp-1 mRNA
expression in the brains of KA or PTZ treated rats
overlapped spatially with c-Fos protein expression detected
by immunocytochemistry. In EMSA experiments using
nuclear extracts from hippocampi of either KA- or PTZ-
treated rats there was a dramatic increase of timp-1-TRE
DNA-binding activity that contained various AP-1 proteins.
timp-1 promoter was also activated in vivo by KA- or PTZ-
induced excitatory activation in hippocampi of timp-LacZ
transgenic mice. Finally, in primary rat dentate gyrus
granule cell cultures, the wild type timp-1 promoter
responded to L-glutamate stimulation, whereas AP-1 site
mutated timp-1 promoter had attenuated responsiveness
(33).

To further support the hypothesis that AP-1
indeed regulates timp-1 expression in the brain, it would be
useful to show that AP-1 components occupy the putative
DNA binding site within the proximal gene promoter as
well as to show functional evidence in vivo, such as use of
transgenic animals with the transgene containing reporter
gene under control of various promoter variants, as well as
to employ studies on up-, and down-regulation of AP-1
function in vivo and its effect on endogenous timp-1
expression.

5.1.2. Growth-associated protein 43 (GAP-43, B50,
neuromodulin, F1, PP46)

GAP-43 encodes for a membrane, axonal growth
cone protein, also known either as neuromodulin or F1 or
B50. The GAP-43 expression is mainly limited to the
nervous system. It is widely expressed in developing
neurons during axonogenesis and in glial cells under some
conditions. In neurons, after establishment of synaptic
contacts, GAP-43 expression is downregulated and can be
restored by axonal injury. GAP-43 induction after axotomy
correlates with c-Jun activation (44). In regenerating

neurons which are prevented from reinnervating their target
tissue, c-Jun and GAP-43 expression can be elevated even
for months (45). GAP-43 contains AP-1 motif in the
promoter (46), which appears to contribute to the basal
GAP-43 promoter activity in primary cultures of rat
cerebral cortex neurons from 18 day old embryos, and in
neuronal cell line - CAD (17). In reporter assay in neurons,
mutation of TRE diminished GAP-43 promoter activity to
ca. 40% (17). Interestingly, the GAP-43 AP-1 site drives
also GAP-43 promoter activity in a wide range of non-
neuronal cells that express no endogenous GAP-43, but this
happens only in the absence of a tissue-specific GAP-43
repressive element (TSGRE) located between TATA box
and TRE element (17). TSGRE ensures neuron-specific
GAP-43 activation by AP-1. Data from reporter assays
show that TSGRE mutations cannot influence AP-1-driven
GAP-43 promoter activity in neuronal cells (17). In primary
cultures of embryonic rat cerebral cortex neurons the GAP-
43 promoter activity and specificity of expression is
controlled by regulatory elements known as Cx1 and Cx2
(17). In reporter assay in neurons the mutations of Cx1 and
Cx2 sites diminished GAP-43 promoter activity to ca. 45%,
and additional mutation of TRE element lowers the value to
ca. 20% (17).  Thus, in the case of GAP-43 the evidence for
AP-1 role in its regulation is suggestive, however still
rather limited.

5.1.3. Angiotensin II type 1 receptor (AT1R, AGTR1,
AT1)

Activation of the arterial baroreceptors is
transferred by glutamatergic neurotransmission into the
principal recipient of primary baroreceptor afferent fibers
in the brainstem - the nucleus tractus solitarii (NTS), where
it stimulates c-Fos expression (40). Basal and induced c-
Fos protein expression in NTS is an early step in the
cascade of intracellular events that lead to long-term
inhibitory modulation of the baroreceptor reflex response.
In NTS there are expressed genes for AT1R and
angiotensin II type 2 receptor (AT2R). Both of them have
in their promoters TRE motifs (41, 42), but only AT1R
seems to be the AP-1 target gene (43). There is a positive
temporal correlation between the induction of c-fos mRNA
(60 min) and AT1R re-expression (90 min) after sustained
hypertension. c-Fos seems to co-localize with AT1R, but
not AT2R. Furthermore, AT1R re-expression and
restoration of pressor response to angiotensin II (ANG II)
at 90 min after baroreceptor activation is significantly
attenuated by pretreating Sprague-Dawley rats with the
antisense c-fos oligonucleotides (43).  In aggregate, the data
supporting the direct role of AP-1 in regulation of the AT1R
expression are very limited, and either circumstantial, or
involving unreliable antisense approach (see 2).

5.1.4. Glutamate receptor 2 (GRIA2, GluR2, GluRB)
GluR2 is a a subunit of the α-amino-3-hydroxy-

5-methyl-4-isoxazole (AMPA) glutamate receptor, which is
a ligand-activated cation channel. Genes encoding for the
specific glutamate receptor subunits, including GluR2,
contain AP-1 sites in their promoters (47). Using transgenic
mice inducibly overexpressing DeltaFosB throughout the
striatum (including nucleus accumbens, NA), it has been
shown that GluR2 appears to be regulated by DeltaFosB in
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NA (48). In the transgenic mice, DeltaFosB upregulation
leads to induction of active AP-1 (confirmed by EMSA)
and 50% increase of GluR2 protein in NA. EMSA with
anti-DeltaFosB antibody has revealed that GluR2 promoter
is bound by DeltaFosB.  Despite lack of other evidence,
AP-1 role in control of GluR2 expression seems to be rather
persuasive.

