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1. ABSTRACT

At the present time, clinical solid organ
transplantation continues to rely on the use of non-specific
immunosuppressive protocols in order to prevent graft
rejection. However, these regimens bring with them
complications related both to the global
immunosuppression that they cause, and to toxicity related
to individual drugs. The pursuit of protocols that will allow
graft-specific tolerance thus remains a major goal of
research both in animal models and in clinical practice.
There is evidence that the graft itself may play an active
part in establishing and maintaining donor-specific
hyporesponsiveness and ultimately tolerance; the aim of
this review is to analyze this role in more detail.

2. INTRODUCTION

In clinical practice, solid organ transplantation
represents a mainstay of therapy for end stage organ failure.
However, for the process to be successful, rejection of the
graft by the recipient’s immune system must be prevented.
Historically, transplantation only became a realistic option
following the development of effective immunosuppressive
drugs. However, the long term use of these agents is far
from optimal. The non-specific nature of the

immunosuppression that they provide carries with it an
increased risk of infection (1) and malignancy (2, 3). The
individual drugs used also possess their own side effects;
for example, calcineurin inhibitors such as cyclosporin and
tacrolimus are nephrotoxic and may thus contribute to the
failure of renal allografts or cause renal failure in recipients
who receive other solid organ grafts (4).

The majority of drugs in current clinical use act
by preventing leukocyte activation and / or proliferation,
and thereby prevent graft rejection. However, the eventual
goal in transplantation is to achieve donor-specific
unresponsiveness or tolerance, and it is now recognized
that some of the approaches to achieving this may require
activation of the recipient’s immune system. Most of the
immunosuppressive agents in current clinical use inhibit
lymphocyte activation in a non-specific manner, and may
therefore paradoxically inhibit the development of tolerance in
some situations (5-7). There is thus intense interest in trying to
unravel the mechanisms by which such tolerance may be
achieved; this involves factors within not only the recipient
immune system but also the graft itself. The aim of this review
is to examine the role of the graft in more detail; figure 1
provides an overview of some of the proposed mechanisms.
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Figure 1. Proposed mechanisms by which the graft may
contribute to the induction of tolerance. Open symbols
represent recipient cells, closed symbols donor cells.
Dotted arrows represent processes potentially contributing
to tolerance induction.

3. ACTIVE ROLE OF THE GRAFT

A number of experimental studies have
demonstrated that solid organ grafts, rather than simply
provoking an immunological rejection response, may also
play an active role in establishing and maintaining
tolerance. In various protocols it has been shown that if
primary grafts are performed under the cover of tolerance
induction therapy and are then removed, tolerance, assessed
by the acceptance of a second donor-type graft, is lost (8-
11). Olausson et al. demonstrated this phenomenon in a rat
cardiac allograft model, where anti-thymocyte globulin pre-
treatment of the recipient led to long term survival of
primary grafts. These were then removed, and secondary
donor-type grafts performed after varying intervals. If the
time between removal of the first graft and placement of
the second graft was greater than 25 days, the second graft
was rejected (8). Similar findings were also reported in a
mouse model, where acceptance of primary cardiac
allografts was induced by treatment with anti-CD4. Second
cardiac allografts performed in animals with a functioning
primary graft were accepted, but if the primary graft was
removed at day 50 then tolerance to donor alloantigens was
eventually lost, so that secondary grafts performed 200
days later were rejected. In this study, polymerase chain
reaction analysis of tolerant mice failed to demonstrate the
peripheral presence of donor class I MHC positive cells,
suggesting that tolerance was due to ongoing presence of
the graft itself rather than to donor microchimerism (9).

The duration of donor-specific unresponsiveness
after removal of the primary graft is somewhat variable
between models. In the rat, when tolerance was induced by
leukocyte depletion, 17 to 25 days in the absence of the
primary graft resulted in the loss of operational tolerance
(8, 10), whereas in mice the tolerant state appeared to
persist for longer in the absence of alloantigen (9, 11)

The requirement for antigen persistence to
maintain tolerance is not unique to transplantation, as it is a
common feature of the maintenance of tolerance to self
antigens. For example Garza et al., measuring responses to
ovarian peptide, found that female mice were
hyporesponsive to the peptide compared to males, requiring
100 fold more peptide antigen in order to elicit a response
in vivo. However, if the ovaries were removed either in the
neonatal period or more than seven days prior to antigen
challenge, tolerance was abrogated. This again suggests
that ongoing antigen presence is required to maintain
tolerance, and that neonatal exposure alone, in this case to a
self antigen, is insufficient (12).

The role of the graft in establishing tolerance
appears to require activation of the recipient immune
system, since several studies have shown that if immune
recognition and activation do not take place, operational
tolerance to donor alloantigens is not induced or maintained
(13-15). Thus the acceptance of an allograft per se, if it
occurs in the absence of appropriate immune activation,
may not be sufficient to achieve systemic tolerance (16).
Rat pancreatic islet allografts cultured for 14 days under
high oxygen tension in order to deplete passenger
leukocytes were permanently accepted when transplanted
under the cover of cyclosporin. Subsequent injection of
recipient lymphocytes previously sensitized to the donor
alloantigens led to rejection of all the cultured islet grafts
while, in contrast, islet grafts that had not been cultured
under high oxygen tension were not rejected by the
sensitized leukocytes, suggesting that activation of the
recipient immune system by the transplanted tissue was
required for tolerance to develop (13). Taking a different
approach, Tullius and colleagues showed that replacement
of primary rat renal allografts that had undergone chronic
rejection by a second graft from the same donor strain
between two and twelve weeks after the initial transplant
resulted in the second graft showing good function with
lower levels of proteinuria and little cellular infiltration
(14). This effect was not tissue-specific, as donor type
cardiac allografts were also accepted, but it was donor-
specific as third party renal and cardiac allografts were
rejected. Similar data have also been obtained in a
miniature swine model. Renal allografts transplanted across
a single haplotype class I MHC mismatch developed acute
rejection; however, in 30 per cent of these animals this
rejection resolved spontaneously, and graft function
remained stable thereafter. In addition, the animals with
long term functioning grafts showed prolonged survival of
donor-type skin grafts (15). The data obtained in each of
these model systems can be interpreted as suggesting that
activation of the immune system by the graft can lead to
specific unresponsiveness to a subsequent challenge. In
clinical transplantation, analysis of reactivity to donor
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alloantigens in patients who have rejected a renal transplant
also suggests that some exhibit donor-specific
hyporesponsiveness in vitro (17).

