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1. ABSTRACT

Kaposi’s sarcoma(KS)-associated herpes virus
(KSHV) or human herpesvirus 8 (HHV-8) is highly
associated with KS, primary effusion lymphoma (PEL), and
multicentric Castleman’s disease, an aggressive
lymphoproliferative  disorder (1-3).  Most tumor cells are
latently infected with KSHV in which a small subset of
viral genes are expressed (4-6).  Of these latently expressed
genes, the latency-associated nuclear antigen (LANA1,
LNA, or LNA1) is the only protein consistently shown to
be highly expressed by in situ hybridization and
immunohistochemistry (7-10).  In the past few years
multiple functions have been demonstrated for LANA1.
Here we review LANA1’s roles in KSHV infection.
Topics discussed include LANA1’s roles in episome
persistence, regulation of transcription and interaction with
cellular proteins.

2. LANA1 AND EPIDEMIOLOGY

LANA1 was initially detected as punctate nuclear
staining by indirect immunofluorescence microscopy
performed on KSHV infected PEL cell lines using serum
from KSHV infected individuals (8, 11).  Subsequently,
base-line anti-LANA1 reactivity was used as a marker for
KSHV infection (8, 12).  Work with the anti-LANA1 assay
in a clinic-based population found an HHV-8
seroprevalence of 27 percent in homosexual or bisexual

men (8).  Similar estimates have been obtained with other
serologic assays that measure antibodies to lytic-phase viral
antigens (11, 13).  After the KSHV genome was sequenced,
LANA1 was mapped to KSHV ORF73 (9, 10, 14).

3. TRANSCRIPTION AND SEQUENCE

LANA1 is expressed from a polycistronic
message which also contains ORF 71 (v-FLIP) and ORF72
(v-cyclin), both of which are downstream of ORF73 (10,
15, 16).  The LANA1 message is spliced once upstream of
ORF73, although an unspliced message has also been
described (15).  Potential transcription factor binding sites
for SP-1, IRF 1, IRF 2 and c-myc are upstream of the
transcription initiation site (15, 16).  Reporter assays in 293
and BJAB cells showed robust activation using the ORF 73
promoter (15, 16). ORF 73 promoter sequence was
furthermore subject to cell cycle regulation, although
whether this phenomenon is a result of the presence of v-
cyclin on the same transcript remains to be determined
(16).

KSHV ORF 73 encodes a protein of variable size
in different viral isolates. LANA1 encodes an N-terminal
proline rich domain, an internal glutamine rich and acidic
repeat domain followed by a leucine zipper motif (Figure
1) (17, 18).  The number of repeat elements can vary
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Figure 1. Schematic diagram of LANA1.  Numbers denote
the amino acids (aa).  Proline rich domain (P) (aa 60-260);
aspartic acid, glutamic acid repeat region (DE) (aa 330-
430); glutamine, glutamic acid and proline rich repeats
(QEP) (aa 440-550); glutamine, arginine, glutamic acid and
proline rich repeats (QREP) (aa 550-595); glutamine,
aspartic acid and glutamic acid rich repeats (QDE) (aa 595-
750); leucine zipper (LZ) (aa 770-840).

between KSHV isolates, and accounts for the different
LANA1 sizes (19).  However, within any one isolate, the
number of repeats remains stable, during both lytic and
latent infection.

4. LANA1 EXPRESSION IN KS, PEL, AND
MULTICASTLEMAN’S DISEASE

LANA1 is expressed in KS, multicentric
Castleman’s disease, and primary effusion lymphoma
(PEL)  In KS, LANA1 is expressed in the spindle cells in
early patch and plaque stages as well as the advanced
nodular stage (7, 10, 20, 21).  These results suggest a role
for KSHV in the early pathogenesis of KS development.  In
multicentric Castleman’s disease, LANA1 is expressed in
the mantle zone of lymph node follicles in large
immunoblastic B cells (7).  LANA1 is also expressed in
primary PEL cells as well as PEL cell lines (7, 22).