5.1.5. Gonadotropin-releasing hormone receptor
(GnRHR)

GnRHR is G protein-coupled, heptahelical
receptor on the surface of pituitary gonadotropes.
Amplitude and frequency of pulsatile GnRH release from
the hypothalamus regulates GnRHR expression and
therefore GnRHR concentration on the cell surface. A
response of the pituitary gonadotropes to GnRH correlates
directly with the concentration of GnRHR. GnRHR
activation increases synthesis and release of the pituitary
gonadotropins – luteinizing hormone and follicle-
stimulating hormone as well as transcription of its own
gene. Transgenic mice carrying 1.9 kb 5’-flanking region of
the GnRHR linked to luciferase gene had undisturbed
tissue-specificity and GnRH responsiveness of the
promoter (49). Similar mice carrying mutated canonical
AP-1 motif at a position –336/–330 of the GnRHR
promoter lost GnRH-dependent GnRHR responsiveness,
but had intact tissue expression pattern (50). Using EMSA
with supershifts it has been shown that GnRH enhances
AP-1 (JunD, FosB and c-Fos) binding to the –336/–330 bp
AP-1 site in murine gonadotrope-derived alphaT3-1 cell
line (50). In alphaT3-1 cells, c-fos is transcriptionally
activated, whereas JunD and FosB are stimulated
posttranslationally (50). GnRHR expression in mouse
pituitary gonadotropes is upregulated synergistically by
GnRH and activin. For this effect, region –387/–308 of
GnRHR promoter is required. This promoter segment in
alphaT3-1 cell line is composed of two overlapping cis-
regulatory elements: GnRHR activating sequence (GRAS)
at position –329/–318 and a SMAD-binding element (SBE)
at –331/–324. Competition EMSA experiments using –
335/–312 probe and alphaT3-1 cell nuclear extract together
with SMAD, Jun and Fos, FosB, Fra-1, Fra-2 antibodies
demonstrated direct binding of AP-1 (c-Fos/c-Jun and c-
Jun/c-Jun) protein complexes to non-consensus AP-1
binding site at position –327/–322 (AGTCAC) and SMAD
proteins (SMAD3 and SMAD4 but not SMAD2) to –329/–
328 sequence. Interestingly, the interaction between AP-1
and SMAD has also been described in the c-jun promoter
(51). SMAD proteins exert their effects only after binding
to at least one transcriptional partner to form a
multifactorial complex known as activin-responsive factor
(ARF) that  includes the GnRHR promoter AP-1
complexes. Mutations of either AP-1 or SMAD binding
sequences abrogated GnRH- and activin-responsiveness of
GhRHR promoter and reduced its basal activity (52).
Additionally, GnRH-responsiveness of mouse GnRHR is
mediated by protein kinase C and has been localized to an
enhancer element known as the sequence underlying
responsiveness to GnRH-1 (SURG-1) at position –292/–
285 and the –276/–269 sequence underlying responsiveness
to GnRH-2 (SURG-2), containing AP-1 binding site at –
274/–268 (53, 54). EMSA using alphaT3-1 nuclear extracts

confirmed that AP-1 protein is rapidly bound to SURG-2
after GnRH stimulation. In reporter assay it has been shown
that mutation of SURG-2 abolished GnRHR promoter
activity completely, whereas mutated SURG-1 lowered the
activity ca. 7-fold. This indicates that SURG-2 is a critical
element for the activity of GnRHR promoter, nevertheless
SURG-1 is also very important (53). There is also the –
1000/–994bp located, inhibitory, atypical AP-1 binding site
in the GnRHR promoter which is activated by PKC
pathway induced by GnRH agonists (55). The AP-1-related
functionality of this site was confirmed by competitive
EMSA with supershifts and site-directed mutagenesis
combined with a reporter assay in alphaT3-1 cells.

5.2. Genes encoding the neurotrasmitters and and
neuropeptides
5.2.1. Follicle-stimulating hormone-beta (FSHbeta)

FSHbeta has two putative AP-1 sites at –120 bp
and –83 bp in the proximal promoter. Both sites have been
demonstrated to be important for transcriptional stimulation
of FSHbeta in HeLa cells (56). In HeLa cells cotransfected
with GnRH receptors and FSHbeta promoter linked to
reporter gene, it was found that GnRH upregulates
FSHbeta expression via the two AP-1 motifs (57).
FSHbeta regulation was studied in transgenic mice
containing either wild type or mutated at both AP-1 sites –
4741/+759bp FSHbeta promoter (58). Using pituitary cell
culture from the mice an importance of the two AP-1
motifs for GnRH-mediated FSHbeta induction in
gonadotropes has been further supported (58). Cells with
mutated transgene did not respond with luciferase
activation for GnRH and combined GnRH/activin
treatment, whereas in wild type transgene caring cells
luciferase was activated by the GnRH/activin stimulation.
However, in vivo GnRH-mediated FSHbeta induction has
been shown to be AP-1-independent during estrous cycle,
what was also observed in other model systems as
gonadectomy, chronic GnRH treatment with Lupron (a
long-acting GnRH agonist), injection of GnRH antiserum
(58). In the absence of the two AP-1 sites, basal expression
levels of the transgene were comparable to those observed
with wild type ones, suggesting that these motifs may not
be important for FSHbeta expression in the pituitary. In
vivo studies with the transgenic mice revealed that activin,
a potent FSHbeta ?activator, regulates FSHbeta transcription
by AP-1 independent mechanism (58). Thus, the role of
AP-1 in control of FSHbeta transcription in the brain still
remains poorly defined.

