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1. ABSTRACT

Liver fibrosis represents a major medical problem
with significant morbidity and mortality. Worldwide
hepatitis viral infections represent the major cause liver
fibrosis; however, within the United States chronic ethanol
consumption is the leading cause of hepatic fibrosis. Other
known stimuli for liver fibrosis include helminthic
infection, iron or copper overload and biliary obstruction.
Fibrosis can be classified as a wound healing response to a
variety of chronic stimuli that is characterized by an
excessive deposition of extracellular matrix proteins of
which type | collagen predominates.  This excess
deposition of extracellular matrix proteins disrupts the
normal  architecture of the liver resulting in
pathophysiological damage to the organ. If left untreated
fibrosis can progress to liver cirrhosis ultimately leading to
organ failure and death if left untreated. This review will
discuss the molecular events leading to liver fibrosis. The
discussion will include collagen gene regulation and
proliferative signals that contribute to the amplification of
the hepatic stellate cell, the primary fibrogenic cell type
that residesin the liver.

2. INTRODUCTION

The hepatic stellate cell (HSC) (formerly called
the Ito cell, fat storing cell, perisinusoidal cell, and
lipocyte) isthe primary cell-type in the liver responsible for
excess collagen synthesis during hepatic fibrosis (1-10).
Following a fibrotic stimulus, such as excess ethanol
consumption, the HSC undergoes a complex transformation
or activation process where the cell changes from a
quiescent vitamin A storing cell to that of an activated
myofibroblast-like cell (11-13). Cdlular changes
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accompanying HSC activation include morphological
changes to a myofibroblast-like cell that is associated with
the appearance of the cytoskeletal protein smooth muscle
a-actin, a loss in the cellular vitamin A stores, and an
increase in the appearance of rough endoplasmic reticulum
(2,58,10,14-21). Metabolically an increase in DNA
synthesis and cellular proliferation occurs with HSC
activation. Altered collagen synthesis, at both the mRNA
and protein levels, is observed with a dramatic increase in
type | collagen, and smaller but significant increasesin type
Il and type IV collagens (3,5,8,10,14,15,17-23).
Expression of HSP47, a collagen-binding stress protein
believed to act as a collagen-specific molecular chaperone
during collagen biosynthesis, is induced in the HSC during
hepatic fibrosis (24). In addition, expression of al three
isoforms of TGF-b, the most potent fibrogenic cytokine for
HSCs, and its receptors are increased following HSC
activation (25-27). Furthermore, the synthesis of platelet-
derived growth factor-beta (PDGF-b), the most potent
mitogen for HSCs is increased following HSC activation
(6,24,25,28,29). In accordance, the PDGF-b receptor is
also increased in activated HSCs (30,31).

Activation of HSCs results in two major events
that promote the fibrogenic response of these cells. First,
HSCs change their pattern of gene expression that resultsin
an increase in synthesis and deposition of extracellular
matrix proteins, hence these cells become directly
fibrogenic.  Secondly, the proliferation rate of HSCs
increases following cellular activation. This effectively
amplifies the number of fibrogenic cells present in the liver.
Therefore, it is believed that effective treatment regimes
aimed at reducing or inhibiting either the fibrogenic or
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Figure 1. PDGF-Induced Proliferation Signaling in the
Hepatic Stellate Cell. Following binding of PDGF to the
PDGF cell surface receptor several signaling cascades are
activated in the HSC. Activation of the MAPK-JNK
pathway has been demonstrated as well as activation of the
Ras-MEK-ERK pathway. Inaddition FAK has been shown
to be involved in HSC proliferation which signals through
the PI3-kinase-AKT-p70S6 kinase pathway. Cross-talk
between the different signaling pathways also occurs.

proliferative responses of HSCs would reduce the
deleterious effects of HSCsin the progression of fibrosis.

3. FIBROGENESIS

The molecular mechanisms underlying hepatic
fibrosis are under extensive investigation. In the norma
liver the turnover of the extracellular matrix (ECM) is
maintained in a homeostatic equilibrium between ECM
synthesis and degradation. During fibrosis an imbalance
between ECM synthesis and degradation occurs. This
imbalance results in a net increase in the synthesis and
deposition of extracellular matrix proteins accompanied

with an increase in tissue inhibitor of matrix
metalloproteinase  (TIMP)  expression that inhibits

collagenase activity.