There are numerous examples in the literature,
particularly in rodent models, where graft survival can be
achieved by the administration of immunomodulatory
agents for a short period around the time of transplantation
without the need for ongoing therapy. In these models, the
immunosuppressive effect achieved in the longer term is
graft-specific and does not affect the entire immune
repertoire. Peri-operative administration of cyclosporin has
been shown to prolong the survival of rat cardiac (18) and
renal (13, 19, 20) grafts as well as rabbit (21-23) and
porcine (24-26) renal allografts. Similarly, transplantation
under the cover of anti-CD4 antibody therapy allows the
acceptance of cardiac (27-32) and pancreatic islet (33)
allografts when used alone, and mouse skin allografts when
used in conjunction with anti-CD8 therapy (34-36). CD4 is
not the only target that can lead to this type of
unresponsiveness – manipulation of the CD40-CD40L and
B7-CD28 costimulatory pathways at the time of
transplantation provides a further potential method of
promoting graft acceptance. Blockade of the CD40-CD40L
pathway using antibodies directed against CD40L has been
shown to prolong the survival of mouse skin (37, 38) and
cardiac (39) as well as primate pancreatic islet (40, 41) and
renal (42) allografts, while blockade of the B7-CD28
pathway with CTLA-4-Ig has been used successfully in
mouse (43, 44) and rat (45) cardiac and primate pancreatic
islet (46) allograft and human to mouse pancreatic islet
xenograft (47) systems. Administration of antibodies
directed against LFA-1 and ICAM-1 also allows the
acceptance of allografts such as mouse cardiac transplants
(48). These observations suggest that, under appropriate
conditions, antigen presentation by allografts may favor the
induction of operational tolerance rather than rejection.

If the graft is playing a key role in inducing and
maintaining tolerance, one would expect that only
leukocytes that had previous experience of the donor
antigens would be responsible. Baker et al. examined
donor-specific responses in different CD4+ populations
present in patients with a functioning renal allograft. They
observed that hyporesponsiveness resided within the
CD4+CD45RO+ subset of previously activated cells rather
than the CD4+CD45RA+ subset. CD4+CD45RO+ antigen-
experienced T cells are capable of circulating through the
graft, whereas naïve CD4+CD45RA+ T cells are only able
to circulate between blood and lymphoid tissues. The
authors concluded that trafficking of antigen-experienced
leukocytes through the graft was important for the
development of donor-specific hyporesponsiveness (49).

4. GRAFT ADAPTATION

Various theories have been proposed to explain
the mechanisms by which allograft tolerance may occur.
Broadly, these hypothesize that the graft may induce a
change in the recipient’s immune system, or that the graft
itself may undergo changes after transplantation (such as
altered levels of MHC expression, replacement of graft

endothelium by recipient-derived cells, or loss of passenger
leukocytes) that render it less susceptible to rejection, a
phenomenon known as graft adaptation. The subject of
passenger leukocytes is discussed in more detail later.

In the rat, long term surviving renal allografts
transplanted into naïve secondary recipients are not
accepted in all strain combinations (50). In cases where
second grafts were accepted, no evidence could be found
for replacement of the graft with recipient endothelium, or
for down-regulation of MHC antigens. Hart and colleagues
therefore postulated that successful graft transfer was due
to the loss of donor passenger leukocytes. This view is
supported by the observation by Lechler and Batchelor that,
in a model where long term surviving renal allografts were
accepted when re-transplanted into secondary recipients,
administration of donor strain dendritic cells to these
recipients resulted in acute graft rejection (51). Analysis of
the role of altered graft MHC expression is complicated by
the fact that class II molecules are expressed by vascular
endothelial cells in humans and large animals but not in
rodents (52-56). Examination of mouse liver (57) and aortic
(58) allografts and human liver (57), renal (59, 60), and
heart (61) transplants has confirmed that replacement of
graft endothelium by recipient cells may indeed occur
following transplantation. Furthermore, analysis of mouse
(62) and human (59, 62) renal allografts and human cardiac
transplants (61) has demonstrated that recipient bone
marrow-derived cells may also repopulate the graft
parenchyma. However, importantly, some of these studies
have shown that such replacement only occurs following
graft damage (for example as a result of acute or chronic
rejection), suggesting that this phenomenon may be a
response to injury rather than a normal process of graft
adaptation (59, 60, 62). Given the data cited above, that
activation of the recipient’s immune system by the graft is
essential for the induction of tolerance, at this stage in the
analysis it is not clear whether replacement of donor by
recipient cells in the graft is linked.

Evidence against graft adaptation being solely
responsible for the development of tolerance is supported
by data from many animal models where a second donor-
specific graft is accepted without the need for further
immunosuppression (25, 31, 63-72). This does not rule out
the possibility that graft adaptation still occurs in
conjunction with changes in the recipient immune system
but a number of studies have suggested that graft
adaptation does not play a significant role in establishing
tolerance in some settings. In their rat cardiac allograft
model, where tolerance was induced by anti-CD4 antibody
therapy, Onodera et al. demonstrated that long term
surviving grafts were rejected when transplanted into naïve
recipients (10). Coulombe et al. have described a mouse
pancreatic islet allograft model where rejection could be
elicited in the post-transplant period by immunizing
recipients with donor antigen presenting cells. However,
when the grafts were left in place for a longer period they
became resistant to rejection after the immunization. In this
model, resistance to rejection was shown to be due to a
change in the recipient immune system rather than
adaptation of the graft (73). When long term surviving
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renal allografts were removed from MHC class I-
mismatched miniature swine and replaced with fresh grafts
of donor type, all were accepted, while re-transplantation of
the long term surviving grafts into naïve recipients resulted
in rejection (74, 75). Taken together, these studies suggest
that graft adaptation does not play a major role in
establishing tolerance.

5. MICROCHIMERISM

In addition to parenchymal cells, solid organ
grafts normally also carry circulating bone marrow-derived
cells, so-called passenger leukocytes. Some of these cells
are able to engraft within the recipient leading to the state
of microchimerism, where donor and recipient cells
coexist. Since the initial reports by the Pittsburgh group
describing the presence of bone marrow lineage cells of
donor origin in patients with long term surviving liver (76)
and kidney (77) allografts, Starzl and colleagues have
postulated that the establishment of such systemic
microchimerism may play a beneficial role in the
promotion of graft survival (78, 79). However, the presence
of microchimerism does not in itself imply an active role in
the induction or maintenance of tolerance and, moreover,
the absence of microchimerism does not preclude the
development of operational tolerance. Examples of this
latter situation from experimental studies include the
following (9, 80-83). In the clinical setting, a number of
studies have failed either to detect microchimerism or, in
situations where it has been detected, to demonstrate a
correlation with graft survival in the settings of kidney (84-
88), heart (89), lung (90), and liver (87, 91-96)
transplantation.