5.2.2. Corticotrophin-releasing hormone (CRH, CRF)
CRH is a component of hypothalamic-pituitary-

adrenal (HPA) axis synthesized mainly in the
hypothalamus. It acts on the pituitary to stimulate the
adrenocorticotropic hormone (ACTH) release, which is
turn induces secretion of the glucocorticoids (GC) from the
adrenal cortex. Alterations in CRH synthesis can result in
depression, abnormal stress response, behavioral changes,
and immunotoxicity. CRH transcription in the
hypothalamus correlates with increases in AP-1 in response
to emotional stress. This apparent link is aided by data
obtained with JNK1 (c-Jun N-terminal kinase) knockout
mouse study which showed severely reduced stress-related
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CRH induction in the hypothalamus leading to attenuated
GC release (59). The other example of stress stimulus
inducing HPA axis is a bacterial infection. Released during
the infection, blood-brain barrier penetrating, pro-
inflammatory cytokines such as IL-1, activate JNK in the
hypothalamus and periphery leading to appearance of AP-
1-driven gene transcription. CRF has inhibitory
glucocorticoid response-binding element (nGRE) at
position –278/–249 in its promoter (60, 61). nGRE contains
two AP-1 binding sites. Proximal AP-1 site seems to confer
positive CRH promoter responsiveness to cAMP and AP-1
proteins, as well as negative response to GC. Interestingly,
also human CRF-binding protein gene has putative TRE in
its promoter (62). nGRE functions probably as a composite
regulatory element. Mutations in GR and AP-1 motives of
nGRE abolished GC-dependent CRH repression in mouse
corticotroph AtT-20 cells (61). Thus, AP-1 proteins appear
to cooperate with GR to downregulate CRH expression.
This effect is tissue-specific and limited to hypothalamus.
Brain expression of CRH outside of this structure is
unaffected by GC (63), and in the human placental
trophoblast GC even upregulate CRH (64). Using
hypothalamus samples dissected from the rat brains and
incubated in vitro with acephate, methamidophos and IL-1
Singh (65) showed that these factors upregulated CRF
mRNA expression and increased c-Fos binding to nGRE of
CRF promoter. Unfortunately, most of the aforementioned
studies only indirectly have approached the link between
AP-1 and CRH expression in the brain.

5.2.3. Arginine vasopressin (AVP, ADH)
AVP has a single AP-1 element which binds to

the AP-1 complex containing c-Fos or FRAs in HeLa cells
(66). After ANG II administration into the rat lateral brain
ventricle, EMSA using protein extracts from hypothalamic
paraventricular nucleus (PVN) and supraoptic nucleus
(SON) showed that CRE-like binding site for Fos/Jun
dimers from AVP promoter bound more proteins as
compared to the samples from control rats (67). The
specificity of the binding was confirmed by EMSA
competition assay. The same lysates showed enhanced c-
Jun and c-Fos expression in PVN and SON after ANG II
administration. Thus, AVP seems to be the AP-1 target
gene in PVN and SON. Using adrenalectomized rats
replaced with different levels of substitutive corticosterone
it has been noticed that in the parvocellular division of the
PVN during the stress, glucocorticoid negative feedback
was exerted on AVP, but not CRF, expression through
mechanism that probably involved GR interactions with
AP-1 proteins (68). Stress accelerated induction of Fos, and
increased binding of proteins from thalamus extracts of
adrenalectomized rats to AP-1 site. Taking into account
limited approach just described, additional studies on this
subject are very desirable to test a role of AP-1 in AVP
expression.

5.2.4. Preproenkephalin (PENK)
PENK was the first reported AP-1 target in the

brain (69). Unfortunately, our understanding of the PENK
transcriptional regulation is still rather superficial, and only
partially supportive for the suggested essential role of AP-
1. PENK is expressed in neurons as well as in the glial

cells. AP-1 regulates PENK transcription after binding to
ENKCRE-2 domain in the promoter (69, 70, 71), which has
atypical consensus for AP-1 (TGCGTCA). Arachidonic
acid (AA) stimulates AP-1-driven PENK expression in
primary rat astrocyte-enriched cultures (72). It has been
described that after AA administration c-Fos, c-Jun, Fra-1,
Fra-2, JunB and JunD proteins were induced and
ENKCRE-2 as well as AP-1 DNA-binding activities were
elevated. Cycloheximide treatment inhibited AA effects on
ENKCRE-2 and AP-1 DNA-binding activities, suggesting
that newly synthesized proteins are responsible for
increased DNA binding. Tax1, transcription regulatory
protein of human T-cell lymphotropic virus type I is PENK
transactivator in glial cells (73). Using EMSA with
supershifts, increased c-Fos/c-Jun DNA binding activity
has been shown in stable glial cell lines expressing Tax1.
AP-1 transcription factors are not the only ones essential
for PENK expression. Prostaglandin E2 upregulates PENK
in primary astrocyte-enriched cultures (74). Nevertheless,
this effect is probably dependent on phosphorylation of
CREB rather than on AP-1 activation. AP-1 is probably
also not essential for cholera-toxin induced and
cycloheximide-dependent pertussis toxin induced
stimulation of PENK transcription in primary astrocyte-
enriched cultures (75).