The molecular mechanisms responsible for the
increase in ECM components is best understood for type |
collagen.  Regulation of type | collagen during the
fibrogenic response has shown to be a complex process.
Type | collagen is the product of two genes, the a1(l) and
a2(l) genes and although located on different chromosomes
these genes are coordinately regulated in a tissue specific,
developmental, and inducible manner. Increased type |
collagen synthesis is due to both transcriptional and
posttranscriptional  mechanisms.  An increase in the
transcription rate of the al1(l) collagen gene is observed
accompanied with an increase in Spl binding activity to the
promoter (32-35). Spl is a potent transactivator of the
al(l) collagen gene (36). In addition, post-transcriptional
regulation of the type | collagen takes place following HSC
activation. An increasein the stability of the a1(l) collagen
mRNA occurs that is mediated through protein interactions
in the 3 untrandated region of the mMRNA molecule.
Increased translation of the a1(l) collagen message is noted
following HSC activation that is mediated by protein
binding to a conserved stem loop structure within the 5
region of the mRNA encompassing the trandational start
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site (8,9,33,37-39). In addition to increased expression of
collagen and other ECM components an increase in TIMP
gene expression occurs as well as a decrease in matrix
metall oproteinase gene expression.

There are several mediators that can influence the
fibrogenic response of HSCs. These include retinoids,
interleukin-1b, tumor necrosis factor, and acetaldehyde.
However, transforming growth factor — beta (TGF-b) is the
most potent fibrogenic cytokine known for the HSC.
Exogenous administration of TGF-b induces fibrosis in the
lung, kidney, and liver (40). During experimental models
of hepatic fibrosis, including bile duct ligation, CCl,
administration, and schistosomiasis infection, a prolonged
increase in TGF-b expression is observed (41-44). In
addition, patients with alcohol-induced and vira-induced
cirrhosis also exhibit increased TGF-b mRNA levels that
correlate with the extent of fibrosis (45-47). Studies using
transgenic mice have provided strong evidence for a
fibrogenic role of TGF-b in the development of liver
fibrosis. A congtitutively expressing form of active TGF-b
resulted in increased levels of TGF-b with the development
of hepatic fibrosis and increased type | collagen deposition
(40,48,49).

4. PROLIFERATION

In addition to the molecular events leading to the
excess synthesis and remodeling of the extracellular matrix,
proliferation of activated HSCs amplifies the fibrogenesis.
Quiescent HSCs reside in the liver in a non-proliferative
state; however, once activated, either when cultured on
plastic cellular or in vivo following a fibrogenic response,
HSCs proliferate (50,51). Although severa factors are
mitogenic for HSCs the most potent mitogenic factors for
the HSC is platelet-derived growth factor (PDGF) (52-58).
PDGF is a heterodimeric protein composed of two
polypeptide chains (A and B chains) that can combine into
three different combinations, AA, BB, or AB. For the
HSC, PDGF-BB is the most potent at stimulating cellular
proliferation (32,53,59). The PDGF receptor is a
transmembrane dimeric complex composed of aa, ab, or
bb subunits (60). Binding of PDGF to its receptor results
in  receptor dimerization and  activation by
autophosphorylation of tyrosine residues (61). The
phosphotyrosines on the activated receptor operate as high
affinity binding sites for severa molecules, mediated by
either src homology domains (SH-2 domains) or
phosphotyrosine binding domains that propagate the signals
of receptor activation stimulating several signaling
cascades (62,63) (see Figure 1).

4.1. MAPK signaling

Activation of Ras followed by the sequential
activation of Raf, MEK, and ERK is one signaling cascade
that is activated by PDGF stimulation of HSCs (54,64,65).
ERK activation results in the phosphorylation of several
transcription  factors, including SAP and ELK-1.
Activation of ERK is observed following PDGF
stimulation in cultured HSCs and in HSCs isolated from
animals treated with a single dose of CCl, (66). The
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importance of this pathway in HSC proliferation was
demonstrated when inhibition of ERK-1 (p44MAPX) and
ERK-2 (p42A™) by pharmacologica inhibitors markedly
reduced growth factor stimulated gene transcription and
cell proliferation (67). PDGF-induced ERK activation in
human HSCs is followed by a transient up-regulation of c-
fos expression and AP-1 and STAT1 hinding activity to
their cognate DNA binding sites (68,69). Furthermore,
PDGF-induced generation of the lipid second messenger
phosphatidic acid leads to a more sustained activation of
ERK and subsequent proliferation (70). Blocking ERK
activity, using the pharmacological inhibitor PD98059,
inhibited HSC proliferation along with AP-1 and STAT1
DNA binding activities, thus supporting a role for ERK
activation in HSC proliferation (66).

