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1.  ABSTRACT

Neural cell adhesion molecules of the
immunoglobulin superfamily are multidomain proteins
involved in important cellular events pertinent to
development and adult neurological function. This review
attempts to give a concise overview of the complex
intracellular signaling pathways enabling neural cell
adhesion molecules NCAM and L1 to regulate axon
growth, guidance, and synaptic plasticity.  Recent research
findings suggest that these molecules signal in part through
integrins leading to cytoskeletal rearrangements locally in
the growth cone or cell leading edge, and to MAP kinase,
which has the potential to cause gene expression changes in
the nucleus. Abnormal expression of NCAM on human
chromosome 11q23 has been linked to schizophrenia in
humans, a multigenic disease believed to be of
neurodevelopmental origin.  L1 at Xq28 is the target for
mutation in a complex mental retardation disorder termed
the L1 syndrome (also sometimes referred to as CRASH
syndrome). Thus a full understanding of the mechanism of
NCAM and L1 function will contribute to understanding
both normal brain development and pathologies associated
with cognitive dysfunction in schizophrenia and mental
retardation.

2.  INTRODUCTION

Current research has revealed that neural cell
adhesion molecules are involved in multiple signal
transduction processes important to cell migration, cell
adhesion, neurite outgrowth, axon fasciculation and
guidance, necessary for both the development of proper
synaptic connectivity and synaptic plasticity associated

with learning and memory.  This review focuses on the
ability of the neural cell adhesion molecules NCAM and L1
to signal via distinct pathways in response to multiple
homophilic and heterophilic binding interactions.
Abnormal expression or function of these adhesion
molecules can contribute to pathologies in
neurodevelopment and mental function.

3.  NCAM SIGNALING

3.1. NCAM Structure and Isoforms
Neural cell adhesion molecule NCAM is an

axonal growth-promoting cell recognition molecule within
the immunoglobulin (Ig) superfamily.  NCAM is expressed
as three principal isoforms: two are transmembrane forms
with either a short (NCAM140) or long (NCAM180)
cytoplasmic domains, and another form lacking a
cytoplasmic domain (NCAM120) is anchored to the plasma
membrane by a glycophosphatidylinositol (GPI) linkage.
All three NCAM isoforms have five Ig-like domains and
two fibronectin type III (FN III) domains in the
extracellular region.  NCAM180 differs from NCAM140 in
having a 261-amino acid insert in the cytoplasmic domain,
which confers an ability to interact with spectrin (1).
NCAM140 is localized to migratory growth cones and axon
shafts of developing neurons, whereas NCAM180 is
enriched at sites of cell-cell contact and postsynaptic
densities of mature neurons (2). Unlike transmembrane
isoforms, GPI-linked NCAM120 is preferentially expressed
in glia.  An alternative splice variant of NCAM containing
the VASE exon in the Ig4 domain arises postnatally and
serves to downmodulate axon growth (3).  Among other
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Figure 1.  Downstream signaling pathways of NCAM, L1
and integrins culminating in MAPK signaling cascade
leading to developmental events like neurite outgrowth,
cytoskeletal organization and cellular migration.

splice variants, a secreted isoform consisting of most of the
extracellular region of NCAM is expressed in brain and
skeletal muscle (4).

All three isoforms can be post-translationally
modified by the addition of polysialic acid (PSA) to the Ig5
domain (5-7). PSA is a homopolymer composed of alpha-
2,8-linked sialic acid residues and is found almost
exclusively on NCAM in vertebrate brain. Glycosylation of
NCAM is regulated developmentally, decreasing during the
embryonic to adult transition (8). In general, polysialylation
of NCAM has the effect of enhancing axon growth, which
occurs at the expense of axon fasciculation (9).