In contrast, other studies have demonstrated a
beneficial effect of microchimerism; however, importantly,
most of these studies involve administration of donor bone
marrow under the cover of other therapy such as lymphoid
irradiation. In a mouse pancreatic islet allograft model
where such pre-treatment was administered prior to
transplantation, all recipients that had more than 1% donor
cells detectable in the peripheral blood accepted their grafts
(97). In a study using a mouse skin allograft model,
recipient pre-treatment with total lymphoid irradiation or
non-myeloablative irradiation combined with anti-CD4 and
anti-CD8 therapy and donor bone marrow infusion led to
the development of chimerism, reduction in donor-specific
cytotoxic T lymphocyte precursor frequency, and
acceptance of donor-specific skin grafts (98, 99). When
cells from these chimeric recipients were transferred into
irradiated hosts, the reduction in donor-reactive cell
frequency was only maintained if the adoptive transfer
recipient was of donor type, again suggesting that
maintenance of tolerance required the continued presence
of antigen (98). In a primate model, pre-treatment of
cynomolgus monkeys with non-myeloablative therapy
(including anti-thymocyte globulin, total body irradiation,
thymic irradiation) together with donor bone marrow
infusion allowed the long term acceptance of renal
allografts, associated with microchimerism, acceptance of
donor-specific skin grafts, and donor-specific
hyporesponsiveness in vitro (100).

The suggestion that chimerism may lead to the
deletion of donor-reactive cells is supported by
experimental observations in mice that are mixed chimeras.
In this setting of macrochimerism, donor-derived cells
locate to the thymus resulting in deletion of donor-reactive
thymocytes (101, 102); it has also been postulated that
chimerism leads to clonal exhaustion of mature donor-
reactive lymphocytes in the periphery (79, 103). The same
mechanisms may be operating in recipients with detectable
microchimerism, although in this setting the number of
donor cells present may not be sufficient to achieve
tolerance. Another potential explanation may be that the
use of immunosuppressive therapy facilitates the
engraftment of donor-derived cells leading to
microchimerism, but if this were the case microchimerism
would be an epiphenomenon rather than a causal step in
establishing tolerance.

A further insight into the role of microchimerism
was provided by a study reported by Anderson et al. Nude
mice that received skin allografts developed donor
microchimerism derived from passenger leukocytes within the
graft. Reconstitution of these microchimeric recipients with
recipient type fetal thymic tissue led to ongoing donor-specific
tolerance, whereas reconstitution with mature recipient type
cells led to priming of donor-reactive cells (104). These results
suggest that donor microchimerism is able to induce donor-
specific tolerance of developing thymocytes, but potentially
leads to priming of mature T cells.

Take together, these observations suggest that
strategies attempting to achieve tolerance by means of
donor microchimerism also need to target the mature
peripheral T cell pool in order to prevent graft rejection
(figure 2).

6. PASSENGER LEUKOCYTES

In addition to their potential role in the
development of microchimerism, passenger leukocytes may
also have other, more immediate, effects that play a role in
influencing graft survival. In some, but not all, settings
depletion of passenger leukocytes can have a negative
impact on graft survival. Depletion of passenger leukocytes
from donor livers or heart grafts prior to transplantation
prevented spontaneous graft acceptance (82, 105-110), but
the survival of liver grafts could be restored by the
administration of donor leukocytes to the recipient at the
time of transplantation (105-110). Likewise, removal of
passenger leukocytes by graft irradiation led to an increased
risk of chronic rejection of small bowel grafts, but this
could be reversed by the administration of donor bone
marrow to the recipient (111). In a clinical series of lung
transplant recipients analyzed by O’Connell et al., the mean
number of donor passenger leukocytes present within grafts
for the first 200 days post-transplantation correlated with
clinical outcome, with lower levels being associated with
acute or chronic rejection (112).

These observations suggesting a beneficial role
for passenger leukocytes must, however, be balanced by
studies indicating a possible detrimental effect. Removal of
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Figure 2. Potential role of microchimerism. (A) Graft
rejection is mediated by mature peripheral alloreactive T
cells (solid circles); this population is continuously
replenished by the development of new T cells (open
circles) within the thymus. (B) Donor microchimerism may
allow the deletion of developing donor-reactive T cells
within the thymus, but rejection will still occur unless the
peripheral T cell pool is also targeted (C).

passenger leukocytes from grafts has led to prolonged
allograft survival in rat cardiac (113), renal (114), and lung
(115), and mouse pancreatic islet (73, 116-118) and thyroid
(119-123) models. In corneal allografts, which normally
contain few antigen presenting cells (124-126), the
presence of such cells is associated with increased rejection
rates (127, 128).

In studies where prolonged survival of thyroid
and pancreatic islet allografts was achieved by depletion of
passenger leukocytes using in vitro culture under high
oxygen tension, subsequent recipient challenge with cells
of donor origin led to graft rejection when given in the
early post-transplant phase, whereas grafts that had been
resident for over 100 days were more resistant to rejection.
Recipients with long term surviving grafts were able to
accept second donor-specific grafts in vivo, although they
showed normal anti-donor reactivity in vitro (73, 118, 120-
122). A similar potentially deleterious effect of passenger
leukocytes has been demonstrated by Larsen et al., who
found donor leukocytes present in the spleens of mice that
had rejected cardiac allografts (129). Experiments where
long term surviving rat renal allografts were re-transplanted
into secondary naïve recipients have shown that, in some
strain combinations, these grafts are accepted (50, 130,
131), but that rejection can be restored by infusion of donor
strain dendritic cells at the time of re-transplantation (51);
the authors thus proposed that graft survival in the
secondary recipients was due to loss of donor passenger
leukocytes. Attempts have been made to exploit this

mechanism in a clinical renal transplantation study (132-
134). Prior to transplantation grafts were perfused with
antibodies directed against CD45, leading to coating of
passenger leukocytes. This pre-treatment was associated
with a lower rate of acute rejection, suggesting that
neutralization of passenger leukocytes was preventing
recipient sensitization.