Single injection of KA induces PENK expression
after 6 hr, then after 3 weeks there is a second increase in
the steady-state levels of PENK expression in the rat
hippocampus which lasts for at least one year (76).
Originally, spatio-temporal evidence suggested that for
both waves of PENK expression after KA administration
AP-1 was responsible, with c-Fos, Fra-1, Fra-2, c-Jun and
JunB for first peak, and  JunD and 35-kDa FRA for the
second (76, 77). After that it has been shown by EMSA
with supershifts that AP-1 is responsible for short-term
PENK activation after KA (77), and Sp-1 transcription
factor for the long-lasting PENK expression (78). Using
EMSA Won et al. (79) showed that melatonin inhibited
KA-induced PENK and PDYN expression in rat
hippocampi by blocking AP-1 or ENKCRE-2 DNA binding
activity. ENKCRE-2 is found both in PENK promoter and
in PDYN promoter. Interestingly, in the granular cells of
the rat hippocampal dentate gyrus KA treatment
upregulated PENK and PDYN transcription, whereas
pentylenetetrazole injection increased PENK mRNA, but
slightly decreased PDYN message, despite of increased
AP-1 DNA binding activity which has been shown by
EMSA (80).

Pituitary adenyl cyclase-activating peptides
(PACAP) 27 and 38 stimulate PENK transcription in PC12
cells due to cooperative effects of AP-1 and CREB on the
promoter (81). AP-1 is not sufficient to stimulate PACAP-
induced PENK expression by itself because insulin-like
growth factor 1 (AP-1 activator) could not upregulate
PENK transcription, while introduction of c-Fos antisense
RNA reduced PACAP-induced PENK expression by 80%.
Caffeine administration into male rats stimulates PENK
expression in striatum (82). In these rats there was an
upregulation of mRNA for c-Fos, c-Jun and JunB, but no
JunD in the striatum confirmed by in situ hybridization.
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Shortly after that PENK mRNA was induced in the same
brain region. Furthermore, increased AP-1 DNA-binding
activity was found after caffeine injection in rat striatum in
EMSA experiment with AP-1 consensus, and a presence of
AP-1 proteins (c-Fos, c-Jun and JunB) in AP-1 motif was
confirmed by supershifts. Surprisingly, Svenningsson et al.
(82) could not detect altered binding of AP-1 to ENKCRE-
2 by EMSA which questions the link between caffeine-
driven AP-1 induction and PENK transcriptional
upregulation.

Analyses of the supershifted EMSA patterns
revealed that CREB, and not AP-1, plays an important role
in the PENK stimulation by haloperidol in the rat striatum
(83). Studies of transgenic mice carrying PENK regulatory
sequences (3 kb fragment of 5’-flanking region, the first
exon and intron and 1.2 kb fragment of 3’-flanking region)
fused to the beta-galactosidase showed that after
hyperosmotic stress c-Fos, phosphorylated CREB and
transgene expression colocalized in the PVN (84).
Furthermore, implementation of EMSA with supershifts
showed increased AP-1 DNA binding activity in
hypothalamus, nevertheless Fos failed to bind to ENKCRE-
2 enhancer, unless phosphorylated CREB was present. It
suggests that P-CREB, and not AP-1, regulates PENK
expression in PVN of hypertonic stressed mice. Using
EMSA and supershifts Pennypacker et al. (85) could not
find AP-1 proteins in ENKCRE-2 element obtained from
hippocampal neuronal and mixed neuronal/glial cell
cultures despite of PENK transcriptional induction. After
peripheral nociceptive stimulation of rats by formalin
injection into the hindpaw PENK transcription is activated
in the brainstem parabrachial nucleus (86). Using in situ
hybridization and immunohistochemistry it has been shown
that almost all PENK expressing neurons displayed
phosphorylated CREB protein, while only a small fraction
of the neurons expressed Fos immunoreactivity.

5.2.5. Preprodynorphin (PDYN)
PDYN is a member of opioid neuropeptide

precursor protein family. It gives a rise to secondary
peptides prodynorphin A, prodynorphin B and α-
neoendorphin. These peptides bind kappa-opioid receptors
and inhibit neurotransmission. PDYN has been involved in
pathophysiology of drug abuse (morphine, cocaine,
nicotine, ethanol), cocaine abstinence, ethanol withdrawal,
epilepsy, pain and mood disorders. PDYN induction occurs
in a tissue-specific manner following different stimuli.
There are many papers that reported AP-1-dependence of
PDYN expression in the spinal cord (87-96), but much less
is known about this relationship in the brain. AP-1-driven
stimulation of PDYN has been suggested to be dependent
on the non-canonical AP-1 binding site (ncDynAP-1;
TGAGAAACA) and combined CRE/AP-1 motifs
(DYNCRE2 and DYNCRE3) in PDYN promoter (90, 91,
97, 98, 99). A reporter assay in PC12 cells indicated that
DYNCRE3 element mediated CREB-driven repression of
PDYN (91). Stimulus-specific changes in nuclear protein
composition establish a functional hierarchy among the
regulatory sites (87). ncDynAP-1 is the most important
motif for PDYN induction in neurons of supraoptic nucleus
after acute osmotic stress (shown by EMSA with

