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1. ABSTRACT

Array-based comparative genomic hybridization
(ABCGH) is an emerging high-resolution and high-
throughput molecular genetic technique that allows
genome-wide screening for chromosome alterations
associated with tumorigenesis. Like the cDNA microarrays,
ABCGH uses two differentially labeled test and reference
DNAs which are cohybridized to cloned genomic
fragments immobilized on glass slides. The hybridized
DNAs are then detected in two different fluorochromes,
and the significant deviation from unity in the ratios of the
digitized intensity values is indicative of copy-number
differences between the test and reference genomes. Proper
statistical analyses need to account for many sources of
variation besides genuine differences between the two
genomes. In particular, spatial correlations, the variable
nature of the ratio variance and non-Normal distribution
call for careful statistical modeling. We propose two new
statistics, the standard t-statistic and its modification with
variances smoothed along the genome, and two tests for
each statistic, the standard t-test and a test based on the
hybrid adaptive spline (HAS). Simulations indicate that the
smoothed t-statistic always improves the performance over
the standard t-statistic. The t-tests are more powerful in
detecting isolated alterations while those based on HAS are
more powerful in detecting a cluster of alterations. We
apply the proposed methods to the identification of
genomic alterations in endometrium in women with
endometriosis.

2. INTRODUCTION

CGH is a powerful molecular genetic technique
that allows genome-wide screening for chromosome
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alterations  associated ~ with  tumorigenesis  (1).
Characterization of these alterations is important in
diagnosis and prognosis in cancer, and in delineation of
molecular genetic mechanisms underlying tumorigenesis.
With CGH, cryptic gains and/or losses of chromosomal
regions in the tissue samples of interest can be detected,
without prior knowledge of specific regions of interest.
However, the wider application of CGH has been hampered
by its two limitations due to the use of high-quality
metaphase chromosome preparations as hybridization
targets: the limited resolution, typically 3-10 Mb (2, 3) and
the low throughput (4, 5). The recently emerged ABCGH,
or matrix-based CGH as it is sometimes called, overcomes
these limitations (6-9), and is increasingly becoming the
method of choice for high-throughput, high-resolution
screening of genomic alterations (9).

Similar to the spotted cDNA microarrays (10),
ABCGH uses two differentially labeled test (unknown
sample to be analyzed) and reference (known to be
genomically normal) DNAs which are cohybridized, under
in situ suppression hybridization conditions, to cloned
genomic fragments with known physical locations, spotted
and immobilized on glass slides. The hybridized DNAs are
then detected in two different fluorochromes, and the ratios
of the digitized intensity values in the hybridized patterns
of the DNAs onto the cloned fragments are indicative of
copy-number differences between the test and the reference
genomes.

Besides genuine differences between the two
genomes, however, stochastic fluctuations, measurement
errors or other errors of unknown origins, and consistent,
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region-specific variations caused by differences in
hybridization  characteristics of the incorporated
fluorochromes and by local variation in chromosomal
structures, can all cause the ratio to deviate from unity (11).
Therefore, the detection of genomic alterations using
ABCGH requires proper statistical analysis of the intensity
values from the two fluorochromes.

For conventional CGH, a calibration process is
usually invoked, in which reference versus reference
hybridizations are performed to gauge the normal range of
ratio variations (12). The ratios of the test-reference
hybridizations, at each chromosomal segment where the
ratio is calculated, are then compared with, say, the two
standard deviations (SD) outside the mean, obtained from
the calibration, and a gain or loss is declared if the ratio is
above or under the 2 SDs (presumably the nominal 95%
confidence bounds without multiple comparison
adjustment) (13). Sometimes a pair of fixed, global
thresholds, say, 1.15 and 0.85 (14, 15), are used in lieu of 2
SDs.

Recognizing the variable nature of the variance
of the mean ratio within and between reference:reference
hybridizations and possible inequality of variances of

mean ratio between the test:reference and
reference:reference  experiments, a t-like statistic
incorporating  reference:reference and test:reference

variations to detect genomic alterations segment by
segment were proposed (16). This method, however,
assumes that the ratio of the variances of test:reference
ratio means and of reference:reference ratio means is
constant across the whole genome, which may not be true.
In addition, correlation in the estimated variances and the
spatial correlation of ratios in the neighboring segments are
completely ignored.