From these observations it is apparent that there
is a complex relationship between the presence of
passenger leukocytes and graft outcome and that,
depending on other factors, including the
microenvironment present in the graft or draining lymphoid
tissue, passenger leukocytes may either facilitate tolerance
or promote rejection. Bishop et al. have proposed that when
antigenic stimulation (in part via passenger leukocytes)
provided by grafts is compared to the rejection response
there is a bell-shaped relationship. Thus at lower levels of
antigenic stimulation (such as in heart or kidney allografts)
reduction in stimulation by removal of passenger
leukocytes leads to diminished rejection, whereas in the
case of the liver (where there is a greater level of antigenic
stimulation) passenger leukocyte depletion results in
augmented rejection (135). This view is consistent with the
hypothesis by Starzl and Zinkernagel (79, 103) that the
beneficial role of passenger leukocytes on graft survival
may be, at least in part, the result of recipient-reactive
passenger leukocytes causing stimulation and clonal
exhaustion of donor-reactive recipient cells and vice versa.
If the balance between these two processes is correct, the
risks of graft rejection and graft versus host disease
respectively are reduced. In support of this view, in rodent
skin allograft models recipient total lymphoid irradiation is
insufficient to prevent graft rejection but the addition of
donor bone marrow infusion leads to graft survival (136,
137), whereas in rat cardiac (137) and primate liver and
kidney (138) allograft models, recipient total lymphoid
irradiation alone is sufficient to allow graft survival. These
observations suggest that in situations where the graft itself
contains low numbers of passenger leukocytes,
administration of additional donor cells promotes graft
survival. A fuller understanding of these effects may allow
the manipulation of donors or recipients in such a way as to
harness the role of passenger leukocytes in achieving
tolerance.

7. THE ROLE OF THE THYMUS

One theoretical mechanism through which
allograft tolerance may be established is through the
migration of graft-derived cells bearing donor alloantigen
to the thymus resulting in the deletion of donor-reactive T
cells centrally during the process of thymic development.
Although the thymus undergoes significant reduction in
size during adult life, there is evidence in humans that
functional thymic tissue exists even in old age (139).

Direct evidence supporting the hypothesis that
introduction of donor antigen into the thymus can modulate
immune responsiveness comes from experimental systems
where intrathymic administration of donor alloantigen in
the form of peptides, whole cells, or tissues has been shown
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Figure 3. Possible factors contributing to the “liver effect”.
LSEC: liver sinusoidal endothelial cells.

to lead to prolonged survival of mouse cardiac (140-143),
skin (65), and pancreatic islet (144), and rat cardiac (66, 80,
145-148), pancreatic islet (149, 150), liver (151), small
bowel (152), and renal (153-155) allografts. However, even
when graft survival is prolonged, chronic rejection may still
occur (80). Similarly, graft protection may not extend to all
organs, as demonstrated by a rat study where intrathymic
administration of donor splenocytes led to the acceptance
of cardiac but not skin or renal allografts (145). Rat cardiac
allograft models where intrathymic donor splenocyte
administration led to long term graft survival have
suggested that donor microchimerism per se is not
responsible for operational tolerance in the long term (80,
147).

The implication from these data is that if a
sufficient dose of alloantigen from the graft were to enter
the thymus this might reshape the repertoire and thereby
prevent rejection. The mechanisms responsible could
include anergy (155), immunoregulation (143), or deletion
(140-142, 144) of alloreactive cells, all of which have been
shown to occur after intrathymic injection of alloantigen,
although it has also been shown that deletion is not
necessarily required for the induction (141) or maintenance
(140, 142) of tolerance in this setting.

The thymus may also play a role in the
development of tolerance in systems that do not involve
direct intrathymic antigen administration. In a rat cardiac
allograft system, Onodera et al. demonstrated that an intact
thymus was required for tolerance induced by anti-CD4
therapy (10). In the miniature swine model described by

Sachs and colleagues, it has been shown that tolerance
induction to cardiac (156) and renal (156-158) allografts is
prevented by recipient thymectomy. Similarly in this
model, concomitant transplantation of vascularized donor
thymus tissue prevents the rejection of renal allografts
(158). Thus, at least in some situations, the thymus may
play a significant role in the development of allograft
tolerance.

8. THE LIVER EFFECT

Since the seminal observations by Calne, it has
been recognized that hepatic allografts possess distinct
immunological properties compared to other organs.
Transplanted livers are spontaneously accepted in mouse
(159, 160), rat (161-167), and pig (168, 169) models, and
there have been numerous reports of human liver transplant
recipients who have been successfully weaned off
immunosuppressive therapy without compromising graft
function (96, 170-172). In addition to their own enhanced
survival, liver allografts may also have protective effects on
other organs transplanted into the same recipients. In one
rat study, liver transplantation performed prior to or at the
same time as pancreas allografts prevented rejection of the
pancreas; moreover, rejection of lone pancreatic allografts
could be arrested and even reversed by transplantation of a
donor type liver performed up to six days later (164). In
similar rodent models, liver co-transplantation has been
shown to prevent the rejection of skin allografts (159, 173)
and to reverse acute rejection of cardiac allografts (174).
The protective effect of liver allografts may not require
transplantation of the whole organ, as demonstrated by a rat
study in which infusion of donor hepatocytes, but not
hepatic leukocytes, into the portal vein prevented the
rejection of cardiac allografts (175). In the clinical setting,
liver co-transplantation has been shown to have a protective
effect on small bowel (176), heart (177), and combined
heart and lung (178) transplantation. Studies of human liver
transplant recipients have also demonstrated donor-specific
hyporeactivity in vitro. In a series by Reinsmoen et al, such
donor-specific hyporeactivity of recipient lymphocytes was
demonstrated in 40% of patients, a state that correlated with
lower rates of acute rejection (179). A similar study
comparing kidney and liver transplant patients with good
graft function two years post transplantation found donor-
specific hyporesponsiveness in the majority of liver
patients but only a minority of kidney recipients (180).

Several potential mechanisms have been
proposed for the so-called “liver effect”; these are
summarized in figure 3. Some of these phenomena may
provide approaches that could be harnessed to promote
tolerance to other organ allografts.

