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1. ABSTRACT

Activated macrophages are a critical component
of our antimicrobial armamentarium. Unfortunately, the
lipid mediators and free radicals that these cells produce are
not only toxic to potential pathogens, but also to the host.
Thus the modulation of these activities can mitigate an
overzealous immune response and thereby prevent host cell
injury. Two families of receptor tyrosine kinases (RTK) in
macrophages, the RON/STK and the Tyro3 families of
protein kinases, will be examined in this review with an
emphasis on their roles in modulating the effector functions
of activated macrophages. Both families of receptors are
capable of down-regulating the inflammatory response of
macrophages to lipopolysaccharide, and both families of
RTK’s are structurally related. An analysis of the

intracellular domains of RON/STK and Tyro3 reveal a
common multi-substrate binding site, which can recruit
common signaling molecules such as growth factor
receptor bound 2 (Grb2) and phosphatidylinositol 3-kinase
(PI3-K). The observations relating to a modulation of
macrophage effector mechanisms by these receptors open
unexplored avenues for the development of
pharmacological immunomodulators with the potential to
exploit elements of this common pathway.

2. INTRODUCTION- MACROPHAGE ACTIVATION

Tyrosine phosphorylation events play a central
role in macrophage activation. The fundamental importance
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of protein tyrosine kinases in macrophage activation and
inflammation was definitively shown in the mid 1990’s
when tyrosine kinase inhibitors were reported to inhibit
LPS-induced lethality, as well as diminish the production
of tumor necrosis factor-alpha (TNF-alpha) and nitric oxide
(NO) by LPS-stimulated macrophages (1). Macrophage
activation is a process, which requires the coordinate action
of two signals, a priming signal followed by a stimulatory
signal. The priming signal is invariably IFN-gamma and
the stimulatory signal can be any number of microbially
derived molecules interacting with one of the macrophage
Toll-like receptors (TLR) (2). Studies to determine the
pathway of macrophage priming by IFN-gamma, and the
role of tyrosine phosphorylation in this process have been
well-documented and summarized previously (3;4).
Briefly, these studies have definitively identified the Janus
family of tyrosine kinases to be an integral participant in
IFN-gamma signaling. This is now a well-established
signaling pathway, in which JAK kinases activate STAT
transcription factors (5), which in turn activate IFN-
gamma-inducible genes (6).

 The second stimulatory signal is transduced to
macrophages via the TLRs. This pathway of signal
transduction from TLRs is the subject of much on-going
investigation (2). Serine/threonine kinases have figured far
more prominently in TLR-dependent cellular stimulation
than do tyrosine kinases. In this pathway, TLR activation
results in a cascade of serine/threonine kinase events
culminating in the activation of NF-kappaB (6). Thus,
macrophage activation involves the coordinate activation of
both serine/threonine kinases from the TLRs and tyrosine
kinases from the IFN-gamma receptor. Recent work
suggests that TLR-4, the receptor for LPS, may activate
additional signaling pathways, which results in STAT-1
activation via a pathway involving tyrosine
phosphorylation. This second pathway of STAT-1
activation via TLR4 may explain the increased toxicity of
LPS relative to agonists of other TLRs.

The role of Src and Syk non-receptor tyrosine
kinases in macrophage activation responses remains
somewhat controversial. Although several studies have
indicated that inhibitors of tyrosine phosphorylation can
diminish cellular responses to LPS (7-9),  macrophages
from mice lacking hck, fgr, and lyn, the three src family
kinases commonly expressed in macrophages, were fully
capable of becoming activated (10). Similarly,
macrophages from syk-deficient mice became activated and
responded to LPS by producing relatively normal levels of
NO (11;12).

Two new families of receptor tyrosine kinases
have recently been associated with macrophage activation.
These are the RON/STK and the Tyro3 families of the
receptor tyrosine kinases. Paradoxically these tyrosine
kinases appear to inhibit macrophage activation events and
function as physiological safeguards against
hyperactivation of macrophages. This review will focus on
the RON/STK and Tyro3 families of receptor tyrosine
kinases as potential inhibitors of macrophage activation.