In contrast to the enormous efforts devoted to the
development of the ABCGH and to the analysis of cDNA
microarray data, the statistical analysis of ABCGH data
has received scant attention. This is somewhat surprising,
considering the great potential that ABCGH espouses (4,
7). Most applications of ABCGH use either fixed, global
thresholds, e.g. 0.85 for loss and 1.15 for gain in relative
copy number (4, 5, 17), or 2 SDs (18). The t-statistic
proposed in (16) for conventional CGH could also be used
(14). However, the use of fixed thresholds has little, if any,
statistical validity since hybridization efficiency, and thus
variation, can vary with chromosomal structures (16). The
2-SD method and the t-statistics method completely ignore
spatial correlations between neighboring clones, which can
be prominent in ABCGH data, especially with high density
ABCGH, since, once a clone exhibits alteration, its
neighboring clones also tend to have alterations (20). As
these methods virtually ignore information embedded in the
neighboring clones, they are less efficient. In addition, they
depend on strong assumptions about the variance of the
intensity ratio, which may not be entirely valid or
justifiable. The method proposed in (20) takes account the
spatial correlations by assuming a fixed-width window with
the same distance-dependent correlation, but this may be
too rigid since, first, correlations may vary with
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chromosomal structures and thus locations, and, second, the
size of genomic alterations may vary. The specification of
the width of correlation in (20) is somewhat arbitrary.

From a statistical standpoint, the identification of
genomic alterations with ABCGH appears to be more
challenging than the identification of differentially
expressed genes in cDNA microarrays, since, besides all
the data normalization issues and the account for various
sources of variations, the former may also need to take
account of spatial correlations, which could be safely
ignored in the latter. This spatial information also is
important in mapping where the genomic alterations are, in
addition to the characterization of the alterations (e.g. loss
or gain).

In analysis of ABCGH data, several
considerations are in order. First, less restrictive
assumptions on variance are preferable, since the variance
may vary according to the chromosomal structures and thus
locations of the clones. Second, spatial correlations should
be properly accounted for, which also should increase
statistical efficiency and improve precision in estimation.
This would also translate into requirement for less
calibration samples because of increased efficiency. Third,
since the nature of variation in variance may vary from
laboratory to laboratory due to considerable variations in
the execution of ABCGH experiments, less distributional
assumption on the ratio would be preferable. Lastly,
robustness to outliers and the minimization of the
dominating effect of clones with very small variance would
be desirable.

In this article we propose two methods for
detecting genomic alterations. We consider two statistics:
the standard t-statistic and its modification with variances
smoothed along the genome.

For each of these two statistics, we propose two
methods to detect clones with significant alterations: the
standard t-test and a test based on the hybrid adaptive
spline (HAS). As a statistical method for function
estimation, HAS has the ability to handle a wide variety of
shapes and spatial inhomogeneities (21). It is an objective
approach that allows data to dictate the shape of a function.
Since alterations typically occur in local regions, the
expectation of a ratio profile along the genome equals zero
except in some regions where alterations occur. Spatially
adaptive, HAS was created to handle spatial inhomogeneity
as in ABCGH data. We also propose a bootstrap method
within the HAS framework to assess statistical significance
and false discovery rate. For the ease of exposition, we
refer these four methods as STNT, SMOT, HAS and SHAS
methods in the remaining of this paper.

3. MATERIALS AND METHODS

3.1. Sample preparations

We conducted an experiment to identify genomic
alterations, if any, in the endometrial tissues in women with
endometriosis. Nine endometrial tissue samples were taken
from five patients with endometriosis (cases) and four
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Figure 1. M vs. A plot for two arrays in a case sample. The

solid lines are the lowess fits with £ =0.2.

apparently normal women (controls) who underwent
elective abortions at area clinics in Milwaukee. One
additional sample from a normal placenta was also used to
serve as a control. The research protocol has been approved
by the Froedtert Hospital and the Medical College of
Wisconsin IRB.