5. LANA1 SHARES HOMOLOGY WITH ORF 73’S
OF OTHER GAMMA-2 HERPESVIRUSES

LANA1 is homologous to ORF 73s of other
gamma-2 herpesviruses (17, 18, 23) but ORF 73’s of other
gamma-2 herpesviruses vary in the regions of homology
that they share with KSHV LANA1.  For instance, rhesus
rhadinovirus (RRV) ORF 73 (447 aa), (24, 25) and murine
herpesvirus 68 (MHV 68) ORF 73 (314 aa) (23) both have
an N-terminal proline rich domain similar to LANA1, but
this domain is absent in herpesvirus saimiri (HVS) ORF 73
(407 aa) (26).  HVS ORF73, unlike RRV or MHV 68 ORF
73, has a repeat region rich in glutamic acid.  However all
the viral ORF73s share homology at their C-termini which
suggests conserved function(s) for this domain.

6. LANA1 SUBCELLULAR LOCALIZATION

Detailed analyses of the subcellular distribution
of LANA1 have been performed by confocal microscopy.
Three-dimensional computer controlled wide field
epifluorescence microscopy demonstrated that LANA1
resides in irregularly shaped bodies which preferentially
associate with the border of heterochromatin in BCBL-1
PEL cell nuclei (27).  LANA1 does not colocalize with
ND10 PML bodies (27).  Both the N- and C- terminal
LANA1 domains are capable of localizing to the nucleus
(28).  Recent work shows that a region encompassing
amino acids 5 to 22 is sufficient to mediate a specific

interaction of LANA1 with chromosomes during mitosis
(29) and that LANA1 nuclear localization also maps to a
signal comprising amino acids 24 to 30 (29).

Confocal microscopy demonstrated that LANA1
and KSHV genomes colocalize in PEL cells in interphase
nuclei and along chromosomes (30, 31).  These findings
were consistent with the independent findings that LANA1
(32) and KSHV DNA (1) associate with chromosomes in
PEL cells.  These results also suggested a role for LANA1
in KSHV episome persistence.

7. LANA1 MEDIATES KSHV EPISOME
PERSISTENCE BY ACTING ON TERMINAL
REPEAT (TR) DNA

LANA1 is necessary and sufficient for the
persistence of KSHV episomes containing a specific cis-
acting KSHV sequence (30).  We have recently localized
the cis-acting sequence to the 0.8 kb KSHV TR unit (33).
In KSHV-uninfected cells, a plasmid containing KSHV TR
elements persists as an episome in the presence of LANA1
(30).  Of note, LANA1 bound in vitro to the KSHV Z6
cosmid, which includes the KSHV TR elements (31).
More recently, LANA1 was shown to bind to nt 603 to 622
of the KSHV TR (33, 34).  High copy number, tandemly
repeated TRs likely mediate focal concentration of LANA1
to dots in KSHV infected cells.

Since LANA1 colocalizes with KSHV genomes
on chromosomes and mediates episome persistence of
KSHV DNA, these data are consistent with the model that
LANA1 functions to tether KSHV TR DNA to
chromosomes during mitosis in order to mediate efficient
segregation to progeny nuclei (30, 31).  This model of
tethering to mediate efficient persistence has been
previously proposed for EBV EBNA1 and the bovine
papillomavirus E2 proteins (35-40).  EBNA1 mediates
EBV episome persistence by acting on a 1.8 kb EBV (oriP)
element (36) which contains multiple EBNA1 binding sites
(35).  The functional homology between LANA1 and
EBNA1 exists in the absence of any real sequence
homology (30).  Further, LANA1 does not colocalize with
the Epstein-Barr (EBV) EBNA1 protein in the context of
PEL cells coinfected with KSHV and EBV (32).

8. LANA1 POTENTIAL FOR GENE THERAPY

Adenoviruses, retroviruses, and adeno-associated
viruses (AAV) are currently used to deliver genes to tumor
cells or to supply a functional gene product in cells lacking
one.  However, these approaches have potential drawbacks.
Retroviral vectors integrate into host chromosomes and
therefore are subject to position effect variegation in which
gene expression is affected by the integration site (41).
Infectious viral vectors may elicit an immune response,
creating difficulties in immune competent individuals.
Therefore, the potential of plasmid-based expression
vectors has led to increasing interest.  A plasmid expressing
specific genes of interest which contains the cis-acting TR
unit and a promoter driving the expression of LANA1
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should be maintained extrachromosomally, replicate during
the cell cycle, and be efficiently partitioned to daughter
cells during mitosis.