¢-Jun and c-Jun nuclear kinase (JNK) are positive
regulators of cell proliferation, including in HSCs (71-73).
Blocking JNK activity in quiescent HSCs or in culture-
activated HSCs using a dominant negative form of JNK
(Ad-TAK) prevented increases in the cell population (74).
Interestingly, inhibiting p38, another downstream MAP
kinase target in either quiescent or activated HSCs, using
the pharmacological inhibitor SB203580, actually increased
cell proliferation, implying that activation of p38 inhibits
HSC proliferation (74). An inhibitory role for p38 in cell
proliferation has been shown in other cell types, perhaps by
inhibiting cyclin D1 (75). Indeed, culture-induced
proliferation of HSCs is associated with increased mRNA
and protein levels of cyclins D1, D2, and E (76).

4.2. Modulation of PDGF signaling

PDGF may modulate its own proliferative
effects. Both thrombin and PDGF generate high levels of
prostaglandin & (PGE;) and cAMP that can counteract
their proliferative effects. Increased cAMP levels and
activation of PKA reduces PDGF stimulation of cellular
proliferation (77). In HSCs, the phosphodiesterase
inhibitor pentoxifylline increased cAMP levels and
markedly decreased PDGF-induced ERK stimulation,
mitogenesis, c-fos mMRNA expression, and cytosolic Ca'?
(78). Similar results were obtained with isomethylbutyl
xanthine, another phosphodiesterase inhibitor (79).
Nitrovasodilators, which also increase PGE, levels showed
a dose-dependent decrease in PDGF-induced elevation of
intracellular Ca™2, ERK activity, cell migration and DNA
synthesis (80). Phosphorylation of Raf-1, an upstream
activator of ERK, by protein-kinase A (PKA) may be
responsible for the inhibitory effects of increased cCAMP
levels on PDGF stimulated cell growth (77,81). In
addition, PKA also phosphorylates the transcription factor
CREB at Ser133 that is associated with a reduction in HSC
proliferation. In HSCs expressing a constitutively active
form of PKA proliferation was inhibited; however, cells
expressing CREB aone or those expressing a mutant form
of CREB (CREB-Alal33) did not show anti-proliferative
effects (79).

The anti-proliferative effects of PDGF may be
mediated by ERK inhibition or by up-regulation of
endothelin B receptors (ETB-R) amplifying the anti-
proliferative effect of endothelin-1 in HSCs (82).
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Endothelin 1 inhibits proliferation of activated HSCs via
ETB-R since endothelin induces an increase in
prostaglandin synthesis and the associated increase in
cAMP levels inhibits both ERK and INK activity (83). A
possible mechanism for cAMP-dependent HSC growth
arrest is the inhibition of the transcription factor STAT1
(84). Another possible mechanism by which PDGF can
inhibit its own proliferative response is the ability of cCAMP
to block activation of Raf-1, MEK, and MAPK by
phosphorylation of Raf-1, thereby inhibiting its binding
affinity to Ras (81). Phosphorylation of Raf-1 is mediated
by PKA, which in turnis activated by cAMP (77).

4.3. PI3-kinase — Akt signaling

The phosphatidylinositol 3-kinase (PI3-kinase) —
Akt pathway is also activated following PDGF stimulation
of HSCs is (58,85). PI3-kinase is a heterodimeric protein
that possesses lipid and protein kinase activity. It is
composed of a regulatory 85 kDa subunit and a 110 kDa
catalytic subunit. After PDGF stimulation, the 85 kDa
subunit of PlI3-kinase associates with the activated PDGF
receptor through two SH-2 domains and becomes
phosphorylated. Activation of PlI3-kinase results in the
generation of several phosphorylated inositol lipids
(Ptdins), specificaly Ptdins3P, Ptdins(3,4)P,,
Ptdins(3,5)P,, and Ptding(3,4,5)Ps, from phosphoinositols
that are essentia for intracellular signaling (86,87). The
generated phosphorylated inositol lipids bind to the
pleckstrin homology domain of Akt and induces Akt
trandlocation to the plasma membrane. Once located at the
plasma membrane, conformational changes occur that
permit phosphoinositide-dependent kinase 1 (PDK-1) to
phosphorylate Akt at Thr 308 and Ser 473 residues in the
activation loop (87-90).  Activated Akt is a key
downstream survival factor by stimulating cell proliferation
and inhibiting apoptosis (91-93). Akt can be activated not
only by growth factors that trigger tyrosine kinase activity
or activation of cytokine receptors, but also by other signals
that can activate PI3-kinase including integrins and
stimulators of G-protein-coupled receptors (87,94-97).

