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1. ABSTRACT

The availability of human genome sequences
provides life scientists and biomedical engineers with a
challenging opportunity to develop computational and
experimental tools for quantitatively analyzing biological
processes. In response to a growing need to integrate
experimental MRNA expression data with human genome
sequences, we present here a unique analysis named
“Promoter-Based Estimation (PROBE)” anadysis. The
PROBE analysis is “systems analysis’ of transcriptional
processes using control and estimation theories. A linear
model was built in order to estimate the mRNA levels of a
group of genes from their regulatory DNA sequences. The
model was also used to interpret two independent datasets
in skeletal tissues. The results demonstrated that the
MRNA levels of a family of matrix metalloproteinases can
be modeled from a distribution of cis-acting elements on
regulatory DNA sequences. The model accurately
predicted a stimulatory role of cis-acting elements such as
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AP1, NFY, PEA3, and Spl as well as an inhibitory role of
AP2. These predictions are consistent with biological
observations, and a specific assay for testing such
predictions is proposed. Although eukaryotic transcription
is a complex mechanism, the two examples presented here
support the potential use of the described analysis for
elucidating the functional significance of DNA regulatory
elements.

2. INTRODUCTION

A complete set of eukaryotic genome segquences
provides a unique opportunity to develop analytical and
computational tools for interpreting and evaluating
complex biological responses (1, 2). Two of the immediate
engineering challenges in a post-genomic era are building
user-friendly databases and developing computational
algorithms to effectively utilize those databases.
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Transcriptional regulation is tightly linked to regulatory
DNA sequences and is a critical step in the cascade of gene
expression (3). Computer programs such as PROSCAN
and SIGSCAN have been developed to identify putative
promoter regions and to determine binding sites of
transcription factors (4, 5). To our knowledge, however,
few mathematicall models are formulated to relate the
MRNA expression levels to the role of DNA regulatory
elements, and to model cellular transcriptional states.

In response to a growing need to integrate
experimental mMRNA data with human genome sequences,
we developed a unique computational approach named
“PROmoter-Based Estimation (PROBE)” analysis and
conducted a “systems analysis’ of mRNA expression in
skeletal tissues. Previously a non-model-driven approach
such as cluster analysis had been developed, where
quantitative expression profiles among genes are classified
into hierarchical clusters based on expressional similarity
(6, 7). A computational method was then developed for
discovering cis-regulatory elements responsible for each
cluster (8-10). However, few works have attempted to
build a holistic model suitable for performing “systems
analysis’ of transcriptional activities. A mathematical
model would be useful to life scientists and biomedical
engineers if the model could evaluate the functiona role of
DNA regulatory elements in growth and differentiation of
various tissues.

With the understanding that individua DNA
regulatory elements can be regulated with diversity and
precision, we built and evaluated a linear least-square
model. Focusing on the 5'-flanking regulatory region, we
first counted the number of cisacting elements for
individual genes. We then modeled the experimentally
observed mRNA levels using a weighed sum of the
frequency of the selected cis-acting elements. In this
promoter-based model, optimal weights were determined
using a standard linear estimation technique. The model
was used to predict a stimulatory or inhibitory role for each
cisacting element and the specific combination of cis-
acting elements that would most effectively regulate
MRNA expression. Mathematical formulation is described
in the Appendix.

To examine the PROBE algorithm, two mRNA
expression datasets in skeletal tissues were used. One
dataset consisted of 14 matrix metalloproteinase (MMP)
genes, an influential proteolytic enzyme that degrades
collagen, and collagen-associated molecules in an
extracellular matrix (11-13). Controlling MMP expression
is critical in preserving or remodeling skeletal tissues (14-
16). In the second example, we selected a heterogeneous
set of genes such as MMPs, tissue inhibitors of
metalloproteinases, and growth factors involved in
inflammation and degradation of skeletal tissues (17). We
evaluated the effects of 5-7 cis-acting elements including
AP1, AP2, NFY, PEA3, Spl, TFIID, and TIE using the
PROBE agorithm and demonstrated in the two examples
that the promoter-based linear model can represent at least
in part complex regulatory mechanisms. The merits and
limitations of the PROBE analysis for skeletal tissue
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engineering are discussed and a biological assay for testing
the predictions is proposed.