3. RON/STK

3.1. Identification of the receptor and its ligand
In 1978 Leonard and Skeel isolated macrophage

stimulating protein (MSP) from human serum (13). When
added to resident macrophages, this protein enhanced the
phagocytosis of complement-opsonized erythrocytes and
induced cell chemotaxis. This early observation suggested
that macrophages express a receptor for MSP that could
influence effector functions of monocytic cells. The
receptor was later identified by screening of cDNA libraries
of human keratinocytes with a hallmark motif for protein
tyrosine kinases and referred to as recepteur d’origine
nantais (RON) (14). One year later an independent group
performed RT-PCR analysis of hematopoietic stem cells
and identified a stem cell-derived tyrosine kinase (STK).
This proved to be the murine homologue to RON (15).
Thus far, the only ligand identified for these two receptors
is MSP-1 (sometimes referred to as HGFL), and
consequently for the purpose of this review, RON/STK will
be considered as one.

RON/STK is expressed to variable degrees in
macrophages and macrophage-like cells. The degree of
expression depends on the cell type and the differentiative
state of the cell. The receptor was detected in peritoneal
and dermal macrophages as well as osteoclasts, however
alveolar macrophages, spleen macrophages and blood
monocytes express little or no RON/STK (16-18). Receptor
expression appears to be dependent on the differention
stage of the monocytic cell (16), and maturity of peritoneal
macrophages correlates with an up-regulation of RON. In
the adult mouse RON/STK is expressed in many organs
(16;19-21). During embryogenesis, the receptor is involved
in the development of epithelial, bone and neuro-endocrine
tissues (22) and deletion of RON/STK has proven to be
lethal for murine embryos (23).

3.2. The structure of RON/STK
Structurally, RON/STK exhibits features that are

common to other RTK’s (Figure 1). Several specific
features place RON/STK in the MET proto-oncogene
super-family (24) of receptor tyrosine kinases. (i) RON is
translated as a single precursor, which forms the mature
disulfide-linked 185 kDa heterodimer after proteolytic
cleavage (19;25). Both of the extracellular subunits
combine to form the ligand-binding domain. (ii) Tyrosine
residues 1238 and 1239 of the beta chain constitute the
typical neighboring tyrosine residues in the catalytic
domain, responsible for the regulation of the enzymatic
activity after autophosphorylation (26). The 35-kDa alpha
chain has no intrinsic kinase activity (19). (iii) The tyrosine
residues at 1353 and 1360 of the beta chain provide a
functional bidentate docking site in the C-terminal tail for
high affinity interactions with src homology 2 (SH2)
modules of other signaling proteins (27), such as growth
factor receptor bound 2 (Grb2) or phosphatidylinositol 3-
kinase (PI3-K). Although RON/STK shares these common
features with the MET proto-oncogene super-family, the
unique C-terminal tail of this molecule is divergent enough
to characterize RON as a new member of a separate
(sub)family, RON/STK (14;15;28-30).



Modulation of macrophage activation by tyrosine phosphorylation

1496

Figure 1. Diagrammatic illustration of structural elements of the human RON receptor tyrosine kinase. The single precursor
protein with its signal peptide is processed to the bipartite RON receptor with its extracellular alpha chain covalently linked by
disulfide bonds (S-S) to the signal transducing beta chain. The beta chain is divided into an extracellular, transmembrane (tm)
and an intracellular domain. RON contains two juxtaposed tyrosine residues at position 1238 and 1239 respectively (Y-Y) in the
kinase domain of the beta chain. A carboxy-terminal docking site for multiple substrates with src homology 2 (SH2) domains is
composed of two phosphorylation sites for tyrosine at positions 1353 and 1360. Signaling proteins with SH2 moieties, such as the
adaptor molecule growth factor receptor-bound 2 (Grb2), were found to be recruited to the multiple substrate-docking site
(triangle). The inset depicts the chromosomal localization (3p21) of the human RON gene provided by courtesy of Online
Mendelian Inheritance in Man (http://www.ncbi.nlm.nih.gov/omim/). References (19), (25), (27), (81), and (82).