supershifts), and is activated there by c-Fos and c-Jun (87).
A relationship between AP-1 activation and PDYN
induction in supraoptic nucleus is strengthened by
colocalization of c-Fos protein with PDYN mRNA.
ncDynAP-1 is also important for PDYN activation in
NCB20 neuroblastoma cell line after treatment with
phorbol esters (90). Acute or chronic amphetamine
administration induces PDYN in the rat striatum and in
primary neuronal cultures of striatal neurons (100). Using
EMSA it has been shown that phospho-CREB bound
CRE/AP-1 motifs from PDYN promoter are mediators of
this effect. Not all AP-1 complexes stimulate PDYN
transcription. DeltaFosB decreases dynorphin expression
(101). D1 receptor agonists induce PDYN expression in the
striatum (102). This effect is multiplied several fold by
removing the dopaminergic innervation to the striatum.
Using adult male rats with neurons in the substantia nigra
injected unilaterally with 6-hydroxydopamine and then
after recovery with another dopamine agonist –
apomorphine it was shown that apomorphine induced
strongly PDYN mRNA and protein in the striatum
ipsilateral to the side of the 6-hydroxydopamine injection
(102). PDYN induction coincided with upregulated
expression of Fos proteins, but not Jun proteins, and
increased AP-1 DNA binding activity in the striatum. It has
also been shown that chronic pain increases PDYN
expression in the sensory neurons that could be mediated
by AP-1 motif activation in the promoter (91).

A common polymorphism has been described in
the PDYN core promoter region which influences the
PDYN expression. The polymorphism is a 68 bp sequence
containing an atypical AP-1 site and repeated from 1 to 4
times in particular alleles. EMSA experiments indicated
biological activity of atypical AP-1 site (TGACTTA) of 68
bp sequence (103). Chloramphenicol acetyltransferase
(CAT) assays using neuroblastoma NG108-15 cells showed
no differences in basal promoter activity between particular
promoter polymorphs. On the other hand,  TPA stimulation
activated promoters containing triplicate and quadruplicate
68 bp sequences by 47% and 53% respectively, but not the
other two promoter variants (103). A population-based
association study of 118 heroin addicts and 111 unaffected
individuals showed no significant differences in gene
frequencies and genotype distribution between both groups
(103). Another study examining allelic frequencies and
genotype distribution of the polymorphism involved 61
individuals with cocaine dependence, 21 with cocaine
abuse and 91 with no history of any substance dependence
or abuse. It showed that the subjects with PDYN alleles
composed of promoter regions containing triplicate or
quadruplicate 68 bp polymorphic sequences have lower
susceptibility to develop cocaine dependence or abuse
(104). Considering the importance of a link between
dopamine, drugs of abuse and PDYN it would be of great
interest to gather more definitive evidence for a role of AP-
1 in driving the PDYN expression.

5.2.6. Tyrosine hydroxylase (TH, TYH)
TH is the catecholamine biosynthesis rate-

limiting enzyme expressed in many brain structures. AP-1
binds to the TH-“Fat Specific Element” (TH-FSE)
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TGATTCAGAGGCA in the TH promoter. TH-FSE
contains homology to TRE (105, 106). TH-FSE mediates
both induction and repression of the TH promoter by Fos
proteins in PC12 cells (107). In the rat pheochromocytoma
PC12 and PC8b cell lines, TH-FSE participates strongly in
basal TH promoter transcriptional activity and is necessary
for NGF-induced TH expression (105, 108). Adult
transgenic mice bearing lacZ or HSV1-tk reporter linked to
the containing mutated AP-1 site 5.3kb fragment of 5’ TH
flanking sequence have abolished TH expression in
catecholaminergic structures such as olfactory bulbs
(periglomerular cells), hypothalamus (arcuate nucleus,
paraventricular and periventricular nuclei), substantia nigra
and ventral tegmental area, locus coeruleus, and adrenal
medulla (109). On the other hand, the TH expression in the
transgenic mouse embryos was maintained. Thus, AP-1
motif appears to be essential for basal TH expression in
adult tissues in vivo, whereas different TF binding elements
are engaged in TH regulation during development.

TH expression in the rodent olfactory bulb
displays activity dependence. After nasal closure, TH
expression is downregulated. At the same time there is a
decrease in FosB levels showed by Western blotting.
Olfactory bulb immunohistochemical data show that after
odor-deprivation c-Fos and FosB protein downregulations
parallel decrease in TH expression. It have also been
showed that c-fos mRNA and protein partially colocalized
with TH mRNA and protein in the glomerular layer of
olfactory bulb (18). Furthermore, a subpopulation of FosB
immunoreactive cells in the glomerular layer also express
TH (18). In contrast, nasal closure did not influence CREB
and JunD expression in the olfactory bulb. In EMSA
experiments odor-deprived mice had reduced TH-AP-1
binding in comparison with the control animals (18).
Supershift assays revealed strong presence of FosB and
JunD (the only Jun protein studied) in AP-1 complexes of
control mice and reduced presence in odor-deprived mice.
c-Fos, CREB and CREM were absent in TH-AP-1 site of
both studied groups. In contrast, TH-CRE binding activity
was composed of CREB, CREM, FosB, and to lesser
extend JunD, but not c-Fos. The data suggests that CRE
motif plays minor role as compared to TRE motif in
regulation of TH expression in the mouse olfactory bulb.
Study using three lines of transgenic mice carrying a
construct with 8.9kb fragment of TH promoter driving a
lacZ reporter gene expression with a mutant TH-AP-1 site
demonstrated that this element confers olfactory bulb
dopamine-specific TH expression regulation (110). β-gal
activity measured in olfactory bulb homogenates from
mutant mice was from 4- to 15-fold lower. The mice had no
transgene expression in the mitral cell layer and
significantly reduced in the periglomerular region of the
olfactory bulb, while similar transgenic mice with wild type
promoter showed there strong transgene expression.