8.1. Secretion of soluble MHC class I and other
mediators

Given that one of the major functions of the liver
is to synthesize a wide range of proteins and other products,
it has been suggested that it may secrete soluble factors that
have immunomodulatory effects, one such factor being
soluble MHC class I. It has been postulated that donor
MHC molecules secreted into the recipient circulation by
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hepatic allografts may bind to alloantigen-specific T cells,
neutralizing them and thus preventing graft damage. In
addition, soluble class I has also been shown to induce
apoptosis of alloreactive cytotoxic T lymphocytes (181,
182). Such donor MHC class I secretion by liver grafts has
indeed been identified in the rat (183-185) and in humans
(186-188); however, the presence of circulating soluble
MHC does not necessarily imply a causal role in graft
survival. In a study in which donor MHC class I was
administered to rat renal allograft recipients, no effect on
graft survival could be demonstrated (189). However, in
this protocol, donor MHC was administered as a single
bolus injection or as twice weekly injections; this schedule
may be suboptimal since the half life of soluble MHC is
around two hours. Indeed, in a further rat model,
administration of donor class I MHC by continuous
intravenous infusion did lead to prolonged cardiac allograft
survival, even when commenced four days after
transplantation (190), suggesting that soluble MHC may
contribute to the liver effect. Nevertheless, class I secretion
by grafts may not be an absolute requirement for liver
acceptance since liver allografts from mice deficient in
class I still show indefinite survival (160).

In addition to MHC class I, other soluble factors
produced by the liver graft have also been identified that
may play a role in hepatic allograft acceptance. In the rat,
soluble Fas (CD95) and Fas ligand (FasL, CD95L) have
been detected within grafts; it has been proposed that these
serve to prevent apoptosis of parenchymal cells and promote
apoptosis of recipient graft-infiltrating lymphocytes
respectively (167). Other novel proteins have also been
isolated from the serum of tolerant rats (but not recipients of
syngeneic grafts, from strain combinations where livers are
rejected, or from recipients of other solid organ grafts) that are
able to suppress donor-specific mixed lymphocyte responses in
vitro (191, 192). Finally, induction of tolerance by alloantigen
administration into the portal vein has been demonstrated to
lead to the secretion of soluble specific immunosuppressive
factors (193, 194).

8.2. Antigen load
Spontaneous liver allograft survival does not

appear to be due simply to the inability of recipient cells to
react against the graft. For example, in rat models, liver
acceptance is often preceded by self-limiting acute
rejection episodes (161, 167). Similarly, in a mouse
transgenic model where a large proportion of recipient T
cells possess donor-specific T cell receptors, liver allografts
were still spontaneously accepted and, moreover, donor-
reactive T cells divided more vigorously than in recipients
that rejected donor type cardiac allografts (U. Steger and
K.J. Wood, unpublished observations). One explanation
that has been proposed is that the large antigen load
provided by the liver causes “overstimulation” and “clonal
exhaustion” of alloreactive recipient cells (135). In support
of this hypothesis, Sun et al. demonstrated that when two
hearts and a kidney were transplanted into a single rat
recipient all three organs were accepted, whereas
transplantation of each organ separately resulted in
rejection (195). Similarly, in a miniature swine model,
solitary cardiac allografts were rejected, but double cardiac

or combined cardiac and renal allografts were accepted
(196, 197). The protective effect of the large mass of the
liver may not, however, simply be due to immunological
effects: it also provides a greater degree of functional
reserve, allowing the organ to withstand a greater degree of
damage before dysfunction ensues.

8.3. Antigen presentation
In addition to the quantitative differences

outlined above, there are also qualitative differences in
antigen presentation within the liver. Many antigens, both
dietary and microbial, are encountered via the gut, and
inappropriate immune responses to these may result in
undesirable consequences such as food allergy. The
immune system has thus developed mechanisms by which
oral antigen encounter often leads to tolerance rather than
sensitization, the well-recognized phenomenon of “oral
tolerance” (198-201). The liver is known to play an
important role in this process (the majority of blood
draining the gut passes through the portal vein); this was
first demonstrated over thirty years ago by Cantor and
Dumont, who observed that portal-systemic bypass (which
leads to drainage of blood from the gut directly into the
systemic circulation without passing through the liver)
prevented the development of oral tolerance in dogs (198).
Conversely, direct administration of antigen into the portal
vein, which mimics blood drainage from the gut, can result
in the development of tolerance in some rodent models
(175, 193, 194, 202-204).

The importance of active antigen presentation
within the liver in establishing tolerance is demonstrated by
the observation that inhibition of the phagocytic function of
intrahepatic antigen presenting cells prevents tolerance
induction (203, 204). Although macrophage lineage
Kupffer cells reside within the liver and are able to present
antigen, non-bone-marrow-derived liver sinusoidal
endothelial cells (LSEC) have also been shown to be
capable of antigen presentation (205-209). However,
antigen presentation by these LSEC is inefficient in
activating naïve T cells (205) and instead favors tolerance,
with reduced T cell production of IL-2 and IFN-gamma
(202, 209) and impaired deviation towards a Th1
phenotype (207). As described above, intrahepatic antigen
presentation has also been shown to lead to the secretion of
humoral immunosuppressive factors, allowing the adoptive
transfer of tolerance into naïve recipients using serum in a
mouse model (193, 194). Finally, the hepatic
microenvironment is known to be rich in IL-10 and TGF-beta
(210, 211), substances that have been shown to promote the
development of tolerance in certain settings (212-224); in the
case of IL-10, cytokine is not only present at significant levels
within the liver, but release into the systemic circulation has
also been demonstrated following reperfusion of hepatic
allografts (225). There are thus several mechanisms by which
the unique pattern of antigen presentation within the liver may
contribute to the development of tolerance rather than priming
of the immune response.

8.4. Passenger leukocytes, microchimerism, and the
thymus

The liver is rich in passenger leukocytes, and
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Figure 4. Possible factors contributing to the
immunological privilege of orthotopic corneal allografts.
ACAID: anterior chamber-associated immune deviation;
VIP: vasoactive intestinal peptide.

these cells do appear to play an important role in the
development of spontaneous tolerance to hepatic allografts.
In rats, graft depletion of passenger leukocytes prior to
transplantation prevents spontaneous acceptance, but
survival can be restored by reconstitution with donor
leukocytes (105-110). However, as discussed above, in
clinical practice the establishment of full microchimerism,
whereby donor cells are detectable in the recipient
circulation, does not appear to be either necessary or
sufficient for the development of tolerance since some
patients may show long term graft survival in the absence
of microchimerism (94) while others in whom
microchimerism is present may undergo graft rejection (87,
91). Thus the development of microchimerism does not
appear to be the dominant method by which passenger
leukocytes contribute to the development of tolerance to
liver grafts, and other mechanisms are likely to be
involved. One such alternative role for passenger
leukocytes was demonstrated by Bishop et al., where
migration of graft passenger leukocytes to the spleen and
other lymphoid organs was observed following rat liver
transplantation; this was associated with early upregulation
of IL-2 and IFN-gamma mRNA expression in these tissues
(162, 163) and apoptosis of recipient spleen cells (166). In
contrast to this migration of passenger leukocytes to
secondary lymphoid tissues, few such cells migrate to the
thymus following liver transplantation (162, 226), and
recipient thymectomy prior to transplantation does not
prevent graft survival (227). Thus the role of hepatic
passenger leukocytes in establishing tolerance does not
appear to involve central deletion of donor-reactive T cells
(with or without the development of microchimerism), but
is more likely to involve processes within secondary
lymphoid tissues.