3.3. The biological activity of RON/STK
As the name of its ligand, MSP-1, would imply,

RON/STK was originally identified as a positive regulator
of macrophage responsiveness. Indeed, the original studies
of MSP demonstrated that it could not only improve C5a-
mediated chemotaxis of monocytic cells, but also act as
chemoattractant itself (31). MSP was also shown to
stimulate the phagocytosis of C3bi-opsonized erythrocytes
(32;33), and induce the expression of macrophage
scavenger receptors, resulting in an increase in the
endocytosis of LDL (34). More recent work, however has
demonstrated that RON/STK can modulate macrophage
activation, and inhibit some of the activities typically
associated with activated macrophages. The best evidence
for this is that mice heterozygous for RON (35) or mice
expressing a tyrosine kinase domain defective form of
RON (36) were more sensitive to letal endotoxemia than
were wild-type mice. These mice also experienced
enhanced irritation to phenols and enhanced tissue damage
during cell-mediated inflammatory responses (36).
Consistent with these in vivo observations is the in vitro
demonstration that the ligation of STK/RON inhibited the
secretion of TNF-alpha by macrophages, and down-
regulated the expression of iNOS, decreasing the
production of NO (36-40). RON/STK protects murine
macrophages against LPS-induced apoptosis by decreasing
endogenous nitric oxide (NO) production and preventing
the nuclear accumulation of p53 (41).

Interesting recent data have suggested that the
stimulation of macrophages by MSP can induce a
population of macrophages with properties that are similar
to those of an alternatively activated macrophage (42).
MSP treatment of macrophages not only inhibited the
production of (proinflammatory) TNF- alpha, IL-12 and
NO, but it also up-regulated several genes that are typically
associated with alternative activation, including arginase,
the scavenger receptor type A (SR-A), and the IL-1R
antagonist (IL-Ra) (42;43). These intriguing observations

suggest that this receptor and the signals emanating from it
upon ligation lead to the development of a macrophage
phenotype involved in wound healing rather than in killing
microbes and mediating inflammation.

4. TYRO3 FAMILY OF RTK

4.1. Identification of the receptor and its ligand
A related family of RTK called the Tyro3 family

is also expressed on macrophages. These receptors were
discovered around the time that MSP was identified, their
signaling appears to be analogous to the RON/STK
receptor signaling pathway, and they modulate macrophage
activation in ways that are similar to RON/STK. The first
member of this family was initially isolated from cells of
leukemia patients (44) in 1991. It was called Axl, but it has
also been referred to as Ufo (45), Ark (adhesion-related
kinase) (46) and Tyro 7 (47). Two additional members of
the family have been identified, and designated Tyro3 and
Mer (or Nyk). Tyro3 was discovered during a search for
protein tyrosine kinases expressed in the central nervous
system (47;48). Other names for Tyro3 include Brt (49),
Etk (50), Rse (51), Tif (52), Dtk, Rek (53) and Sky (54).
Mer is the third member of this family. It was originally
described in the murine system and designated as Nyk (55).
The extracellular domain of Mer exhibited sequence
similarity to the c-MET receptor tyrosine kinase
superfamily.

The ligand for all three Tyro3 family members is
Gas6, a term derived from the growth arrest-specific gene 6
(56-58). Gas6 is expressed in a variety of tissues including
lung, intestine, endothelium, bone marrow, spleen, central
nervous system and other tissues (59-61). Gas6 is
comprised of five domains: the gamma-carboxyglutamaic
acid (Gla) residues, a loop region, a stretch with four
epidermal growth factor (EGF)-like repeats, and two
globular (G) domains at the carboxy terminus. The Gla
domain of Gas6 binds phosphatidyl serine on apoptotic
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Figure 2. Characteristic structure of Tyro3 receptor tyrosine kinases. Depicted is the prototypic structure of Mer (Nyk). The
extracellular ligand-binding domain region is composed of two immunoglobulin-like motifs (Ig) followed by two fibronectin type
III motifs (FN III). The intracellular kinase domain contains triplicate tyrosine residues Y749, Y753, Y754 that are
autophosphorylatyed after ligand binding. The carboxy-terminal multi-substrate binding comprises additional tyrosine residues
that transduce the signal through SH2 domains of Grb2 and PI3-K. References (53;70;71).

cells and opsonizes them for uptake by macrophages via
Tyro3 family members (62). The G domains of Gas6 are
sufficient for binding to Tyro3 kinases. These domains
display some homology to the steroid hormone-binding
globulin protein (SHBG) (63).

Members of the Tyro3 family are expressed in a
variety of tissues and cell types. Tyro3 kinases could be
detected in many organs including kidney, liver, brain,
spleen, bone marrow (64), testis (Tif (52)), ovaries, retina
(Rek (53)) and the central nervous system (48;49). Mer is
not only produced in adult tissue, but also during the
morula, blastocyst, yolk sac and fetal liver stages. At least
two and possibly all three of the Tyro3 members are
expressed on monocytes, and treatment of these cells with
phorbol ester or IFN-gamma invariably resulted in the up-
regulation of their expression (65-67).