Lithium cation is one of the drugs used for the
treatment of manic-depressive illness (MDI). There is a
bulk of evidence for the involvement of the noradrenergic
and dopaminergic systems in the pathophysiology of MDI
(111). At therapeutic concentrations, lithium regulates gene
expression by induction of AP-1 DNA binding activity

(112, 113). Lithium treatment of male Wistar rats leads to
the increase of TH expression in frontal cortex, striatum
and hippocampus shown by western blot analysis (111).

During an in vitro development of striatal
neurons there is a stage at which they can be
transdifferentiated from GABAergic to TH expressing
/dopamine-producing cells by synergistic action of acidic
fibroblast growth factor (aFGF), and dopamine or protein
kinase A (e.g. isobutylmethylxanthine (IBMX) plus
forskolin) or protein kinase C (e.g. TPA) activators. The
signals merge mainly onto mitogen-activated protein kinase
(MAPK) and activate it. Combined aFGF TH induction by
addition of aFGF, dopamine, IBMX, forskolin and TPA to
cultures of E14 rat striatal neurons changes a composition
of the AP-1 complexes bound to TH-AP-1 site (14). EMSA
supershift analysis revealed that TH-AP-1 site is occupied
by c-Jun, JunD and FosB in uninduced E14 rat striatal
neurons. There is no c-Fos present in TH-AP-1 despite
noticeable c-Fos expression confirmed by Western blot
analysis. One hour after the stimulation, JunD and FosB
binding strongly increased whereas c-Jun remained
constant, furthermore two additional AP-1 complexes were
formed which supershifted with the anti-c-Fos antibody.
These additional complexes were almost absent at 6h after
stimulation. At this time point JunD and FosB bindings
were still elevated and c-Jun one was constant. AP-1 at 1h
and 6h and in unstimulated cells did not contain Fra-1, Fra-
2 and JunB. c-Jun and JunD western blot expression levels
were constant during time course, so changes in
phosphorylation status possibly are responsible for
enhanced JunD binding to TH-AP-1 site. Neither aFGF nor
dopamine nor IBMX/forskolin nor TPA treatment were
capable of inducing the TH expression, but the action of
particular stimuli alone did change AP-1 composition in the
characteristic way. Changes in the composition of AP-1
complexes at 1h during aFGF treatment mimics the ones
during the combined treatment (aFGF+dopamine+
IBMX+forskolin+TPA) qualitatively. The amount of c-Fos,
FosB and JunD in AP-1 during the former stimulation was
considerably less than during the combined one. At 1h after
dopamine treatment only JunD binding to TH-AP-1
increased. IBMX plus forskolin treatment augmented
binding of FosB at 1h, whereas TPA stimulation led to
decreased FosB and JunD bindings. Thus aFGF plays
central but insufficient role in initiating TH expression in
striatal neurons in culture. The other stimuli amplify
activating effects of aFGF or reverse repressive changes
induced by aFGF during TH activation. EMSA competition
experiment showed that during combined
aFGF/dopamine/IBMX/forskolin/TPA treatment of striatal
neurons TH-CRE oligonucleotide could partially deplete
the TH-AP-1 complexes (14). Then supershift experiments
confirmed that CREB/ATF family members contribute to
formation of AP-1 complexes in TH-AP-1 site.
Unstimulated striatal neurons had ATF-2 and CREM-1
binding activities in TH-AP-1 site which were reduced 1h
after combined stimulation. ATF-2 and CREM-1 levels in
western blotting were unchanged. There were no detectable
CREB-1, CREB-2, ATF-1, ATF-3 and CBP in TH-AP-1
site in stimulated and unstimulated cells. Dopamine or TPA
treatment had no effect on CREB/ATF members. aFGF
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treatment stimulated ATF-2 and CREM-1 binding, whereas
IBMX/forskolin inhibited it. Pretreatment the striatal
neurons with PD 98059 (a specific inhibitor of MAPK and
its upstream kinase - MAPK kinase) and then stimulation
with aFGF/dopamine/IBMX/ forskolin/TPA prevented all
changes induced in TH-AP-1 by the stimulation, moreover
FosB, JunD and c-Jun bindings observed under
unstimulated condition were absent after incubation of the
neurons with PD 98059. Taken the above data together, in
unstimulated striatal neurons AP-1 in TH-AP-1 site
consists mainly of c-Jun/c-Jun, JunD/JunD, c-Jun/JunD
which show low binding activity and of c-Jun/FosB and
JunD/FosB with high binding activity. After treatment with
aFGF/dopamine/IBMX/forskolin/TPA and TH induction
the predominant complexes are potent transactivators and
DNA binders JunD/c-Fos and JunD/FosB, and abundance
of repressive complexes JunD/ATF-2 and CREM-
1/CREM-1 is reduced.