Five :m histological sections of formalin-fixed,
paraffin-embedded tissue samples were mounted on
uncharged, non-coated glass slides and stained with H&E
reagents (Fisher Healthcare, Houston, TX). Epithelial cells
were harvested using laser capture microdissection
(Arcturus, Mountainview, CA), and DNA was isolated
using Phenol/Chroloform extraction methods. All DNA
samples and reference DNA (Promega) were then
amplified using DOP-PCR (22). The PCR products were
purified by Zymo purification columns (Zymo Research,
Orange, CA). Before hybridization, DNA was quantified by
the PicoGreen assay (Molecular Probes, Eugene, OR)
according to the manufacturer's instructions.

Human BAC arrays from the Spectral Genomics
(Houston, TX) were used for this study. The arrays contain
995 BAC clones, spanning the whole human genome. Each
chip has two identical panels, left and right, each
containing the 995 clones. The hybridization was done
according to the manufacturer's instructions. Each DNA
sample was co-hybridized with the reference DNA in two
arrays, with one array switching the dyes. All arrays were
scanned using a ScanArray 5000 (GSI Lumonics, Billerica,
MA). Images were processed using Matarray image-quality
assurance software (23).

3.2. Normalization
We define the group variable g, with g=1 or 2
corresponding to the case and control sample, respectively.
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To ease exposition, we denote 71, (7,) as the number of

case (control) samples, and C as the number of clones. In
our experiment, n=n,=5, (C=995. For all clones, their

physical locations, in terms of chromosome number and the
distance (denote as X_), in cM, from the p-end of the

chromosome, are completely known.

For a particular combination of group g, sample s
in group g, array a, panel p and clone c, let Tg cape and
Rgm,,f denote the measured fluorescence intensities for the
test and reference
s=1..,n,a=12,p=12, and c=1,...,C, we

Mgsapc = logz (Tgsapc / Rg.mpc)
‘R, )/2-

gsape

samples respectively. For g=1,2,

g’

define and

Agsapc = logz (Tgsapc

All M-A plots showed a strong pattern commonly
seen in cDNA microarray data (24). All samples have
similar patterns as those in Figure 1. Two arrays in the
same sample usually have the same pattern. Thus the dye-
swap design is not self-normalizing as defined in (24) (note
that we use ratios of test and reference rather than red and
green). We applied the same normalization procedure based

on lowess as in (24) to each array. Specifically, let [ gsac be

the lowess fit to the M-A plot for array a of sample s in
group g. Then the normalized M is defined as
N =M —] . The normalization was done at the

gsape gsape ~ Lgsac
array level since hybridization was performed for each
array and the patterns of two panels within an array are
very similar.

3.3. Standard t-test (STNT)

After normalization, we define, for 1,..., n, and

the differences of mean ratios between a single case sample
and n, control samples.

Our goal is to detect clones with the expectation
of z,, differ from zero. Since clones with alterations may
vary from patient to patient, combining all case samples
may obscure altered clones shared only by one or two
patients. Consequently, we attempted to detect clones with
alterations for each case sample separately.

For fixed g, s and ¢, we have a 2x 2 factorial
design for array and panel. For a given case sample s, we
assume the model
Nlmpz‘ = lulsc + alsac + glsapc’ (31)

a=12p=12,
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Figure 2. log(S) vs x plot for chromosome 6 in a case

sample. The circles are estimates based on ANOVA
models. The solid line is the lowess estimate of /4 in model
(3.6).
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Figure 3. Left: normal probability plot of residuals. Right:
histogram of estimated residual standard deviations.

where g, represents the common mean for all arrays and
sc
panels in sample s, o, tepresents array (dye) effect, and

. . 2
& e AIC random errors with mean 0 and variance o, .