4.2. Structure of Tyro3 kinases
The Tyro3 family displays structural elements

that are unique to the Tyro3 family, as well as common
structural elements that indicate their relationship to the
MET proto-oncogene superfamily (Figure 2). The unique
features of the Tyro3 RTK family are: (i) the extracellular
moiety, which includes two immunoglobulin like domains
adjacent to two fibronectin type III-like domains
(66;68;69); (ii) the KWIAIE(S) motif of the tyrosine kinase
domain; (iii) the three functional autophosphorylation sites
(Tyr-749, Tyr-753, Tyr754) of the kinase domain (70). At
least two other shared characteristics of the Tyro3 members
suggest a relationship to the MET proto-oncogene
superfamily. The extracellular domain of Nyk (Mer) was
reported to be similar to the MET superfamily (55). The
multi-substrate binding site for PLC-gamma, PI3-K, Grb2,
Src and Lck (71;72) constitutes the second characteristic
feature which can also be found in the MET proto-
oncogene family.

4.3. The biological activity of Tyro 3 in macrophages
There are several reports indicating an

involvement of Tyro/Axl/Mer kinases in the effector
functions of macrophages (62;73-75). Knockout mice
lacking any one or, for that matter, all three of the Tyro3
family members are still viable. Using knockout mice it
was recently demonstrated that Mer contributes to the
down-regulation of the inflammatory response of
macrophages to LPS. A recent comparison of wild-type with
Mer-deficient cells showed a dramatic increase of the
production of TNF-alpha and IL-1 after LPS challenge of
peritoneal macrophages deficient in Mer (73). Furthermore, the
elevation of TNF protein and mRNA correlated with an
increased binding of NF-kappaB p50 and p65 to the κ3 region
of the TNF-alpha promoter. Peritoneal macrophages from
triple mutant mice deficient in Tyro3, Axl and Mer displayed
an elevated constitutive production of IL-12 as well as an
inducible overproduction of IL-12 relative to wild-type cells
(74). These findings indicate that Tyro3 members down-
regulate the production of TNF-alpha, IL-1 and IL-12, three
macrophage proteins that are typically secreted by classically
activated macrophages.

The function of macrophages as antigen-presenting
cells may also by negatively influenced by the Tyro3 family.
Peritoneal macrophages of triple mutant mice deficient in
Tyro3, Axl and Mer constitutively express higher levels of
MHC class II molecules than did wild-type macrophages.
Macrophages from deficient mice were slightly more
phagocytic than normal, and dendritic cells from deficient
mice could be induced to overexpress B7.2, suggesting a role
for these RTKs in dampening the initial phases of an adaptive
immune response.

4.4. RON dependent signaling in macrophages
Signaling through both families of RTK’s is similar.

Consequently, we will illustrate the salient points of this
cascade using RON, the system that has been most thoroughly
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Figure 3. Model of RON/STK dependent signaling in macrophages. The binding of MSP to the heterodimeric receptor RON
results in autophosphorylation of two tyrosine residues of the beta chain. As a consequence, cytoplasmic complexes of growth
factor receptor bound 2 (Grb2) and Sos are recruited to the docking site of RON where they convert Ras-GDP into its active
form. This leads to the activation of phosphatidylinositol 3-kinase (PI3-K) which affects phagocytosis, cell shape, and
chemotaxis. The inhibition of the nuclear translocation of NF-kappaB prevents the transcription of the interferon regulatory
factor 1 (IRF-1) as well as the inducible nitric oxide synthase (iNOS). Conversely, macrophage activation leads to the expression
of iNOS and production of nitric oxide (NO) which prevents the transcription of the gene for RON (ron). Signaling via RON up-
regulates scavenger receptor type A (SR-A) expression and provides a secondary signal required for the phagocytosis via
complement receptors (CR3). Further details are discussed in the text.