The multiple studies showing TH expression to
be AP-1 dependent in the brain as well as other tissues and
cells in culture appear to provide particularly compelling
evidence for a role for AP-1 in this case. However, the
variety of methods employed is still far from exhaustive,
especially as far as the brain is concerned.

5.3. Genes encoding the neurotrophins, and cytokines
5.3.1. Fas Ligand

AP-1 regulated transcription of Fas ligand (FasL,
CD95-L, APO-1) and Fas genes is well documented outside
CNS. Recently, AP-1-driven regulation of FasL has been
shown in the mouse brain cortex (114). Using extracts from
mice cortex and oligonucleotides corresponding to AP-1
consensus as well as to three fragments of FasL promoter
containing computer-indicated, potential TRE elements (–
282/–252, –233/–215 and –119/–103 fragments) Ishibashi
et al. (114) performed EMSA assay. EMSA patterns
revealed strongly increased protein complex formation with
all 4 sequences in extracts derived from cortex of mice
subjected to focal cerebral ischemia/reperfusion using
intraluminal suture method, whereas only slight increase in
extracts from transgenic mice overexpressing human
intracellular glutathione peroxidase (GPx1). These results
suggested that AP-1 was regulated by GPx1-sensitive
reactive oxygen species and after activation by free radicals
stimulates FasL expression. EMSA supershift assay
showed presence of c-Fos and c-Jun in complexes formed
with AP-1 consensus, –282/–252 and –119/–103 fragments,
and ATF-2 together with c-Jun on the –233/–215 fragment.
The specificity of the binding was verified in the presence
of competitive and noncompetitive oligonucleotides. To
obtain more definitive support for the role of AP-1 in
control of FasL in the brain it would be very important to
follow other experimental approaches as described above.

Spatio-temporal evidence suggested that tumor
necrosis factor-related apoptosis-inducing ligand (TRAIL)
and Fas-L may be AP-1 targets in the brain during ischemia
induced apoptosis. Ischemic injury stimulates a cellular
stress response which leads to activation of c-Jun N-
terminal kinases/stress-activated protein kinases
(JNK/SAPKs). The kinases translocate into the nucleus and

phosphorylate c-Jun at Ser63 and Ser73. This results in
activation of c-Jun which may upregulate transcription of
TRAIL, Fas-L and TNF-alpha in the neurons of the adult
brain (115). After ischemia TUNEL-positive brain neurons
showed colocalization of phosphorylated c-Jun (but not
non-phosphorylated c-Jun) with Fas-L and TRAIL mRNA
and protein. Administration of FK506 (immunosuppressant
blocking c-Jun phosphorylation), parallel to induction of
the ischemia, inhibited Fas-L and TRAIL expression and
prevented occurrence of the apoptosis. Similar results were
obtained in cultures of neuron-derived neuroblastomas. It
would be interesting to see whether these data are matched
by the others obtained with more extended scope of
methods allowing to study a role of AP-1 in a regulation of
the gene expression in the brain.

5.3.2. Nerve growth factor (NGF)
Brain NGF expression occurs in an area-specific

manner related to inducer (116). Activation of β-adrenergic
receptors induces NGF synthesis in the rat cerebral cortex
but not in the other brain areas. Excitatory
neurotransmitters upregulate NGF mostly in limbic system,
i.e.,  in hippocampus and in the cortex and IL-1 in
hippocampus. NGF is apparently involved in development
and maintenance of epileptic patterns of neuronal activity
and functional neuroplasticity after seizures. It induces
axonal sprouting, neurotransmitter synthesis, kindling and
potentiation synaptic transmission. NGF AP-1 binding site
is situated in the first intron of the gene (22, 117). It has
been suggested that NGF can be AP-1 target during global
ischemia in gebrils (118). Solution hybridization technique
quantification showed that NGF transcription is markedly
upregulated at 4 and 24 h after hilus-lesion (HL)-induced
limbic seizures in rats, with a intervening return to control
animal values at 10hr (13). EMSA studies of dentate gyrus
nuclear extracts from rats after HL-induced limbic seizures
revealed that binding to NGF AP-1 was significantly
elevated by 4hr, and remained such to at least 24hr time
point (13). Additionally, EMSA supershift analysis of the
AP-1 composition at 4, 10 and 24hr after HL-induced
lesions with antibodies against c-Jun, JunB, JunD, c-Fos,
FosB, Fra2 showed that JunB presence in AP-1 complexes
was correlated with decreased NGF expression, whereas
JunD with NGF upregulation. c-Jun was not detected, but
because the first studied time point was 4 h, so it is possible
that c-Jun (P-c-Jun?) composes AP-1 complexes bound to
the NGF TRE earlier. Furthermore, Gall and Elliott did not
detect Fra-2 presence, but they observed AP-1 containing
c-Fos and FosB (13). c-Fos was abundant in AP-1 at early
time point and then subsided, FosB acted inversely.

Induction of NGF expression in the rat cerebral
cortex by stimulation of β-adrenergic receptors with their
agonist clenbuterol is AP-1 independent process despite of
observed c-Fos and c-Jun mRNA upregulation (116).
EMSA using NGF-AP-1 motif showed no changes in AP-1
binding in the hippocampus, cerebellum and cerebral cortex
after clenbuterol treatment. In reporter assay the
clenbuterol-driven NGF induction was not affected by
deletion of the AP-1 element of NGF promoter in C6-2B
glioma cells. Similar experiment performed with PC12
cells showed strongly decreased basal promoter activity.
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PC12 cells contain C/EBPbeta but not essential for NGF
promoter activity C/EBPdelta. It suggests that AP-1 may
regulate basic NGF transcription when C/EBPdelta is not
active.