Since the dye effect is canceled out due to the dye-swap
design, we have ]\7]“”C =u, +¢&,, - For n, control

samples, we assume that y (y=1, ., )are independent and

N i . . 2
identically distributed with mean (£, and variance O, . It

is easy to see  that and

E(z,) = thye =ty
Var(z,)=ol /14+0L /n,- E(z)#0 if and only if there is
an alteration at clone c. We estimated 2 and o-zzc by

c 3.2
Slz.\-(- :Z(Nl,mlc 7N1.\‘1!2L)2 /4( )
=l

and

(3.3)

Szzc = 2(]\72»‘( - Nzu )y H(n, =1)
s=1

respectively. Denoting ¢ — /Sl{ /4452 Iny s the standard t-

statistic

tSC = ZSC /SSC (3 '4)
Using  Satterthwaite = method, we  then

approximated the null distribution of the t-statistic 7 . by a

t-distribution with degree of freedom
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(3.5)

2 2 2
_ (S /1y +5,./n,)
sy Ini(n = 2)+ sy /n2(ny —1)

Note that this t-test is different from the one in
(16) where certain relationships between the variances of
the test and the control samples had been assumed.

3.4. Smoothed t-test (SMOT)

Estimates of variances (3.2) and (3.3) can be
unreliable when sample size is small as in our experiment.
These estimates are highly variable (Figure 2).

From a modeling perspective, chromosomes can
be practically viewed as continuous, and the clones, with
known physical locations, are observation points
interspersed along the chromosomes.  Within each
chromosome, it is reasonable to assume that the variance is
a smooth function of clone locations. Specifically, for a
fixed case sample s and chromosome, we assume that

log(S,.)=h(x,)+e,.(3.6)

where £ is a smooth function of the distance of clone c,
X, . We fit model (3.6) using the robust lowess method

with 30% of the data used for smoothing at each position.
A typical fit is shown in Figure 2. We then defined a
modified t-like statistic

u,, =z, /exp(h(x,)).3.7)

Replacing standard errors by their smoothed
estimates also reduces the effect of outliers and prevents
clones with very small variances from dominating the
result. We applied the same lowess smoothing to the
approximated degrees of freedom in (3.5). We then
approximated the null distribution of the t-like statistic

U, by a t-distribution with degree of freedom equals to the

smoothed degree of freedom.

3.5. HAS and SHAS methods

The standard t-test ignores possible spatial
correlations which may make them less efficient. In
addition, the random errors may not follow a normal
distribution. For each gene c, we fit the following model to
the control samples

Nogpe = Hoe T Qe + Broe +(@B) e + Erpes (3.8)
s=L..,ma=12;p=12,

where 5 and (o), represent random main effect of the
control sample s and interactions between sample and
array, and & sape 's are random errors. The normal

probability plot of the residuals (Figure 3, left panel)
indicates that the distribution has heavy tails. We also
calculated residual standard deviations using formula (3.2)
for all combinations of subjects and genes. The histogram
of residual standard deviations on the right panel of Figure
3 indicates that there is a large variation among error
variances.
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Figure 4. Profile of the smoothed t-like statistic for chromosome 1 in one case sample. Circles are the u statistics. The solid line

is the HAS fit. Two dotted lines are 95%

bootstrap confidence intervals with B=5000 bootstrap samples. Locations with

significant alteration at 95% (99%) level based on the SHAS and SMOT methods are marked in the first and second rows
respectively at the bottom (top) of the plot. The letter / represents a loss and the letter g represents a gain.

We now consider the reduced statistic ;i and

U as functions of the distance X, . Figure 4 shows the

profile of the statistic u for chromosome 1 in a case sample.
Our goal is to detect regions of the profile that deviate
significantly from zero; the clones in these regions are then
classified as having statistically significant alterations
(gains or losses).

For a fixed case sample s and chromosome, let

Y, equal to the standard t-statistic Z; (corresponds to the

HAS method) or the smoothed t-like statistic o
(corresponds to the SHAS method). We assume that
y,=f(x)+e i=1..,n09)

where n is the number of observed clones in this

si

chromosome, f is a smooth function of X, and &;’s are

random errors with mean zero and variance o . For
simplicity we transformed the variable x into the interval
[0,1]. Suppose that f e ,[0,1] (25), where

W,[0,1] ={f:f' abs. cont., J.Ol(f")zdx<oo}.

The conventional cubic smoothing spline is the minimizer
of

LY - S + 2L

where the first part is the least square, the second part is a

(3.10)

penalty for the roughness of the function, and Ais a
smoothing parameter which controls the trade-off between
the goodness-of-fit and the smoothness of the estimate. The
minimizer of (3.10) can be represented by

fi(x)= d1¢](x)+d2¢2(x)+zulcié(x), (3.11)
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where @, (x) =1,¢,(x) = x - 0.5,and

£ =]

0

min(x, ,x)
(

x, —u)(x—u)du.