3.2. NCAM Mediated Cell Adhesion
NCAM plays a role in modulating adhesiveness

of neurons and their processes through homophilic and
heterophilic binding. The NCAM domains mediating
homophilic binding are still debated but dimerization of the
third Ig domain (10) and double reciprocal dimerization of
the first and second Ig domains have been proposed (11-
13).  NCAM binds heterophilically to heparan sulfate
proteoglycans (14) through heparin-binding sites in the first
and second Ig domains, and to the extracellular matrix
protein agrin (15) and several chondroitin sulfate
proteoglycans, including neurocan (16) and phosphocan

(16, 17).  Additionally, NCAM is capable of lateral binding
to L1 via the NCAM Ig4 domain, which facilitates
homophilic binding between L1 molecules apposed in trans
(18, 19).  Embryonic lethality of a targeted mutation of
NCAM producing only a secreted form of NCAM
consisting of its entire extracellular region illustrates the
physiological importance of heterophilic interactions
mediated by NCAM (20).

             The presence of PSA on NCAM decreases NCAM-
mediated cell adhesion (21).  Fujimoto and co-workers (22)
provide strong evidence for the effect of PSA on cell
adhesion to be independent of binding or signaling
properties of NCAM per se, but through steric inhibition of
membrane-membrane apposition solely based on
biophysical properties of PSA.

3.3. NCAM Signaling Mechanisms in Axon Growth
NCAM-mediated neurite outgrowth can result

from activation of intracellular signal transduction
pathways involving protein tyrosine kinases and
phosphatases (23-27).  NCAM crosslinking on the cell
surface produces additional signaling responses including
calcium rise, pH change, and phosphoinositide turnover
that contribute to neurite growth (28, 29). An integrin-like
signaling pathway has been elucidated for neurite
outgrowth that is triggered by clustering of only the
NCAM140 isoform (30, 31) (see Figure 1). NCAM140-
mediated neurite outgrowth critically depends specifically
on the Src family nonreceptor tyrosine kinase p59fyn and
not pp60c-src as shown in cultures of cerebellar and
sensory neurons from fyn-minus mice (26).   p59fyn
constitutively associates with NCAM140 in the plasma
membrane, probably indirectly, but not with NCAM180 or
NCAM120 (30).  Crosslinking of NCAM140 with NCAM-
Fc fusion protein or divalent NCAM antibodies induces the
recruitment and transient activation of focal adhesion
kinase (p125fak) (30), the nonreceptor tyrosine kinase
pivotal to integrin signal transduction and formation of
focal adhesive contacts with the substratum.  Clustering of
NCAM140 subsequently activates c-Ras1, the mitogen and
extracellular signal regulated kinase MEK, and the MAP
kinases, ERK 1 and ERK2. Importantly, inhibition of MAP
kinase activation by MEK inhibitors impairs NCAM-
dependent neurite outgrowth, as shown in primary neuronal
cultures.  The small G protein Rho also participates in
NCAM140-mediated activation of MAPK but it is not clear
where it acts in the pathway (31). The NCAM-Fak/Fyn-
Ras-MAP kinase pathway was confirmed in a PC12 cell
line where it was shown that NCAM-stimulated neurite
outgrowth depends on activation of p125fak, p59fyn and
Ras-MAP kinase (32). A central role of MAP kinase in
neurite outgrowth on other substrates has also been
demonstrated in primary cultures of chick retinal neurons
growing on laminin or N-cadherin (33, 34).

MAP kinase may affect growth cone motility
through phosphorylation of local cytoplasmic or
membrane-associated targets, such as myosin light chain
kinase (35).  Alternatively, MAP kinase activation is
capable of inducing the expression of genes needed to
extend the length of the axon through its ability to
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phosphorylate and activate transcription factors such as
Elk-1 directly.  NCAM140 signaling also results in MAP
kinase-dependent phosphorylation / activation of the
transcription factor CREB  (cAMP response element
binding protein) on serine residue 133 (31). CREB is
phosphorylated and activated by the serine/threonine kinase
RSK, which is a direct target of MAP kinase.  Signals from
NCAM might be integrated with other cell stimuli at the
level of CREB, since CREB can be phosphorylated on
serine 133 by protein kinase C, calmodulin-dependent
protein kinase and cAMP-dependent protein kinase, in
addition to RSK. Such interactions may coordinately
regulate neurite outgrowth, as NCAM-mediated neurite
growth was shown to depend on both Ras-MAP kinase and
cAMP-dependent protein kinase pathways in PC12 cells
(36).

