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1. ABSTRACT

DNA microarray data have provided us with the
opportunity to assess the expression levels for thousands of
genes simultaneously. One of the uses of this information is
to classify cancer tumors. A noted challenge in using
microarray information is analytical. Following the work of
Zhang et al. (1), we further pursue the use of recursive
partitioning in analyses of microarray data for cancer
classification. Not only does the recursive partitioning
technique create intuitive classification rules, but also it is
most flexible as to the handling of a massive number of
genes, missing expressions, and multi-class tissues. Using a
published data set (2), we demonstrate that the recursive
partitioning technique creates a more precise and simpler
classification rule than other commonly used approaches.
In particular, we introduce the concept of A-tree and
propose a procedure to assess a large number of A-trees.

One of the identified genes (ERBB2) is in the close region
of BRCA1 (17q21.1) and has been shown by others to have
altered expression levels in breast cancer. Nonetheless, our
identified genes warrant further investigation as to whether
they play a role in the etiology of breast cancer.

2. INTRODUCTION

Following the work of Zhang et al. (1), we
further pursue the use of classification trees in analyses of
microarray data.  Based on a recursive partitioning
technique, classification trees (3) have become one of the
premier nonparametric classification methods. The
applications and merits of this method have been discussed
in detail by Zhang and Singer (4), particularly in health
related applications. One of the key advantages of the
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method is its ability to extract and select useful information
for classification purpose from a large number of possibly
correlated, discrete or continuous variables or features.  As
a result of the Human Genome Project (5,6), the ability to
accommodate tens or hundreds of thousands of genes
simultaneously is critically important and challenging.

With gene chip technology, DNA microarray
data have provided us with the opportunity to assess the
expression levels for thousands of genes simultaneously
and to explore the gene function and pathways. The use of
DNA microarrays holds a great promise to advance
biological and medical research, for example, in cancer
research (7) and drug discovery (8).   In particular, many
studies have employed microarrays to analyze gene
expression in tumors of the colon, breast and other organs
(2, 9, 10). For cancer diagnosis and treatment, gene
expression profiles may lead to an alternative to
morphology-based tumor classification systems with
abundant, insightful information. The technology is being
rapidly improved and the cost is becoming cheaper and
cheaper. The greatest challenge is, however, analytical
(11). One of the analytic issues is classification.

In machine learning literature, classification is a
supervised learning process. We are given a training set of
observations (also referred to as learning sample) that
contain vectors of gene expressions as well as the labeled
(normal or tumor) tissues. These observations are used to
induce a classification scheme with the intent to accurately
predict the class label (normal or tumor) for a tissue sample
that may or may not be a part of the training data. In the
context of analyzing microarray data, Golub et al. (12) and
Xiong et al. (13) among others used discriminant analysis
to produce decision rules, Brown et al. (14) applied support
vector machine, Moler et al. (15) adopted a Bayesian
approach, and Zhang et al. (1) advocated classification
trees. Dudoit et al. (16) provided an interesting comparison
of several commonly used classification methods. In this
work, we exploit the use of classification trees or recursive
partitioning to improve cancer diagnosis based on
microarray data.

Not only does the recursive partitioning
technique create intuitive classification rules, but also it is
most flexible as to the handling of a massive number of
genes, missing expressions, and multi-class tissues. Using a
published data set (2), we demonstrate that the recursive
partitioning technique gives rise to a more precise
classification rule and uses fewer gene profiles than other
commonly used approaches, as conducted by Hedenfalk et
al. (2).

3. MATERIALS AND METHOD

3.1. Data
Many cases of hereditary breast cancer are due to

mutations in either the BRCA1 (MIM: 113705) or BRCA2
(MIM: 600185) gene. The histopathological changes in
these cancers are often characteristic of the mutant gene.
These germ-line mutations account for a substantial
proportion of inherited breast and ovarian cancers, but it is

likely that additional susceptibility genes will be
discovered.  Hedenfalk et al. (2) gave a detailed
comparison between BRCA1 and BRCA2 mutations. They
collected and analyzed biopsy specimens of primary breast
cancer tumors from patients with germ-line mutations of
BRCA1 (7 patients) and BRCA2 (8 patients). In addition,
seven patients with sporadic cases of primary breast cancer
whose family history was unknown were also identified.
They obtained cDNA microarrays from 5361 unique genes,
of which 2905 are known genes and 2456 are unknown.
The data set can be downloaded from
http://www.nhgri.nih.gov/DIR/Microarray/NEJM_Supplem
ent. Using a variety of analytic techniques including a
modified F- and t-test and a mutual-information scoring,
Hedenfalk et al. (2) selected nine differentially expressed
genes to classify BRCA1-mutation-positive and negative
tumors and then 11 genes for BRCA2-mutation-positive
and negative tumors.