Since the smoothness (complexity) of the function in the
whole interval is controlled by a single smoothing

parameter A , 1, (x)may over-smooth in regions where f'is

rough and under-smooth in regions where f'is smooth. The
solution (3.11) uses all distinct design points as knots. One
usually needs more knots in regions where the shape of f'is
complex and less knots in regions where the shape of f'is
simple. Thus a subset of diligently placed knots can
improve a spline estimate for a spatial inhomogeneous f
such as the profile of u statistics. Since the true function f'is
unknown, we need an objective method to select knots
based on data. The HAS procedure proposed in (21) is a
powerful method for this purpose. It selects a subset of
bases from (& (), & ()} B8 follows:

1. initialization: set the maximum number of bases
q(g >2) and the inflated degrees of freedom (IDF). Start

with &=2 and two bases {¢1 (x), 9, (X)} ;

2. forward stepwise selection: forg =3, . 4, choose the kth

basis fik (X) to maximize the reduction in the residual sum

of squares (RSS);

3. optimal number of bases: choose k > 2 as the minimizer
of the generalized cross-validation (GCV) score

GCV (k) =RSS/(1-(2+(k—2)xIDF)/ n)*;
4. backward elimination: perform backward elimination to
the selected bases. Decide the final number of bases by the
Akaike Information Criteria (AIC);
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5. fit: fit a standard or ridge regression model to the final
selected bases.

The IDF is used to account for the added
flexibility in adaptively selected bases. In general a good
choice of IDF is 1.2 (16). For ABCGH data, we found that
this choice of IDF sometimes under- or over-estimates the
number of bases. Therefore we added the backward
elimination step to the original HAS procedure. Our
experiences suggest that the combination of a smaller IDF
(1 or 1.1) with the backward elimination step provides
better fits. We also found that the ridge regression step in
the original HAS procedure can lead to over-smoothing for
ABCGH data. Thus we added the standard regression using
a numerically stable procedure as an option in the last step.

We used the following bootstrap procedure to
construct confidence intervals and calculate p-values.

Denote the HAS estimates of f and O as fA and &
respectively. We first generated a bootstrap sample

¥ =f(x,)+£:, i=L..,n

where 6‘; are sampled with replacement from residuals.
Denote the HAS estimates of f and O based on the
bootstrapped sample as J} “and G respectively. Let
D = (J;*(xi)*f(xi))/é'*' Repeat this process B times and
denote D (b)as the pr statistic based on the bth
Let be the
da/2 percentile Of{Df(b),b - 1,”.,3} , respectively. Then the
(1-a)100%
(f‘(xi)_dl—alz&’j(xi)_da/Z&) (26). Regions with zero

outside the confidence intervals are classified as ones with
statistically significant alterations.

bootstrapped sample. lower and upper

bootstrap confidence interval is

We can also calculate the p-values as
b= #{b: D/ (b)|> ‘f’(x,)‘/a‘}/B

Then clones with p, < ¢ are significant at level & .

3.6. False Discovery Rate
We used the False Discovery Rate (FDR) to
circumvent the problem of multiple comparisons (27). For

a fixed case sample and clone ¢, ¢ =1,...,C, let P, be the

p-value for the hypothesis of no alteration at clone ¢ based
on a method such as standard t-test, smoothed t-test or
HAS. Let

i, = arg max <i£
o g i P(,)—Cpo >
where Payi=1,...,C,are ordered values of  p,for all

clones in this case sample, and P, is the proportion of

clones without alteration. Then we classify clones with p-
values less or equal to P, 3 significant. This should

guarantee FDR < ¢ . Since D, is typically unknown, we
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assumed  p =1in our calculations, yielding more

conservative results.
4. RESULTS

We applied the proposed methods to the
endometrial tissues data described in the previous section.
We also performed simulation studies to evaluate the
performance of these four methods. In this section we show
partial results of the data analyses and results from
simulation studies.