8.5. Alloreactive recipient T cells
While intrathymic deletion of alloreactive

recipient T cells does not seem to be required for
spontaneous liver acceptance, such deletion does appear to
occur elsewhere (228). In addition to the death of recipient

cells within secondary lymphoid tissues following
migration of passenger leukocytes, apoptosis of recipient
graft-infiltrating cells has also been demonstrated in rodent
models (165, 229, 230); the expression of FasL by graft
hepatocytes may contribute to this process (167). This
deletion of recipient cells is not confined to small animal
models, but also appears to occur in clinical practice: a
study by de Hann et al. of patients with good graft function
two years after liver transplantation revealed a reduction in
donor-specific cytotoxic T lymphocyte precursor frequency
without a concomitant reduction in helper T lymphocyte
precursor frequency, suggesting deletion of alloreactive
CD8+ cells (231).

In recent years there has been increasing interest
in the role of “regulatory” or “suppressor” T cells in the
maintenance of self-tolerance and in models of
autoimmune disease and transplantation; this area is
discussed in more detail below. The role of such donor-
specific regulatory T cells in spontaneous liver allograft
acceptance has, to date, not been well studied. However,
preliminary data from our own laboratory suggest that in a
mouse model where liver allografts are spontaneously
accepted, CD4+CD25+ cells can be isolated from recipient
spleens ten days post transplantation that are able to
suppress donor-specific responses in vivo (U. Steger, C.I.
Kingsley, M. Karim, and K.J. Wood, unpublished
observations). Similarly, in a recent study by Zhang et al.
using a mouse oral tolerance model, oral antigen feeding
led to the relative expansion of an antigen-specific
CD4+CD25+ population possessing regulatory properties
both in vitro and in vivo (232); Thorstensen et al. have also
demonstrated the generation of CD4+CD25+ cells with
antigen-specific regulatory properties following oral
antigen administration (233).

9. IMMUNOLOGICAL PRIVILEGE

In addition to the liver, a number of other organs
exhibit immune privilege, whereby they are protected from
rejection. The best characterized of these is the eye. In
clinical practice, the one year survival rate for corneal
allografts is as high as 90% despite the use of only limited
topical immunosuppression (234, 235). The privilege of
corneal grafts is related to a combination of factors,
summarized in figure 4, involving both the graft itself and
the graft site, the anterior chamber of the eye. The
importance of the graft site is exemplified by the fact that,
in experimental models, other allogeneic tissues and tumor
grafts transplanted to the anterior chamber also show
enhanced survival; this may partly be a result of limited
lymphatic drainage of the anterior chamber and due to the
local cytokine milieu (236, 237). Within the anterior
chamber of the eye, Th2 cytokines tend to predominate
over Th1 cytokines – so-called “anterior chamber-
associated immune deviation” (ACAID) (236-238); TGF-
beta is also present at significant levels (239). This
deviation promotes graft survival, since corneal allograft
rejection is associated with a Th1 type response, whereas
Th2 cytokines tend to favor acceptance (240-243). The
phenomenon of ACAID appears to be a systemic
phenomenon rather than a purely local one, since it fails to
develop in asplenic mice (240), and systemic IL-10
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blockade inhibits ACAID, whereas IFN-gamma blockade
promotes the process (238). Manipulation of the local
cytokine profile has the potential to affect the outcome of
corneal allografts: transfection of grafts leading to
increased expression of IL-10 prolonged survival in a study
by Klebe et al. (244), although Pleyer et al. failed to
demonstrate any benefit when IL-4 was overexpressed
(245). Further soluble factors that appear to play a role in
ACAID are the neuropeptides vasoactive intestinal peptide
(VIP) and substance P (SP): increased levels of the former
can occur in response to TNF-alpha or exposure to light
and lead to the promotion of ACAID, whereas the latter is
predominantly expressed under conditions of darkness and
appears to inhibit ACAID (246, 247). Consistent with these
observations, TNF-alpha blockade has been shown to
inhibit the development of ACAID (248). However, the
role of TNF-alpha is not clearcut, since in a study by Qian
et al., blockade achieved by topical administration of
soluble TNF-alpha receptor type I promoted the survival of
corneal allografts; this effect was associated with a
reduction in expression of the chemokines RANTES and
MIP-1-beta (249).

The importance of the graft site in corneal
allograft acceptance is underlined by the fact that corneal
allografts transplanted to heterotopic sites in mouse models
are rejected, demonstrating that the grafts themselves are
indeed capable of eliciting a rejection response (250, 251).
Nevertheless, graft factors do play a role in influencing
survival. Firstly, passenger leukocytes appear to have a
negative influence on graft outcome. The cornea normally
carries few Langerhans cells (124-126), and an increase in
the number of these cells is associated with a higher rate of
rejection (127), whereas their depletion promotes graft
survival (128). MHC expression by corneal grafts also has
a bearing on outcome. The cornea expresses class I MHC
(252, 253) at levels sufficient to elicit cytotoxic T
lymphocyte responses in vitro (254), whereas class II is
expressed at lower levels (253). While class I matching has
been shown to improve the outcome of clinical corneal
allografts (255, 256), the effect of class II matching is less
clear in that some studies have demonstrated an improved
outcome with better matched grafts (257), whereas others
have suggested the converse (256, 258).

In addition to the local cytokine environment
within the anterior chamber, the cornea itself may attenuate
the effects of cytokines such as IL-1, a pro-inflammatory
and chemotactic cytokine that is able to recruit Langerhans
cells into the cornea (259). In a mouse system, IL-1
blockade has a beneficial effect on corneal allograft
outcome (260). Furthermore, the importance of IL-1
attenuation may be more than experimental artifact, since
human corneal tissue has been shown to produce soluble
IL-1 receptor antagonist proteins (261). Alterations in the
IL-1 pathway may thus play a genuine role in promoting
corneal allograft survival.