3.2. Tree Model
Suppose we have data from n units of

observations. Each unit contains a vector of feature
measurements or covariates (gene expression profiles from
a tissue) and a class label (normal or tumor). The recursive
partitioning technique extracts homogeneous strata from
the data and constructs tree-based classification rules. In
essence, the classification tree is constructed through a
recursive partitioning process that divides the study sample
into smaller and smaller samples (every sub-sample is
called a node, the starting sample being termed the root
node) according to whether a particular selected predictor is
above a chosen cut-off value or belongs to a subset of the
discrete levels. The choices of the selected predictor and its
corresponding split are decided to purify the distribution of
the response; namely, separating the normal tissues from
the cancer tissues in the present context. After an initial
(usually over grown) tree structure results from the
recursive partitioning process, a pruning step usually
follows so that a balance is reached between the tree size
and its apparent misclassification rate based on the learning
sample. This procedure becomes more apparent as we
present the analysis from the tree-based analysis.

3.3. Recursive Partitioning
Using the method described in Zhang and Singer

(4) and Zhang et al. (1) and the RTREE program developed
by Heping Zhang (http://peace.med.yale.edu), we have
identified classification trees (rules) that are very accurate,
as determined by the cross-validation procedures for
classifying these three types of tumors. Using only one
classification rule (instead of two as in [2]) on the basis of
three genes (instead of 20 as in [2]) we can achieve high
accuracy.

Figure 1 is a classification tree that divides 22
samples into 4 groups generated by RTREE automatically.
It first uses the expression from HV16A12 to divide the
original 22 tumor samples (7 BRCA1, 8 BRCA2, and 7
sporadic, respectively arranged at the top, middle, and
bottom in the top circle of the tree) into two (right and left
circles) sets of samples according to whether the expression
level is higher than 0.835. The selection of HV16A12 and
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Figure 1. An Automatically Produced Tree Structure.
Inside each circle and box (both are called nodes) are the
numbers of BRAC1, BRCA2, and sporadic tissue samples
(from top to bottom). Under the circles are the genes whose
changes in expressions are used to classify the tumor types.
The threshold levels of the expressions on displayed on the
right arrows of the circles.

Figure 2. (A) One of the Best A-Trees in Table 1. See
Figure 1 for the Structure. (B) A 3-D View of Figure 2A.

its corresponding cut-off level was determined after
comparing it with all other possible dichotomous splits that
were derived from all available gene expressions.

Then the resulting two sub-samples are further
divided by expressions from genes HK1A2 and HV8D4 as
the levels specified in the figure. Again, the selections of
genes HK1A2 and HV8D4 and their corresponding
splitting levels were determined through extensive
comparisons and searches considering all possible binary
splits.

3.4. A-Tree
In essence, Figure 1 illustrates a process that can

continue as long as the data permit. This process is called
recursive partitioning. In general, this process can produce
a large tree structure, and requires a pruning procedure to
remove the over-grown nodes of the tree. However, gene

expression profiles present us a rather unusual form of data,
and nearly diminish the need of pruning. As recognized by
Zhang et al. (1), the correlation among many gene profiles
makes it likely that there exist other competing tree
structures that could have similar predictive precision.
Indeed, we have observed consistently that there are many
trees that are small and classify the labels accurately for the
learning data. For this reason, we introduce the concept of
A-tree as follows:

Definition: A classification tree is called an A-
tree if it has the same structure as shown in Figure 1.
Sometimes, we extend this structure into one more layer,
namely, the terminal nodes in Figure 1 are allowed to have
two offspring nodes.