A different NCAM signaling pathway was
described in which some isoforms of the FGF receptor
mediate neurite outgrowth on all isoforms of NCAM
through activation of phospholipase C-gamma (PLC-
gamma) and diacylglycerol (DAG) lipase, culminating in
production of arachidonic acid (24, 25, 37). An
involvement of PLC-gamma in NCAM-dependent neurite
outgrowth was confirmed in PC12 cells by the impairment
of neurite growth on NCAM substrates in the presence of
pharmacological inhibitors of PLC-gamma (32).
Arachidonic acid can lead to neurite growth in some cells,
and because arachidonic acid- induced neurite outgrowth
can be inhibited by specific antagonists of N-and L-type
calcium channels, calcium influx appears to be a participant
in this cellular response (28, 32). It has been proposed that
a short sequence of 10 amino acids, termed the "CAM
homology domain", which can be found in the FGF
receptors-1 and 2, might be able to bind directly with
related sequences within the VASE exon-encoded region of
NCAM, as well as short sequences in the extracellular
regions of L1 and N-cadherin (38).  In this model it remains
to be established whether NCAM can physically associate
with an FGF receptor, although NCAM140 and 180 have
been shown to co-immunoprecipitate with a different FGF
receptor (FGF receptor-4) and with N-cadherin in
neuroendocrine tumor cell extracts (39).

Niethammer and coworkers (40) offer a unifying
perspective for reconciling the divergent views of NCAM
signaling leading to neurite outgrowth.  Their findings
show that distinct MAP kinase signaling pathways occur
based on compartmentalization of different isoforms of
NCAM in lipid rafts or non-rafts within the plasma
membrane.  NCAM140 in lipid rafts signals through
p125fak and p59fyn leading to MAP kinase activation,
while NCAM140 in the non-raft compartment requires an
FGF receptor. A key feature of the mechanism is that
NCAM140 must be activated in both compartments to
signal neurite outgrowth effectively. In agreement with
Beggs et al. (30), neither NCAM180 nor NCAM120 are
neuritogenic. Kolkova and coworkers (32) also present
evidence that the NCAM-p125fak/p59fyn-Ras-MAP kinase
pathway and the NCAM-FGF receptor-PLC-gamma
pathways are both required for neurite outgrowth on
NCAM in PC12 cells. However, in contrast to Doherty et

al. (28), their studies indicate that protein kinase C (PKC)
is critical for NCAM-dependent neurite growth, based on
the ability of calphostin, a PKC selective inhibitor, to
impair NCAM-dependent neurite outgrowth (32). They
suggest that PKC may be activated by DAG thus serving as
a link between the two pathways through PKC-mediated
activation of the serine/threonine kinase Raf-1.The
outcome of this pathway is to cause sustained rather than
transient MAP kinase stimulation for neurite growth.

3.4. NCAM Isoforms in Synaptic Function
 In addition to stimulating axon growth NCAM
plays an important role in synaptic plasticity and function.
NCAM is preferentially expressed in regions of the adult
brain associated with synaptic plasticity (e.g., the
hippocampus and cerebellum; (41). Mutant mice lacking all
isoforms of NCAM (5) are deficient in hippocampal long-
term potentiation (LTP), spatial learning, and long-term
depression LTD (42, 43). Function-blocking NCAM
antibodies have been shown to diminish LTP in
hippocampal slice assays (44). It is noteworthy that LTP
deficiency in hippocampal slices from NCAM knockout
mice can be rescued with exogenous application of brain-
derived neurotrophic factor (BDNF), implicating crosstalk
between NCAM and BDNF signal transduction pathways,
both of which activate Ras-MAP kinase (45).