5.3.3. Tumor necrosis factor alpha (TNF-alpha)
TNF-alpha is one of the main inflammatory

cytokines in the central nervous system. TNF-alpha
increases the blood-brain barrier permeability, sometimes
even leading to its breakdown. Furthermore, TNF-alpha
contributes to inflammation-related neurotoxicity, brain
injury and degeneration, for instance during
methamphetamine (METH) (119) or cocaine abuse (120).
METH-dependent alterations of human brain microvascular
endothelial cell (BMEC) redox status lead to activation of
redox-responsive TFs, AP-1 and NF-kappaB.  It has been
shown by EMSA and luciferase assays with wild type as
well as AP-1 site and NF-kappaB site mutated TNF-alpha
promoters that TNF-alpha transcription in human BMECs
is upregulated by coordinated action of AP-1 and NF-
kappaB. Neither AP-1 site-mutated TNF-alpha promoter
luciferase construct nor NF-kappaB site mutated one could
be transactivated in human BMECs. After METH
administration into mice increased AP-1 DNA binding
activity was observed in corpus striatum, frontal cortex and
hippocampus (the other brain regions were not
investigated) (121), and then an upregulation of TNF-
alpha mRNA. Augmented TNF-alpha protein expression
was detected only in the frontal cortex.

5.3.4. Monocyte chemoattractant protein-1 (MCP-1)
MCP-1 is a chemokine implicated in the

pathogenesis of HIV-associated dementia. It stimulates
chemotaxis and transmigration of inflammatory cells as
well as upregulates cytokines and adhesion molecules.
MCP-1 promoter contains TRE (122), and AP-1-driven
transcriptional regulation of MCP-1 has been reported for
IL-1beta-stimulated human endothelial cells (123). Tat is a
trans-activating non-structural HIV nuclear regulatory
protein which markedly increases cellular oxidative stress
and can break down the blood-brain barrier. Tat1-72 injected
into mouse hippocampus in vivo strongly increased MCP-1
expression in BMECs. It was showed by EMSA and
reporter gene assay that Tat1-72 stimulates AP-1 site DNA
binding activity and AP-1 transactivation in cultures of the
BMEC. EMSA supershifts identified c-Fos and c-Jun in
AP-1 site of the Tat1-72 stimulated MCP-1 in BMECs (124).

5.4. Other genes
Cyclin-dependent kinase 5 gene (Cdk5) was

pulled down as the AP-1 target in DNA array analysis of
striatum mRNA from transgenic mice inducibly expressing
DeltaFosB (125). In the striatum of the transgenic mice and
chronically cocaine treated rats there was an increase in
Cdk5 and p35 (neuron-specific Cdk5-activating cofactor;
another putative AP-1 target gene) message, protein and
activity. Moreover, striatal injection of Cdk5 inhibitors
(roscovitine and olomoucine) potentiated behavioral effects
of chronic cocaine administration. This has indicated that
observed Cdk5 upregulation was a compensatory
adaptation for chronic cocaine exposure constituting
negative feedback loop trying to restore homeostasis.

 6. PERSPECTIVE

In this review we have attempted to collect
examples of genes for which evidence of AP-1 regulation
in the brain has been particularly strong or just strongly
debated. The careful survey of the literature shows that
despite claims of a number of AP-1 dependent genes, the
supporting data for such a regulation in the brain has been
in fact very limited. We have included in our review only
those whose AP-1 regulation was supported by meaningful
evidence derived from the in vivo studies. Purposely, we
have left out a number of very interesting genes, whose
AP-1-driven expression in the brain was shown mainly, if
not exclusively in in vitro experiments. To name just some
of them we can list: glial fibrillary acidic protein (GFAP)
(85, 126, 127), urokinase-type plasminogen activator (uPA)
(128, 129), plasminogen activator inhibitor-1 (PAI-1)
(128), alpha1-antichymotrypsin (ACT) (130), amyloid
precursor protein (APP) (131), proopiomelanocortin
(POMC) (132-135), thyrotropin-releasing hormone (TRH)
(136, 137), neuropeptide Y (NPY) (138, 139, 140),
glutamate receptor 6 (GluR6) (141), galanin (GAL) (142,
143, 144), inducible nitric oxide synthase (iNOS) (145, 146,
147), tyrosine kinase receptor for scatter factor/hepatocyte
growth factor (c-met, HGFR) (148), brain-derived
neurotrophic factor (BDNF) (141), vascular endothelial
growth factor (VEGF) (149), neurotensin/neuromedin N
(NT/N) (150), Bcl-2-interacting mediator of cell death
(Bim) (118, 151), c-jun (67), fosB (141), nuclear factor-
kappaB p105 (NF-kappaB p105) (152).

Interestingly, the potentially AP-1-driven genes
could be grouped in just a handful of categories. Thus, it
remains as an attractive possibility that AP-1 controls a
defined subset of neuronal and glial responses in the brain.
It has, however, to be noted that elaborated evidence of AP-
1 dependence is available only for a very limited number of
genes in the brain.
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