3.5. Sorting A-Trees
For the present data, we have identified over one

hundred thousands A-trees that make perfect classifications
for the learning data. Because we have such a large number
of apparently pure A-trees, we began our examination with
those A-trees. By examining these A-trees, not only can we
identify more reliable classification trees, but also reveal
alternative biological mechanisms and pathways.

Not surprisingly, the first split was most critical to the A-
tree structures. Thus, we categorized the tree structures
according to the gene chosen as the first split variable.
There were 29 such genes that ultimately lead to pure A-
trees. It turns out that, even within a category, there can be
many pure A-trees. To sort them out, we employed a local
leave-one-out cross validation (LLOOCV) procedure as
described in Zhang et al. (1). The cross validation was
applied “locally” in order to keep the tree structures intact.
Specifically, for a given A-tree such as the one in Figure 1,
we left out one of the 22 samples. While maintaining the
same splitting genes and their order, e.g., HV16A12,
HK1A2 and HV8D4 in Figure 1, the corresponding
splitting values were re-determined based on the remaining
21 samples. After this determination, the newly formed tree
was used to classify the left-out sample and the number of
errors is recorded. This process was repeated 22 times until
every sample was left out once. After the completion of the
LLOOCV, a ranking was performed among the A-trees in
the same category, and those resulting in the fewest
LLOOCV errors were kept for further consideration. For
example, in one category, there may not be a perfect A-tree
according to LLOOCV, but more than one A-tree that make
one LLOOCV error. All A-trees with one LLOOCV error
were evaluated further.

3.6. Stratified Cross Validation
To further examine the performance of the

selected A-trees, we also carried out a stratified cross
validation and considered leaving out one sample among
samples of the same label. The procedure was repeated 100
times. In each category, we chose the A-tree with the
lowest stratified cross validation error rate.

In Table 1, we present the best A-tree from every
category on the basis of the performance in the LLOOCV
and the stratified cross validation. Each row represents a
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Table 1. The Performance of the Best A-trees
A-trees in order of impurity # of errors in 100 SCV

1st split 2nd split 3rd split LLOOCV Avg. # errors in SCV BRCA
1 BRCA2 Sporadic

ST13 ARF4L HP1-BP74 2 1.83 0 83 100
ACTR1A HP1-BP74 SNRP70 2 2.00 0 100 100
PPP1CB HNRPA1 P84 1 1.04 0 4 100
GMPS SEMA4D PECAM1 1 1.01 0 1 100
TP53BP2 SCNN1A GLUD1 2 2.00 100 0 100
ILF2 SEMA4D PFKP 1 1.09 0 8 101
MSH2 112158 HADHB 3 2.76 87 89 100
NIFU ZNF161 PFKP 3 2.97 98 177 22
HP1-BP74 ST13 HMGCL 1 1.00 0 100 0
SEMA4D ESTs RANBP1 1 1.25 3 86 36
LRP1 HP1-BP74 PTPN9 1 1.16 0 98 18
PFKP KIAA0329 HP1-BP74 0 0.04 0 4 0
D123 TGM2 P84 1 1.13 0 104 9
CBX3 MYD88 TMF1 2 1.54 69 71 14
MTMR4 ESTs EIF4A2 0 0.34 4 0 30
G22P1 MSN HP1-BP74 1 1.34 16 106 12
PCNA CTNND1 VASP 3 2.94 98 100 96
ERBB2 OSBPL3 SEMA4D 0 0.08 0 8 0
ATP6F HP1-BP74 PRNP 1 1.68 15 105 48
GART CRADD DCTD 2 1.89 91 98 0
FLJ12442 NAGA PXN 0 0.78 72 6 0
ZNF146 IGFBP2 CCT6A 1 1.10 0 10 100
ZNF161 FLJ12442 ADSL 1 0.99 0 99 0
GTF2I TNFAIP1 KIAA0090 2 1.94 94 100 0
GCSH SEMA4D KIAA0090 1 1.02 97 5 0
LPIN1 KIAA0329 LRBA 1 0.89 0 89 0
FOXM1 C14orf2 GNAI3 0 0.07 0 7 0
NSEP1 SEMA4D TFAP2C 2 1.46 100 32 14
PTPRU RANBP1 CTPS 2 1.82 0 92 90