Postsynaptic localization of NCAM is strongly
implicated in modulating synaptic function. The expression
of NCAM in postsynaptic hippocampal neurons increases
synaptic strength in an activity-dependent manner by
regulating the number of synapses (2). Specifically, it is the
NCAM 180 isoform that is confined mostly to postsynaptic
membranes, whereas NCAM 140 is expressed both pre-and
postsynaptically (46, 47).  The importance of NCAM180 in
synaptic function is further revealed by its ability to reverse
aberrant serotonin receptor sensitization and emotional
behavior in NCAM null mutant mice (48).

A role for NCAM in the organization and
modulation of pre-synaptic machinery has been identified
recently at the neuromuscular junction.  As shown in total
NCAM knockout mice, NCAM is needed to make the
developmental switch from an immature, brefeldin-
sensitive type of synaptic vesicle cycling, which uses L-
type calcium channels, to the mature form of cycling,
which uses P/Q calcium channels (49, 50).  Vesicle release
in NCAM null mutant mice occurs abnormally in the
preterminal region of the axon and upper part of the nerve
terminal rather than being restricted to the nerve terminal.
As a result, neuromuscular junctions of NCAM knockout
mice lack paired pulse facilitation and show strikingly
depressed responses to repetitive stimuli.  In the absence of
NCAM it appears that synaptic vesicles are continuously
released from the preterminal sites and that release cannot
be further induced. These results suggest that NCAM
participates in organizing the presynaptic machinery or in
regulating vesicle cycling or release.

Seemingly contrary to the situation in vertebrates,
where there is a positive correlation between NCAM and
synaptic plasticity, synaptic strengthening in invertebrates
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occurs by a reduction of cell surface NCAM (51-53), but
see (54).  For the formation of new synapses during long-
term facilitation (similar to LTP) in Aplysia,
downregulation of the Aplysia NCAM homolog (apCAM)
must occur. This process involves internalization of NCAM
from the pre-synaptic axonal membrane in sensory neurons,
and requires MAP kinase activity (55, 56).  Similarly in
Drosophila, the NCAM homolog Fasciclin II, which is
present pre- and post-synaptically, has to be downregulated
for activity-dependent synaptic growth in nerve-muscle
synapses (57). The presynaptic release machinery in flies
expressing 50% of wild type levels of Fasciclin II is
upregulated by CREB- and cAMP-dependent protein
kinase A-mediated transcription (57, 58). A resolution to
the apparent difference with regard to mammalian NCAM
may be related to the ability of NCAM isoforms to undergo
receptor-mediated endocytosis (59).  Clustering and
endocytosis of NCAM might be an early step needed for
intracellular signaling to MAP kinase, which subsequently
regulates synaptic vesicle cycling or neurotransmitter
release.  Receptor-mediated endocytosis of NCAM140 and
180 has shown to occur by a clathrin-dependent pathway in
astrocyte cultures (59).

3.5. NCAM in Cortical Circuitry Relevant to
Schizophrenia

Schizophrenia is a neuropsychiatric disorder that
is currently believed to originate from disturbances in
neurodevelopment (60, 61).  NCAM knockout mice show
several hallmarks of schizophrenia: increased size of lateral
brain ventricles, impaired sensory motor gating manifested
by reduced prepulse inhibition of acoustic startle (62), and
deficits in hippocampal / amygdala-dependent learning and
LTP (5).  They are also more aggressive and anxious than
their wild-type littermates (63).  NCAM knockout mice
display defects in the structure of the hippocampus (6), one
of several brain regions implicated in schizophrenia.  In
particular hippocampal mossy fibers of NCAM-minus mice
produce ectopic synapses due to a failure in remodeling
(64). Furthermore, there is a reduction in polysialylated
NCAM, which is needed for proper axon guidance, in the
brains of both NCAM knockout mice and human
schizophrenics (65). Neuronal process formation in
cerebral cortical structures implicated in schizophrenia,
such as the prefrontal cortex, has not yet been analyzed in
NCAM knockout mice.