Activation of PI3-kinase is important for HSC
proliferation and chemotaxis (85; our unpublished
observations). A rolefor PI3-kinasein HSC proliferation is
supported by in vivo studies in rats where CCl, treatment
leads to autophosphorylation of the PDGF receptor and
increased PlI3-kinase activity. Furthermore, inhibition of
PI3-kinase by wortmannin blocked mitogensis in response
to PDGF supporting the involvement of this pathway in
HSC proliferation (85). Similar results are obtained using a
more specific PI3-kinase inhibitor LY294002 (65).
Inhibition of PI3-kinase by wortmannin also reduces ERK
activity and c-fos mRNA levelsindicating cross-talk occurs
between the PI3-kinase and MAP-kinase pathways
following PDGF stimulation in HSCs (68). Over
expression of a constitutively active form of Akt stimulates
p70% and promotes cell proliferation and survival (93-95).
Our laboratory has demonstrated that serum or PDGF
activates Akt in HSCs by phosphorylating Ser 473.
Inhibiting PI3-kinase using LY 294002 blocks this activity.
Akt phosphorylation correlated with an increase in HSC
proliferation, al1(l) collagen mRNA levels, and type |
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collagen protein levels, implicating its participation in HSC

proliferation. Both inhibition of Pl3-kinase with LY and

inhibition of Akt by adenovira mediated transduction of a
dominant negative form of Akt markedly reduced HSC

proliferation, al(l) collagen mRNA, and protein levels.

Transduction of HSCs with an adenovirus expressing a
constitutively active form of Akt induced HSC proliferation

in low serum conditions. Thus, it is concluded that Akt is

positioned downstream of PlI3-kinase (our unpublished

observations).

4.4. FAK signaling

PDGF dso activates focal adhesion kinase
(FAK), amember of the focal adhesion complex (98). This
complex interacts with extracellular matrix proteins
through integrin interactions, providing a direct sensor to
the integrity of the extracellular environment. PDGF
treatment of HSCs leads to FAK phosphorylation, which is
blocked by a dominant negative form of ras (99,100). We
have shown that PDGF treatment activates and requires
foca adhesion kinase (FAK) and PI3-kinase for HSC
proliferation (unpublished observations). Blocking FAK
activity using a dominant negative form of FAK (Ad-FAK-
CD) inhibits HSC proliferation and PI3-kinase activity
following PDGF treatment. We have also demonstrated
that FAK is positioned upstream of PlI3-kinase in the
proliferative response of HSCs to PDGF. Additionally,
blocking FAK inhibits cell migration (unpublished
observations).

4.5. p70® kinase signaling

Another downstream target in the PlI3-kinase
pathway via Akt is p70 S6 kinase (p70%® kinase). The
p70% kinase is a 70 kDa protein that is activated by
mitogens and growth factors, several hormones including
insulin, amino acids, and by intracellular calcium (101-
105). A primary target of p70% kinase is the ribosomal S6
protein of the 40S ribosomal subunit (106,107). p70%®
kinase exists in two different isoforms, a 70 kDa
cytoplasmic and an 85 kDa nuclear form. It is a key
regulatory element of mRNA trandation and protein
synthesis.  Furthermore, it is required for cell cycle
progression, cell differentiation and cell growth. Both
isoforms are in the mitogen-activated pathway, downstream
of PI3-kinase. Activation of p70% kinase occurs through a
complex series of phosphorylation events on several serine
or threonine residues via the Akt/PDK 1 pathway (108,109).
Phosphorylation of Thr 229 and Thr 389 are most critical
for kinase function (110). Phosphorylation of these sitesis
inhibited by wortmannin, LY, rapamycin, and by amino
acid deprivation (110-112). Rapamycin, a lipophylic
bacterial macrolide, potently inhibits proliferation of yeast
and severa types of mammalian cells, including B and T
lymphocytes (113,114). Rapamycin inhibits p70%® kinase
activity by inhibiting mTOR/FRAP, an upstream kinase for
p70%  kinase reducing phosphorylation of several
regulatory sites on the p70%® kinase molecule and may
activate serine, threonine protein phosphates (101,102).
Rapamycin also blocked extracellular matrix deposition in
CCl-induced liver fibrosis in rats. Moreover, rapamycin
inhibits HSC proliferation due to PDGF stimulation in cell
culture (109). Inhibition of p70% impairs the progression
of cell cyclethrough G1 to S phase (115-117).
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Rapamycin forms a complex with FKB12 that
then inhibits the activity of the mammalian target of
rapamycin (MTOR/FRAP), a pathway distinct from MAPK
(106). In HSCs, rapamycin effectively blocked insulin-like
growth factor-induced DNA synthesis (107). Yet, the
mechanism by which rapamycin inhibits stellate cell
proliferation has not been clarified. In HSCs, we were able
to demonstrate that phosphorylation of p70%® kinase is
induced by serum or PDGF and this activity is blocked by
LY or rapamycin. Furthermore, LY and rapamycin
blocked serum-induced HSC proliferation, al(l) collagen
MmRNA and collagen protein levels (unpublished
observations). These data indicate that p70%® kinase is
positioned downstream of Akt in the PI3-kinase pathway
and is strongly involved in HSC proliferation. We have
shown that PDGF activates FAK and PI3-kinase in HSC
proliferation (unpublished observations). Taken together,
we have also shown FAK signals to PI3-kinase leading to
Akt activation and subsequent p70%® kinase activation.
Furthermore, rapamycin modulates the proliferative
response in HSCs by inhibiting p70% kinase (unpublished
data). The likely mechanisms by which rapamycin blocks
p70% kinase activity is either by direct inhibition of p70%
kinase phosphorylation in the PI3-kinase pathway or by
inhibition of the mMTOR/FRAP induced phosphorylation
(112,113).