Note: Each row represents the best A-tree within a category of A-trees using the same gene as the first split as listed in the first
column. The 2nd and 3rd  columns display the genes used in the subsequent splits. The fourth column is the number of the
LLOOCV errors for the respectively best A-tree. The fifth column is the average number of errors made during the stratified
cross validation (SCV). The last three columns dissect the total numbers of errors during the 100 repetitions of  the stratified
cross validation for each label of the samples.

category. The first three columns display the genes used in
the three splits. The fourth column is the number of the
LLOOCV errors for the corresponding best A-tree. Because
we have 22 samples, the maximum number of errors is 22.
It is clear from Table 1 that the selected A-trees have high
classification precisions based on the LLOOCV. The fifth
column is the average number of errors made during the 7-
fold stratified cross validation. The maximum number of
errors is again 22. The last three columns dissect the total
numbers of errors during the 100 repetitions of the
stratified cross validation for each label of the samples. For
BRCA1 (the 6th column), BRCA2 (the 7th column), and
sporadic (the last column), the maximums are 700 (7
samples by 100 repetitions), 800 (8 samples by 100
repetitions), and 700 (7 samples by 100 repetitions),
respectively.

From Table 1, we see that there are three
exceptionally precise trees that would not have been

identified by the existing automated recursive partitioning
techniques. These A-trees are presented in Figures 2A, 3A
and 4A. All of the seven BRCA1 tumors and the seven
sporadic tumors are correctly classified by these three trees.
At the same time, the misclassification rate for the eight
BRCA2 tumors is also low. Figures 2B, 3B, and 4B also
display three-dimensional views of the results with the gene
expressions as the three coordinates. They provide an
intuitive view of how perfect classifications for three types
of tumors are made.

3.7. Significance Level
We have identified trees that have a simple

structure and make use only three genes while having
remarkable precision. An important question to be
addressed is whether this is a chance occurrence or whether
it is a result of a small sample being subject to extensive
searches. To this end, we performed a permutation test. We
generated 10,000 data sets by permuting the response. Less
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Figure 3. (A) One of the Best A-Trees in Table 1. See
Figure 1 for the Structure. (B) A 3-D View of Figure 3A.

Figure 4. (A) One of the Best A-Trees in Table 1. See
Figure 1 for the Structure. (B) A 3-D View of Figure 4A.

than 0.01% of the data sets in which the LLOOCV are
applied resulted in perfect classification. Thus, the chance
of having perfect LLOOCV trees as presented in Figures 2
and 3 is only 0.0001.

4. DISCUSSION

We have introduced the concept of the A-tree
construction and established a procedure to assess a large

of number of A-trees. Using a published data set, we have
demonstrated the usefulness of this procedure in identifying
simple and accurate tree-structures. Unlike many other
classification schemes, our analysis shows that this
procedure performs very well with the multi-class
classification.

Most of the genes appearing in Figures 2, 3, and
4 have been isolated (PFKP[MIM:171840],  ERBB2[MIM:
164870],  SEMA4D[MIM: 601866], FOXM1[MIM:
602341], C14ORF2[MIM: 604573], GNAI3[MIM:
139370]). However,  their roles in the etiology of breast
cancer are largely unknown, with a few exceptions. Kroll et
al. (17) analyzed the gene expression patterns of four breast
cancer cell lines: MCF-7, SK-BR-3, T-47D, and BT-474,
and reported unique high levels of expressions in the
receptor tyrosine kinase ERBB2. In addition, Yu et al. (18)
evaluated the mechanisms by which FK228 mediates
apoptosis in non-small-cell lung cancer cells. Using
Western blot and immunoprecipitation techniques, they
analyzed expression of signaling-related proteins ERBB2
among others and found that FK228-treated cells were also
depleted of ErbB2. It is also interesting to note that ERBB2
(17q21.1) is mapped in the same region of BRCA1.

We have devised a permutation procedure that
supports the tree structures in Figures 2, 3 and 4 beyond the
chance. However, the biological implication of our results
needs to be validated by further experiments.

As a future project, we will look into the issue of
how we can take further advantage of the abundant number
of high quality A-trees and appropriately summarize them.
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