4.1. Genomic alterations associated with endometriosis

We use chromosome 1 in one case sample for
illustration. The same analyses were performed for all
chromosomes except Y chromosome in all five case
samples. The complete results will be reported elsewhere.
Simulation studies (see below) indicate that the smoothed t-
statistic performs better than the standard t-statistic. Thus
we present results based on the SMOT and SHAS methods
only.

The profile of smoothed t-like statistics and its
HAS fit are shown in Figure 4. Residual plots indicate that
the random errors did not follow a normal distribution.

Figure 5 shows p-values and rejection regions.
The SMOT method concludes that 23 clones have
significant alterations (18 losses and 5 gains) at 0.05 level
since there are 23 points below the dotted line marked
as @ =0.05. Similarly, 10 of these 23 clones are significant
at the level of 0.01, and 16 are significant with FDR

<0.1. The SHAS detected fewer alterations: 6 clones
have significant alterations (all losses) at 0.05 level, 2
clones at the level of 0.01 and only 1 clone with FDR
<0.1.

Preliminary validation studies based on analysis
of heterozygosity = (LOH) and real-time PCR have
confirmed genomic alterations detected by SHAS for this
data set (data not shown), suggesting that the results based
on SHAS are reliable.

4.2. Simulation studies

We conducted simulations to evaluate and compare four
proposed methods: standard t-test (STNT), smoothed t-test
(SMOT), HAS to the standard t-statistics in (3.4) (HAS)
and HAS to the smoothed t-statistics in (3.7) (SHAS). We
selected simulation parameters as close to the real data as

possible. Specifically, we had n, =1 (one case sample),
n, = 5 (five control samples), two arrays and two panels.

We used the same design points X, ’s as in chromosome 2

with 93 clones. We generated observations for the case
sample from model (3.1) with nine different signal
strengths which are combinations of three shapes and three
strengths. Specifically, we considered the following

functions for the mean ¢, in (3.1): g, =8 ifceS,or
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Figure 5. Transformed p-values, |og((p+a)/(1- p+a)) With a=0.001, from the SMOT method (circles) and the SHAS method

(crosses). We only show p-values which are smaller than 0.1. Regions below two dotted lines from the bottom up represent
rejection regions with & =0.01 and & =0.05 respectively. Regions below the long and short dashed lines represent rejection
regions with FDR < 0.1 for the SMOT and SHAS methods respectively.

0 if ¢ e S°where Sis the set of clones with alterations, and
O represents the strength of the signal. We considered
three choices of S: S = {50} ,S = {49,50,51} and

S = {48, 49,50,51, 52} which correspond, respectively,
to a single, three consecutive and five consecutive clones
with  alterations, and three choices of O :
0=-03,0=—0.5 and 6 =—0.7 which correspond
to weak, medium and strong signals. In reality the random

errors &y, in (3.1) may not follow a normal distribution.

In fact, the left panel of Figure 3 indicates that the
distribution has heavy tails. To mimic the real data, we

generated & ape 35 random samples from the collection of

all residuals from fitting model (3.8) to all clones. For each
clone, five observations as control samples were generated.
Again, the distribution may not be normal. To be realistic,
we collected all sets [] = {]\_[2“.C -N, s= 1’",’5} from
five control samples in the real data. Note that each set
U . 1s centered and clones with less than five control

samples due to missing data are excluded. For each clone,
we then generated a set of five control samples as a random

sample from the collection of all sets [] .- We used 500

bootstrap samples in the computation of bootstrap p-values
for the HAS and SHAS methods. The following results are
based on these 500 replications.

Each method returns a vector of p-values which we denote

as p_,c=1,...,93. For a cutoff value ¢ , we calculated

type I error = #{c eS,p< a}/#S“
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and
power = #{ceS, p, <a}/#S

where # denotes the cardinality of the set.