A further important factor that appears to play a
significant role in maintaining immunological privilege
within the eye is the Fas-FasL system. FasL is
constitutively expressed within the anterior chamber of the

eye, including the cornea, leading to Fas-FasL-mediated
apoptosis of infiltrating inflammatory cells and thus
preventing tissue damage (262-265). The consequences of
the loss of this mechanism are demonstrated by gld-
deficient mice, which lack FasL. These animals develop
uncontrolled inflammation within the anterior chamber in
response to herpes simplex virus infection, whereas this
does not occur in normal mice (262, 263). Similarly,
corneal allografts from FasL-deficient mice show a
significantly higher rate of rejection than grafts from
normal mice when transplanted into allogeneic recipients
(264, 265).

From these observations it is likely that the
immunological privilege enjoyed by corneal allografts is
the result of a combination of effects involving both the
graft itself and the transplant site, and that no one factor
alone is responsible for the effect.

A further tissue that exhibits immunological
privilege is the testis. In rodents, rat pancreatic islets are not
rejected when transplanted at low doses into mouse testis
(266). Similarly in mice, testicular allografts transplanted
beneath the renal capsule are accepted whereas pancreatic
islet and thyroid allografts are rejected (267). Further
investigation has revealed that this property appears, at
least in part, to be contained within the Sertoli cell
component of the testis: in mice, Sertoli cells are not
rejected when transplanted alone (267), and in rats, co-
transplantation of Sertoli cells promotes the survival of
pancreatic islet allografts (268). As with the eye, FasL
appears to play a role in this immune privilege. Mouse
Sertoli cells have been shown to express FasL
constitutively, and testicular or Sertoli cell allografts from
FasL-deficient gld mice do not show immunological
privilege and instead undergo rejection (267). However,
care must be taken in extending these observations to man,
since there is evidence in humans that FasL is not
expressed constitutively in the testis (269).

10. FASL EXPRESSION AND OTHER TISSUES

In general, the Fas-FasL system plays an
important role in controlling lymphocyte homeostasis, as
exemplified by the fact that both Fas-deficient lpr and
FasL-deficient gld mice show defective activation-induced
death of both T and B lymphocytes (270, 271) and develop
splenomegaly, lymphadenopathy, and fatal autoimmune
disease (272). Similarly, this system has also been
implicated in the evasion of immune surveillance by
tumors, since FasL expression by tumors has been shown to
cause apoptosis of infiltrating cytotoxic T lymphocytes,
thus promoting tumor survival: such FasL expression has
been demonstrated in examples of human hepatocellular
carcinoma (273), colonic carcinoma (274), and melanoma
(275). While the evidence discussed above from studies on
the liver, eye, and testis suggest that FasL expression by
transplanted tissues may be beneficial in promoting graft
survival, the situation is not entirely straightforward, since
FasL expression may also have adverse consequences.
Kang et al. and Allison et al. have both observed that
induction of expression of FasL by pancreatic allografts
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fails to lead to survival when transplanted into allogeneic
hosts, but rather leads to accelerated rejection; moreover,
transgenic animals that constitutively express FasL on
pancreatic islets develop inflammatory infiltrates within the
pancreas and diabetes at a young age (276, 277). Similar
results have been demonstrated in a mouse cardiac allograft
model, where Takeuchi et al. found that transplantation of
transgenic grafts expressing FasL into allogeneic or even
syngeneic recipients resulted in the development of severe
hemorrhage, edema, and neutrophil infiltration within the
graft; in the allogeneic recipients, these histological
changes and the tempo of graft rejection were more severe
than when using grafts from wild type donors (278). Even
in a study by Judge et al. where adenovirally-mediated
induction of FasL expression on pancreatic islet allografts
led to apoptosis of Fas+ cells and the FasL-bearing
adenoviral vector was able to suppress mixed lymphocyte
responses in vitro, these benefits failed to translate to
prolongation of islet allografts in vivo (279). Taken
together, these studies suggest that FasL may have other
effects such as a pro-inflammatory role, particularly in the
setting of ischemia-reperfusion injury.

To balance these negative observations, there
have also been studies suggesting that FasL expression may
play a useful role in promoting graft survival. Lau et al.
found that survival of mouse pancreatic islet allografts
could be prolonged by co-transplantation within composite
grafts also containing myoblasts transfected to express
FasL, whereas myoblasts that were either untransfected or
transfected to express Fas did not offer this protection
(280). However, other groups have been unable to
reproduce these findings (281, 282). In a rat renal allograft
model, Swenson et al. showed that transient transfection of
donor kidneys using a FasL-expressing adenoviral vector
led to detectable FasL expression within the graft for two
weeks, and prolongation of graft survival to 27.8 days
compared to 11.6 days in control animals (283). A
potentially beneficial role for FasL expression has also
been demonstrated in a clinical study of renal transplant
recipients by Porter et al, who.observed that FasL
expression within the graft prior to transplantation was
associated with a reduced risk of acute rejection (284).
Protocols aimed at inducing FasL expression by grafts may
thus provide a useful strategy in attempts to achieve
operational tolerance, but must be evaluated carefully in
view of the potential adverse consequences.

11. IMMUNOREGULATION, INFECTIOUS TOLERANCE,
AND LINKED EPITOPE SUPPRESSION

Several mechanisms contribute to the
maintenance of self tolerance by the immune system. These
include central deletion of autoreactive T cells during
thymic development (285, 286), peripheral deletion of
autoreactive T cells (287, 288), ignorance of autoantigens
to which the immune system is not normally exposed (289,
290), induction of anergy of autoreactive T cells (291, 292),
and active suppression by antigen-specific regulatory T cell
populations (293-296). It may equally be possible to
harness these mechanisms for the induction of tolerance to
allografts. The potential roles of central and peripheral

deletion have already been discussed. Immunological
ignorance of the graft has been shown to promote survival,
as exemplified by a study by Lakkis et al. where mice
lacking secondary lymphoid organs permanently accepted
cardiac allografts (297). This mechanism may also be
exploited in the clinical setting: the novel
immunosuppressive agent FTY720 partly exerts its effects
by altering lymphocyte trafficking leading to sequestration
within secondary lymphoid organs and thus potentially
maintaining immunological ignorance by preventing
lymphocyte circulation through the graft (298, 299).
Anergy has been shown to contribute to the induction of
tolerance in a number of experimental systems: for
example, in a rat renal allograft model, Sayegh et al. have
demonstrated that anergy may contribute to tolerance
induced by intrathymic alloantigen administration (155),
and Gao et al. have shown that administration of allogeneic
splenocytes to mice in the neonatal period leads to anergy
of alloreactive CD8+ cells and the acceptance of donor-
specific skin grafts (300).