Abnormal levels of an NCAM fragment that
includes most of its extracellular domain are secreted in
affected brain regions and cerebrospinal fluid of
schizophrenic patients, correlating with severity of the
disease (66-71).  Soluble NCAM could arise by proteolytic
shedding of transmembrane isoforms (72, 73) or enzymatic
cleavage of GPI-linked NCAM (74, 75), but apparently not
from overproduction of the alternatively spliced secreted
form of NCAM (69). Abnormal release of the NCAM
extracellular fragment could interfere with normal
homophilic or heterophilic interactions of NCAM, either by
constitutively activating NCAM signaling or by serving as
a competitive inhibitor of homophilic or heterophilic
NCAM binding interactions.

     A transgenic mouse strain has been generated in
which developing neurons in the brain secrete the entire
extracellular region of NCAM from the neuron-specific
enolase promoter at the onset of terminal neuronal
differentiation and extending into postnatal life (76). This
approach was designed to circumvent the embryonic
lethality that occurred when the NCAM extracellular region
was expressed in mice through deletion of the
transmembrane-coding region in the NCAM gene in mouse
embryonic stem cells (20).  The NCAM extracellular
region was expressed in transgenic brain at 2-3 fold higher
levels than endogenous NCAM 180/140, and over 50% of
the transgenic NCAM protein in the brain is in the soluble
fraction.  The extracellular NCAM fragment was
preferentially localized within process-rich layers of the
cerebral cortex, hippocampus, and cerebellum. Behavioral
studies revealed that these mice have reduced prepulse
inhibition of acoustic startle, display hyperactivity in the
open field, and show increased stereotypic activities,
consistent with aspects of the schizophrenia phenotype
(76).  An evaluation of learning and memory showed that
the transgenic NCAM animals are also deficient in
contextual and cued fear conditioning.  Abnormal secretion
of NCAM during development may thus perturb brain
circuitry leading to pathological behaviors relevant to
schizophrenia.

4.  L1 SIGNALING

4.1.  L1 Structure and Function
L1-related neural cell adhesion molecules (L1-

CAMs) comprise a class of the immunoglobulin
superfamily of proteins expressed across the animal
regnum from birds and mammals (L1/NgCAM, NrCAM,
Neurofascin, and the Close Homolog of L1 or CHL1) to C.
elegans (LAD-1) and Drosophila (Neuroglian). These cell
recognition molecules are characterized by the presence of
an extracellular domain with six Ig-like domains (77) and
four to five FN III domains, followed by a transmembrane
region and a short (~110 residue), highly conserved
cytoplasmic domain.  L1-CAMs are widely expressed in
the nervous system and have been implicated in a variety of
developmental processes including neuronal migration,
axon growth and guidance, axon fasciculation, myelination
and synaptic plasticity.  L1 is of timely importance, as the
human L1 gene on the X chromosome (Xq28) has been
identified as the target for mutation in a pleiotypic form of
mental retardation, termed the L1 syndrome (78). A site on
the World Wide Web is available for current information
on human L1 mutations (79). Some pathological L1
mutations are known to truncate the L1 protein, giving rise
to a null mutation. Missense mutations occuring throughout
the L1 extracellular and intracellular domains can generate
a protein with altered function or cause failure to be
transported to the plasma membrane resulting in
degradation (80, 81). It is noteworthy that the human CHL1
gene  (termed "CALL") is closely linked with another
syndromic form of mental retardation known as the 3p-
syndrome (82).