9. LANA1 TRANSCRIPTIONAL  REGULATION

Multiple LANA1 effects on transcription have
been demonstrated.  LANA1 repressed the EBV virus-
latency promoters Cp and Qp in Hela or Rael cells (42).
However, in a different report, LANA1 activated both the
EBV LMP1 and C promoters in BJAB cells and 293 cells
(43).  These different observations may be due to different
cell types used in the experiments.  LANA1 also modulates
NF-kappa B-dependent transcription (43, 44).  The internal
repeats and the C-terminal domain of LANA1 both bind to
the C/H3 region of (CREB)-binding protein (CBP) (45).
Many proteins, including NF-kappa B, use CBP either as a
co-activator or target it as an integrator of transcriptional
regulation (46).

LANA1 domains were fused to the Gal4 DNA-
binding domain to investigate LANA1 transcriptional
regulation (28).  Both the LANA1 N- and C-terminal
regions repressed transcription with similar efficiency to
the wildtype LANA1 in 293T cells (28).  However, in
HeLa cells, only the N-terminal regions of LANA1
repressed transcription (42).

A recent report demonstrated that LANA1
transactivates the telomerase reverse transcriptase promoter
in 293T, 293, and BJAB cells (47).  Telomerase reverse
transcriptase is the subunit responsible for the enzymatic
activity of telomerase.   In addition, five Sp1 sites lay
adjacent to the promoter, and experiments show that
LANA1 affects the Sp1-DNA complex in the context of
BJAB nuclear extracts.

10. LANA1 INTERACTS WITH CELLULAR
PROTEINS

Yeast two-hybrid analysis using the LANA1 C-
terminus as bait identified RING3 as a LANA1 interacting
protein (48).  RING3 belongs to the Drosophila female sterile
homeotic (fsh) family of proteins (48).  Since work has shown
that RING3 is a potential mitogen-activated nuclear
serine/threonine kinase, its ability to affect LANA1
phosphorylation has been investigated (48).  RING3 induces
LANA1 phosphorylation on serine and threonine residues in in
vitro kinase assays and phosphorylation occurs between
LANA1 amino acids 951 to 1107.  However, RING3 does not
directly phosphorylate LANA1 since a mutation in the RING3
catalytic residues which ablates kinase activity does not reduce
LANA1 phosphorylation.  Instead, RING3 appears to recruit a
kinase which phosphorylates LANA1 (48).

LANA1 also interacts with the tumor suppressor
gene product p53 (49). LANA1 bound to p53 in vitro and
in co-immunoprecipitation assays from cells.  LANA1 also
inhibited p53 transactivation in reporter assays.  Co-
expression of LANA1 reduced p53 mediated apoptosis in
SAOS-2 cells and NIH/3T3 cells.  LANA1’s did not cause
p53 degradation or alter p53’s ability to bind DNA.  The
p53- binding domain, and transcriptional repression

activity defined in these studies appears to map outside of
the first 440 LANA1 amino acids.  Therefore, LANA1 may
contribute to oncogenesis by promoting cell survival
through alteration of p53 function (49).

LANA1 residues 803-990 interact with the
“pocket” region of the retinoblastoma protein (pRb) (50).
LANA1 transactivated an artificial promoter carrying the
cell cycle transcription factor E2F DNA-binding sequences
and also upregulated the cyclin E (CCNEI) promoter, but
not the B-myb (MYBL2) promoter (50).  LANA1
overcame the RB induced flat cell phenotype in SAOS cells
and transformed primary rat embryo fibroblasts together
with the cellular oncogene Harvey rat sarcoma viral
oncogene homolog (Hras), (50).  These findings indicate
that LANA1 may contribute to oncogenesis by targeting the
retinoblastoma protein-E2F transcriptional regulatory
pathway.

11. CONCLUSION

LANA1 has a central role in KSHV biology.
LANA1 mediates KSHV episome persistence and has
transcriptional regulatory properties.  LANA1 also interacts
with multiple cell proteins.   Future work should  further
define LANA1’s role in tumorigenesis and the molecular
mechanisms by which LANA1 functions.
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