Following the increased attention in recent years
focused on the identification and characterization of
suppressor or regulatory T cells, it has become apparent
that they may play a useful role in achieving allograft
tolerance. This is exemplified by the ability of the adoptive
transfer of spleen cells, CD4+ cells, or CD4+ cell subsets
from tolerant animals to suppress donor-specific graft
rejection in secondary recipients in rat (301-304) and
mouse (222, 305-307) models. In a clinical study of
patients who had long term surviving liver and kidney
allografts but were off immunosuppressive therapy, van
Buskirk et al. demonstrated the presence of cells capable of
suppressing donor-specific responses in vitro (308). Further
evidence for the existence of active regulatory mechanisms
in transplantation settings is provided by the phenomenon
of infectious tolerance, first described by Waldmann’s
group, whereby regulatory cells are not only able to
suppress alloantigen-specific responses by naïve recipient
lymphocytes, but also to convert these recipient cells to a
regulatory phenotype (307, 309, 310).

In common with other T cell populations,
regulatory cells express antigen-specific T cell receptors
and require activation through these receptors in order to
exert their suppressive activity. However, prevention of
graft rejection does not necessarily require the presence
different regulatory cell populations specific for the whole
range of alloantigens expressed by the graft: in certain
experimental models, induction of tolerance to a single
alloantigen is sufficient to allow the acceptance of grafts
also expressing other alloantigens, the phenomenon of so-
called “linked epitope suppression” (70, 307, 311). This
may be explicable by the observation that in vitro, although
regulatory cells require antigen-specific activation through
their T cell receptor in order to act, once activated in this
way they are able to suppress responses in a non-antigen-
specific manner (312, 313). Thus, activation in vivo of
regulatory cells specific for a single graft alloantigen (or a
subset of such antigens) may be sufficient to suppress
rejection of the graft by regulating the activity of effector
cells present in the local microenvironment that are specific
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Table 1. Examples of studies using gene therapy to modify grafts
Model Modification Outcome Reference
Rat hepatic allografts FasL expression Graft survival prolonged 322
Rat renal allografts FasL expression Graft survival prolonged 283
Mouse cardiac allografts FasL expression Graft rejection accelerated 278
Mouse pancreatic islet allografts FasL expression Grafts rejected 276
Mouse pancreatic islet allografts FasL expression Grafts rejected 277
Mouse pancreatic islet allografts FasL expression Grafts rejected 279
Mouse pancreatic islet allografts Co-transplantation of myoblasts

expressing FasL
Graft survival prolonged 280

Mouse pancreatic islet allografts Co-transplantation of myoblasts
expressing FasL

Graft rejection accelerated 281, 282

Rat to mouse pancreatic islet
xenografts

FasL expression Graft survival prolonged 323

Rat hepatic allografts CTLA-4-Ig expression Graft survival prolonged 324
Rat pancreatic islet allografts CTLA-4-Ig expression Graft survival prolonged 325
Rat pancreaticoduodenal allografts CTLA-4-Ig expression Graft survival prolonged 326
Mouse cardiac allografts CTLA-4-Ig expression Graft survival prolonged 327
Mouse pancreatic islet allografts CTLA-4-Ig expression Graft survival prolonged 328
Rat to mouse pancreatic islet
xenografts

CTLA-4-Ig expression Graft survival prolonged 323

Rat cardiac allografts IL-4 expression No benefit 329
Rat corneal allografts IL-4 expression No benefit 245
Mouse cardiac allografts IL-10 expression Graft survival prolonged 330-332
Sheep corneal allografts IL-10 expression Graft survival prolonged 244
Mouse cardiac allografts TGF-beta expression Graft survival prolonged 213, 330
Rat cardiac allografts Inducible nitric oxide synthase

expression
Reduced graft vasculopathy 333

Rat cardiac allografts ICAM-1 antisense oligonucleotide
expression

Reduced graft vasculopathy 334

for other graft antigens. Linked epitope suppression may help
to explain the clinical observation that cadaveric renal
transplant recipients who have received blood transfusions
prior to transplantation show enhanced overall graft
survival, and that this beneficial effect is augmented as the
number of transfusions is increased, the so-called “transfusion
effect” (314-318).

In common with autoimmune disease models,
regulatory cells capable of suppressing allograft rejection have
been shown to lie predominantly within the CD4+ population
(301, 302, 307, 309, 310), with the CD45RBlow (in the mouse)
(222, 319) and CD25+ (222, 303, 320) subfractions being
further enriched for regulatory activity. While these studies
isolated regulatory cells from animals that had previously
received grafts, data from our own laboratory have
demonstrated that treatment of mice with allogeneic blood
transfusion under the cover of anti-CD4 antibody generates
CD4+CD25+ regulatory cells that are able to suppress the
rejection of donor-specific skin allografts (321); similarly,
other studies have shown that CD4+CD25+ regulatory cells
may be generated following oral antigen administration (232,
233). It is thus likely that strategies will be developed that
promote the development of regulatory cells in clinical
transplant recipients that will contribute to enhanced graft
survival, either alone or as an adjunct to other therapies.

12. GRAFT MODIFICATION

Given that there are mechanisms by which
allografts can play a role in establishing tolerance, attempts

have not surprisingly been made to exploit these
mechanisms. One such strategy is the use of gene therapy
to modify grafts to increase the efficiency of tolerance
induction. Examples of some approaches that have been
attempted to date are shown in table 1. These studies have
resulted in mixed outcomes: expression of CTLA-4-Ig, IL-
10, and TGF-beta has been successful in promoting graft
survival, while a beneficial role of IL-4 expression has yet
to be demonstrated. As discussed above, expression of
FasL has led to an improvement in graft outcome in some
settings but a deterioration in others. Despite these mixed
results, these observations, together with improvements in
technology for gene delivery and expression, suggest that
graft modification by means of gene therapy may provide a
promising strategy for the future.

13. PERSPECTIVE

Attempts to reduce the reliance of clinical organ
transplantation on non-specific immunosuppressive therapy
are likely to require a shift away from the paradigm of the
use of drugs to prevent T cell activation and towards
strategies where the active acquisition of tolerance is
facilitated. There is now mounting evidence that the graft
itself may make a major contribution to this process, for
example by presenting donor antigen under specific
conditions throughout the post-transplant course. A fuller
understanding of the mechanisms involved may allow the
development of strategies to promote the induction of
tolerance rather than graft rejection. It is likely that no



The graft role in establishing tolerance

140

single such strategy will be sufficient to achieve this, but
that a combination of approaches may allow the field of
transplantation research to advance one step closer towards
the holy grail of allograft-specific immunosuppression.
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