 Different isoforms of L1 are generated by
alternative splicing and yield functionally distinct proteins
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that are expressed in different cell types.  L1 isoforms
retaining exons 2 and 27 are expressed by neurons,
whereas forms lacking these sequences are expressed in
certain nonneuronal cells including Schwann cells (83),
hematopoietic cells (T-cells, B cells, granulocytes; see
references in (84)), and epithelial cells (85).  Insertion of
amino acids encoded by exon 2 into the L1 Ig2 domain
causes enhanced homophilic binding between L1
molecules (81, 86).  Insertion of the RSLE sequence
encoded by exon 27 into the cytoplasmic domain enables
L1 to recruit the AP2/clathrin adapter important for
receptor-mediated endocytosis (87).

4.2.  L1 - Ankyrin Interactions
The cytoplasmic domain of L1 contains the

sequence SFIGQY that is highly conserved among L1-
CAMs. This motif is part of a binding site for ankyrin, an
adapter protein that links L1 to the actin cytoskeleton
through spectrin (88-91). The physiological role of L1-
ankyrin binding is not yet clear but the similar phenotypes
displayed by ankyrin B and L1-minus mice showing
dysplastic axon tracts and ventricular enlargement support
a role for their interaction in stabilizing axonal
interactions (92-95).  Reversible phosphorylation of the
tyrosine residue within the SFIGQY sequence is achieved
by an unidentified kinase but serves to reversible regulate
ankyrin binding to L1-CAMs (96, 97). Two pathological
mutations of L1 situated within the SFIGQY sequence
(S1224L and Y1229H) reduce L1-ankyrin interactions
(98) and may destabilize neuronal interactions necessary
for normal neurodevelopment.

4.3. L1 Signaling in Axonal Growth and Neuronal
Migration

Besides acting as an adhesive molecule providing
strength for intercellular connections, L1 functions as a
signal-transducing receptor providing neurons with cues
from their environment for axonal growth and guidance.
Clustering of cell surface L1 (containing RSLE) with L1
antibodies or L1-Fc fusion protein activates a MAP
kinase signaling cascade (99). This rapid and transient
activation of MAP kinase is required for L1-dependent
neurite outgrowth (100, 101).  However, inhibition of
the MAPK cascade reduces neurite outgrowth by 50-
60% when primary neurons are cultured on L1,
suggesting the existence of additional mechanisms
contributing to axon growth. L1-stimulated MAP kinase
is achieved through activation of the nonreceptor kinase
pp60c-src, Rac1 GTPase, p21-associated kinase
(PAK1), mitogen-and-extracellular signal-regulated
kinase (MEK), and the guanine nucleotide exchange
factor Vav-2 (101, 102).  L1 clustering in growth cone
membranes has been shown to activate tyrosine
phosphatases, which probably accounts for the transient
nature of the phosphorylation events in the MAP kinase
cascade (23, 103). Another signaling intermediate of the
L1 pathway, the phosphatidylinositol-3-kinase (PI3
kinase) (101) is well known for its role in promoting
neuronal survival in response to neurotrophins and
growth factors (104).  This might therefore contribute to
the ability of L1, as well as CHL1, to foster the survival
of neuronal cells in culture (105).

This L1 signaling pathway closely resembles an
early integrin signaling pathway producing lamellipodia
and membrane ruffling (106-108) (see Figure 1).
Accordingly, a novel role for L1 has been identified in
potentiating haptotactic migration of neural and nonneural
cells toward extracellular matrix (ECM) proteins that is
mediated by functional interaction of L1 with beta 1
integrins (109) (110).  A conserved RGD sequence in the
Ig6 domain of L1 is necessary for enhancing migration,
suggesting that L1 might physically associate with beta 1
integrins through their extracellular domains.  The activity
of MAP kinase and pp60c-src are both necessary for L1-
potentiated migration to ECM proteins (110), and an intact
RGD in the L1 Ig6 domain is essential for signaling to
MAP kinase (110).  However, an association between L1
and beta 1 integrins must be transient or low in affinity as it
has not been demonstrated by direct binding assays or co-
immunoprecipitation in these studies.  Other studies have
revealed an interaction between L1 and specific subclasses
of integrins in nonneuronal cells: alpha 5 beta 3 (111,
112),alpha 5 beta 1 (113), alpha v beta 1 and alpha 2b beta
3(114), alpha 9 beta 1 (115). Such interactions are also
mediated through the RGD sequence in the 6th Ig domain
of L1, and additionally through a dibasic sequence within
the 3rd FNIII domain (115). The third FNIII domain of L1
has been shown to be critical for neurite outgrowth by
cerebellar neurons (116). L1/integrin engagement may be
effective not only in trans but also in cis when both
molecules are present on the plasma membrane of the same
cell.  An interesting mechanism for L1 potentiated
migration was suggested (109) in which ectodomain
cleavage of L1 by ADAMs (A Disintegrin and
Metalloproteinase) promotes migration by autocrine
stimulation of integrins. This mechanism may depend on
particular cell types, as it was suppported by results of
ADAM inhibitors in transfected CHO cells, but were not
effective in B35 neuroblastoma cells (Maness, PF,
unpublished results).