studied. The proximal signaling down-stream of RON was
investigated with cells, which were transfected with RON (76).
This approach revealed the involvement of Grb2, Sos and Ras
(76). A ligand-dependent association between Grb2 and the
beta-chain of RON was established. Furthermore, Grb2 was
immunoprecipitated with Sos in MSP-1-stimulated cells.
Finally, MSP initiated the guanine exchange activity of Sos,
which converted Ras-GDP to active Ras-GTP measured by the
release of 3H-labeled GDP. The two functional tyrosine
residues at 1353 and 1360 of the bidentate docking site in the
C-terminal tail of the beta chain allow the recruitment of
signaling proteins with SH2 modules (27). Most of the
experimental evidence indicates that PI3-K is down-stream of
this signaling cascade. Co-immunoprecipitation experiments
detected the binding of PLC-gamma, the p85 subunit of PI3-K,
Shc and Grb2 at Y1353 and Y1360 (77). Furthermore, the
inhibition of PI3-K by either wortmannin or a dominant-
negative PI3-K blocked all down-stream effects of RON/STK
activity. These treatments impaired the STK-mediated
suppression of the NO production and iNOS expression (39),
the chemotactic response to MSP-1 (78), the protection against
apoptosis by decreasing nuclear accumulation of p53 (41), and

the MSP-induced shape change in murine resident
peritoneal macrophages (78). From these observations a
model of signaling arises in which Sos–Gbr2 is recruited
to the multiple substrate binding-site of the RON beta
chain, followed by Ras and PI3-K activation (Figure 3).
The activation of PI3-K following receptor ligation may
explain the inhibition of apoptosis associated with
RON/STK, as well as the enhancement of phagocytosis.
Previous studies in different experimental systems have
demonstrated that both of these processes are mediated
by PI3-K.

In 2001 a noteworthy structural feature of the
Tyro3 family was proposed (74) whose functional
importance is yet to be elucidated. Tyro3 receptors may
have an immunoreceptor tyrosine-based inhibitory motif
(ITIM) in their cytoplasmic domain. The motif is not truly
a consensus sequence but does have a charged amino acid
at position 2 (79). The question remains unanswered
whether this non-classical ITIM domain actually recruits
phosphatases and contributes to the down-regulatory
activities of Tyro3 RTKs.
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An interesting feedback inhibition loop has been
described between RON/STK and iNOS (Fig.3). On one
hand, RON/STK activity decreases iNOS expression. On
the other hand, the production of NO can down-regulate the
expression of RON/STK. The suppression of iNOS by
RON/STK appears to be associated with a reduced nuclear
translocation of NF-kappaB (40) following receptor
ligation. This is consistent with the observed decrease in
the activity of an NF-kappaB reporter gene following
receptor ligation. The down-regulation of RON expression
following macrophage activation by IFN-gamma and TNF-
alpha could be mimicked by treating cells with NO donors
GSNO or SNAP. The decrease of RON/STK expression
occurs at the level of transcription as demonstrated by RT-
PCR mRNA analysis and reporter gene constructs driven
by the RON promoter (80). In conclusion, iNOS expression
by inflammatory stimuli suppresses RON synthesis via NO.
These effects are counterbalanced by RON signaling which
inhibits iNOS expression by a negative regulation of NF-
kappaB.

4.5. Similarities between RON/STK and Tyro3 kinases
in macrophages

Comparison of both RTK families indicates a
number of similarities with regard to their biological effects
in macrophages. These effects coincide with structural
similarities shared between the two families and with
parallels in signaling molecules induced by both families of
receptors. The ligation of both receptors modulates the
activation of macrophages by LPS, resulting in decreased
inflammatory cytokine production. This modulation of
macrophage activation may be the most important
observation made pertaining to these receptors because it
has the potential to lead to novel anti-inflammatory
therapeutics based on these receptors and their signaling
molecules. However, this modulation is not the only shared
biological consequence of receptor ligation. Both families
of receptors are able to enhance some aspects of
macrophage phagocytosis, and both families contribute to
monocyte chemotaxis. Finally, both families appear to
mediate anti-apoptotic effects. The commonality of these
biological effects may be traced to structural similarities in
the docking site for multiple signaling molecules in the
cytoplasmic part of these receptors. In conclusion, a
comparison between the two families of receptor tyrosine
kinases RON/STK and Tyro3 indicates similar biological
activities due to a prototypic signaling pathway in
macrophages involving the motif of a bidentate multi-
substrate docking site of RTKs, recruitment of SH2
molecules like Grb2, activation of PI3-kinase and down-
regulation of NF-kappaB activity.
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