We then computed the type I error and power by
averaging over 500 replications. Figure 6 shows plots of
power vs type I errors for a set of cutoff values such that
the type I error is between 0.001 and 0.05. These curves
show potential performance of different methods. Viewed
from left panel to the right, we can see how power
increases with increasing signal strength, as expected.
Because curves based on the smoothed t-like statistics are
always above those based on the standard t-statistics, we
can conclude that the smoothed t-statistics always improve
the performance. It should be noted that since we made no
assumption on the functional form of the variance such as
model (3.6) in the simulation, we expect greater
improvement when (3.6) is true. Since the distributions are
heavily tailed, smoothing (shrinking) variances tend to
make the t-statistic more robust to outliers. HAS performs
considerably worse than the t-test in detecting a single
alteration. However, the powers of the HAS and SHAS
methods increase as the cluster of alteration increases while
the power of the t-tests remains virtually unchanged.
Therefore, while the t-tests are more powerful in detecting
an isolated alteration as expected, the HAS methods are
more powerful in detecting a cluster of alterations. This
also suggests that as the density of the CGH array
increases, the HAS methods will perform even better than
the t-like statistics since spatial correlation increases as the
density of the array increases.

Note that Figure 6 only indicates potential
performance of the proposed methods. Since, in practice,
the null distributions for all four methods are only
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Figure 6. Comparison of four different methods: STNT plotted as solid lines, SMOT plotted as short dashed lines, HAS plotted
as dotted lines, and SHAS plotted as long dashed lines. The actual type I errors with & =.05 are marked as crosses on each

curve. Simulation settings are shown in the stripes.

approximated, the identified statistically significant regions
based on these approximations may not be accurate. Thus
the type I error actually committed at level & may be
different from the nominal value ¢ . From the actual type I
error with & =.05 marked on each curve, we can see that
all methods are conservative in the sense that they all
commit smaller type I errors than the nominal value of
a =0.05. The SMOT method tends to be very conservative
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with type I errors always smaller than 0.01. Consequently,
its potential power may not be realized in practice. As can
be seen in the middle panel in the third row, for example,
the actual power of the SHAS method (0.922) is much
larger than that of the SMOT method (0.628) even though
the two curves are close to each other. From the left panel
of the first row, we can see that the actual powers at
& =.05 level are similar for all four methods even though
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the SMOT method could achieve much more. Clearly,
finding more accurate approximations to the null
distribution warrants further research.

5. DISCUSSION

Surpassing conventional CGH in throughput and
resolution, the emerging ABCGH also has the promise of
becoming an automated tool in cytogenetic diagnosis and
delineation of tumorigenesis (9). Compared with
tremendous efforts in developing the ABCGH technology,
the statistical methodology for detection of genomic
alterations based on ABCGH data is still in its infancy.

Sharing with the cDNA microarrays many issues
such as normalization and statistical identification, the
ABCGH data also pose an additional challenge of high
spatial correlations between neighboring clones.

Our proposed methods for the identification of
genomic alterations using ABCGH have several
advantages. First, they require much less restrictive
assumptions on the variances of the test:reference ratios.
Second, by smoothing variances along the genome, the
smoothed t-like statistics are more robust to outliers. This is
especially important for experiments with relatively small
number of control samples and/or ratios follow a
distribution with heavy tails. Note that some outliers had
been removed from the control samples for data analysis
and simulation. Therefore, the outlier problem may be
more challenging in practice than in our simulation. Third,
by incorporation of neighboring data with high correlations,
HAS is more efficient and robust in detecting clusters of
alterations. It handles nicely the inhomogeneous “curvature”of
the ratio profiles along the genome. Our inference procedure
based on bootstrap dose not require the normality assumption.
In view of the observation that there are consistent, region-
specific variations in ratio profiles, which may be caused by
differences in hybridization characteristics of the incorporated
fluorochromes and by local variation in chromosome structures
(such as telomeres or centromeres) (16), and, in particular, the
functional form of the variation, as a function of clone
locations, is typically unknown, the HAS and SHAS are well
suited for the ABCGH data.

With the further progression of the Human Genome
Project, more clones will soon be available for ABCGH. This
increasing density of ABCGH will further boost its power to
detect smaller genomic alterations that might be responsible
for the phenotype of interest. At the same time, the higher
density also would increase spatial correlations in the
neighboring clones. As the density increases, we expect that
performance of the 2 SD method and the t-statistics method
will become progressively worse. In contrast, the HAS method
should perform better as resolution become higher. In addition,
as the method makes no distributional assumptions, it is also
well-suited for automated analysis.
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