Endocytosis of L1 occurs during active cell
migration and growth cone motility, which may be
important in cycles of cell attachment/detachment
necessary for directed locomotion.  Antibody-mediated
clustering of L1 induces rapid dynamin I- and clathrin-
dependent internalization of the neuronal form of L1 (with
RSLE) (87, 100, 101).  A slower form of internalization
occurs for the nonneuronal form of L1 lacking RSLE (117).
Internalization of neuronal L1 requires a functional pp60c-
src kinase (101).  pp60c-src specifically regulates neurite
outgrowth on L1 as shown in cerebellar cultures from Src-
minus mice (102).  Other members of the Src family of
tyrosine kinases that are expressed in growth cones, namely
p59fyn, and p62c-yes (118, 119), do not serve redundant
functions in L1-dependent neurite growth (102).  Inhibition
of dynamin I or pp60c-src as a result of expression of
dominant negative mutants or treatment with Src kinase
inhibitors such as PP2, block L1-induced endocytosis and
MAP kinase activation, supporting the interpretation that
Src-mediated L1 endocytosis is required for downstream
signaling to MAP kinase (100, 101). The target of pp60c-
src that regulates L1 endocytosis has not been identified,
but this kinase is known to phosphorylate dynamin I (120)
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and clathrin (121).  pp60c-src can also phosphorylate L1 in
vitro on tyrosine residue 1176, which precedes the RSLE
motif of L1, and this modification prevents L1 binding to
the AP2/clathrin adaptor (122). Inhibition of dynamin I or
pp60c-src blocks L1-potentiated cell migration toward
ECM proteins in addition to reducing neurite outgrowth on
L1 substrates (110), hence endocytosis appears to be
critical for promoting cell migration in addition to growth
cone motility. It is important to note that clustering of L1 in
HEK293 cells on fibronectin induces rapid endocytosis of
not only L1 but also of beta 1 integrins (110) . Thus it is not
clear whether it is the internalization of L1, beta 1 integrin,
or both molecules that is essential for potentiating cell
migration to ECM.

4.4. Calcium as a Second Messenger in L1 Signaling
 There is much evidence that intracellular

signaling with calcium as a second messenger occurs in
neurons and contributes to neurite extension (123-128).
Direct pharmacological activation of calcium channels is
sufficient to enhance neurite outgrowth in cell monolayers
(126, 129), leading to the hypothesis that calcium-activated
second messenger systems triggered by binding of L1
rather than adhesion per se is a key factor in axon growth.
Indeed, clustering of L1, as well as NCAM, causes rapid
Ca2+ influx in neuronal cells (29) and the L1-induced
calcium increase is inhibited by N- and L-type calcium
channel antagonists (28, 130). Pharmacological
experiments have indicated that L1, like NCAM, may
interact with an FGF receptor through the putative CAM
homology domain on L1 leading to activation of PLC-
gamma (131) and (132). Consecutive stimulation of PLC-
gamma and DAG lipase is proposed to result in the
production of arachidonic acid and subsequent opening of
voltage-gated calcium channels (25, 133).  A recent finding
has shown that binding of L1 to sensory neurons leads to a
local increase in submembranous calcium but not to an
overall cellular calcium rise (133, 134), pointing to a
localized activation of calcium signaling. If calcium
transients occur at specific sites within the growth cone or
leading edge of the cell, they would be expected to cause
specific types of actin cytoskeletal rearrangements
(lamellipodia, filopodia) that could facilitate directional
motility.