4.6. Signaling complexity

In genera, one signaing factor can be
responsible for a wide range of possible biologic effects.
This may be due to the complexity of intracellular
signaling, because one signal does not strictly stimulate
only a single cascade but more likely cross-talk with other
pathways, therefore modulating a broad spectrum of
signaling kinases. On the other hand a single signaling
factor may have severa biologic functions, indicating the
diversity of cellular metabolism. However, pharmacologic
blockade of one specific signaling step severa hours after
growth factor stimulation still can result in abrogation of
the biologic response. This suggests that a stimulus needs a
distinct amount of time until it resultsin the desired action.
An early stage is probably the association of the growth
factor with its receptor, followed by intermediate and late
phase until completion of the biologic effect (114). In fact,
it has been demonstrated that growth-factor-dependent
mitogenesis requires two specific phases of signaling in the
Ras/ERK pathway for progression in the cell cycle (101).
This accounts aso for PDGF-induced PI3-kinase
activation, where only the late wave of activation is
required for progression through G1 (102). Similar results
were obtained in human HSCs, showing that PDGF-
induced stimulation resulted in a biphasic stimulation of
ERK activity, which was related to the stimulation of cell
proliferation (103).

A proper intracellular milieu is essential for the
correct execution of the biological function of all the
described kinase pathways. Therefore, it is not surprising
that pH and intracellular calcium concentration play a very
important role in preserving homeostasis and kinase
integrity in HSCs. For example, the mitogenic potential of
the different isoforms of PDGF correlated with their
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potential to increase intracellular Ca2* in activated rat and
human HSCs (104). Furthermore, the ability of PDGF to
induce a proliferative response was associated with the
capability to maintain an increased intracellular Ca'?
concentration due to Ca*? entry (105,118). Accordingly,
PDGF stimulation of HSCs in the absence of Ca#* did not
result in HSC proliferation (115). Regulation of the
intracellular pH by modulating the activity of the Na'/H*
exchanger is another facet of PDGF (116,117).
Pharmacologic inhibition of the Na'/H* exchanger resulted
in an inhibition of PDGF-induced mitogenesis, indicating
that changes in the intracellular pH by this growth factor
are essentiad for its proliferative activity (119).
Furthermore, it has been proposed that PDGF-induced
amplification of the Na'/H* exchanger activity is linked to
the activation of PI3-kinase and inhibition of the Na'/H*
exchanger lead to the disruption of downstream signaling
events, such as PDGF-induced FAK phosphorylation (109).
Indeed, we have demonstrated that FAK isinvolved in cell
adhesion, cell migration and more importantly in HSC
proliferation, because blocking FAK or PI3-kinase resulted
in amarked reduction of these phenomena.

Finaly, other mitogenic growth factors include
angiogenic growth factors, such as basic fibroblast growth
factor (b-FGF) and vascular endothelial growth factor
(VEGF). In sellate cells b-FGF has a similar mitogenic
and chemoattractant activity as PDGF (120). VEGF
signaling in HSCs via its receptors includes activation of
ERK, protein-kinase C and c-Akt. Activation of HSCs is
associated with increased expression of VEGF and its
receptors, which may again result in more cross-talk signals
in the complex signal transduction pathways of hepatic
stellate cells (121,122).

5. PERSPECTIVE

In summary, proliferation in hepatic stellate cells
is regulated via different signaling cascades (see Figure 1).
Recent research has led to better understanding of how
HSCs change from a quiescent to an activated and
proliferating cell type. However, further research needs to
address the question of how the cell-cycle is targeted by
these signaling pathways. It is anticipated that an
understanding of the molecular events leading to
fibrogenesis and HSC proliferation may lead to the
development of effective therapies for hepatic fibrosis.
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