4.5. Role of L1 Mutations in X-linked Mental
Retardation (L1 syndrome)

Impaired migration of neural precursors and
altered axon growth or guidance due to L1 mutations that
abrogate cell signaling might contribute to the pathology of
the L1 syndrome of mental retardation.  L1-induced MAP
kinase activation and enhanced migration to ECM proteins
are coordinately reduced in cells expressing the 3 known
pathological L1 mutations within its cytoplasmic domain
(S1194L, S1224L, Y1229H) (110). L1 and beta 1 integrins
cooperate for migration of neuronal precursors in the
cerebellum (110) raising the possibility that these L1
mutations might alter the migration of neural precursors in
development. Accordingly, migration of dopaminergic
neuron precursors in L1 knockout mice was shown to be
aberrant (135).  Certain pathological mutations in the L1
extracellular region that disrupt homophilic binding

strikingly impair neurite outgrowth in vitro (136), while
many pathological missense mutations of L1 affect
homophilic binding and heterophilic association with the
GPI-linked cell surface molecules TAG-1 and
F3/F11/contactin (137). Thus, L1 may participate in a
fundamental way in normal neurodevelopmental
mechanisms requiring cell location and axon growth or
guidance, and mutation of critical residues within
extracellular and intracellular L1 domains may alter
neuronal motility and axon growth resulting in
developmental abnormalities and altered mental function in
the L1 syndrome.

5.  PERSPECTIVES

A number of findings connect integrins and
cytoskeletal machinery to NCAM and L1 signaling, yet the
mechanism by which they are coupled is not clearly
elucidated and needs further study.  Coupling of signaling
between CAMs and integrins could result in signal
amplification allowing neurons to integrate information
from distinct points in the cell or growth cone due to
positional cues on adjacent cells (CAMs) and ECM
substrates to achieve directional motility important for
development or synaptic plasticity.  Rho family GTPases
are key components of these CAM signaling cascades with
known importance in actin cytoskeletal organization
necessary for normal neuron morphology and motility.
NCAM and L1 activate RhoA and Rac1 and thus,
recognizing their specific downstream effectors would shed
light on how different CAMs alter actin cytoarchitecture in
growth cones to cause their uniquely different
morphologies. It is also important to identify the molecular
interactors specific for NCAM140 and 180 isoforms to
better understand their functions in axon growth and
plasticity, respectively. NCAM140 and L1 signaling
culminates in MAP kinase activation, presumably causing
transcriptional activation of genes required for neuronal
migration and neurite outgrowth.  Gene profiling using
DNA microarray technology will prove useful to identify
those genes induced or down regulated by specific CAMs.

To understand the role of abnormal secretion of
NCAM associated with schizophrenia, the NCAM
transgenic mouse strain expressing the extracellular
fragment in brain should prove to be informative. In
particular it will be important to learn whether such altered
NCAM expression affects cortical neuron development,
consistent with the neurodevelopmental hypothesis of
schizophrenia, and adult synaptic function. Epigenetic
factors implicated in the etiology of schizophrenia (viruses,
social isolation, maternal care) can also be evaluated in
these mice. Further, the mice can be intercrossed with other
strains bearing mutations in other schizophrenia
susceptibility genes to assess the combined load of gene
mutations in the phenotypes of the disease.  Transgenic
mice expressing different L1 mutations corresponding to
those identified in human families with X-linked mental
retardation will be valuable in delineating the effect of each
mutation on pathological consequences in the highly
pleiotypic spectrum of neurological defects found in the L1
syndrome.
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