3. MATERIALSAND METHODS

The PROBE agorithm receives two inputs such
as “mRNA expression data” and “information on cis-acting
DNA regulatory elements.” The linear model was built to
minimize mismatches between the observed mRNA levels
and the modeled mRNA levels, where three mathematical
entities such as a promoter matrix (H), a promoter-
associated matrix (Ha), and a weighting matrix (R) were
defined (Figure 1). Mathematical formulation is described
in the Appendix. The multidimensional scaling analysis in
2D Euclidian space was performed using SPSS (version
11.0, LEAD Technologies, Inc.).

In order to evaluate the PROBE mode, we
conducted a leave-one-out cross-vaidation test and a
Monte Carlo simulation. In leave-one-out cross-validation,
the expression level of one gene in the dataset was
predicted from the expression levels of the other genes. In
the Monte Carlo simulation, the observed expression levels
were randomly re-assigned among genes and samples, and
the error estimated from 10,000 random trids were
compared to the true model error for the correctly assigned
expression levels.

3.1. Example 1l

The mRNA level of 14 MMPsincluding MMP-1,
-2, -3, -7, -8, -9, -10, -11, -12, -13, -14, -16, -19, and -20
was obtained from the study of rheumatoid arthritis and
traumatic disease conducted by Konttinen et al. (11). The
extraction of MRNA was performed two or more times and
the results were shown to be reproducible. The expression
level was represented by avalueintherangeof Oto1and a
continuous gray level was used to illustrate the expression
profile. Ten tissue samples (k = 1 to 10) were derived from
rheumatoid arthritis patients, and nine tissue samples (k =
11 to 19) were isolated from traumatic disease patients.
The MMP expression of rheumatic tissue was on average
higher than that of traumatic patients.

The 5'-end upstream regulatory region, 500 bp in
length, was used for the PROBE anaysis. MMP-15 and
MMP-17 were excluded, since the size of a dominant PCR
fragment differed from the control and the promoter was
not retrievable from the currently available human genome.
The accession numbers were AJ002550 (MMP-1),
AJ298926 (MMP-2), U51914 (MMP-3), NTO009151
(MMPs-7, -10, -12, and -20), AF059679 (MMP-8),
NTO011375 (MMP-9), NT011520 (MMP-11), U52692
(MMP-13), NT024615 (MMP-14), NT008256 (MMP-16),
and NT009458 (MMP-19). Cis-acting regulatory elements
such as AP1, AP2, NFY, PEAS, Spl, TFIID, and TIE were
considered.

3.2. Example 2

The mMRNA expression data were obtained from
the study conducted by Bunker et al. (17). The data
included three sample groups such as chronic fibrosing
patients, control individuals, and Dupuytren's disease
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Figure 1. Flowchart of the described promoter-based estimation algorithm.

patients. We focused on 13 genes such as MMP-1, MMP-
2, MMP-3, MMP-9, MMP-14, TIMP-1, b-2 microglobulin,
acidic fibroblast growth factor (a-FGF), basic fibroblast
growth factor (b-FGF), interleukin-6 (IL-6), platelet driven
growth factor-a (PDGF- a), transforming growth factor-
b (TGF- b), and tumor necrosis factor-a (TNF-a).

The expression level in each sample group was
defined by Ni /N, where Ny = the number of the tissue
samples expressing the i-th gene in the k-th group, and Ny
= the total number of tissue samples in the k-th group. The
accession numbers were NT019712 (TIMP-1), NT010302
(b-2 microglobulin), NT016788 (a-FGF), NT016354 (b-
FGF), AF869204 (IL-6), M59423 (PDGF-a), NT011139
(TGF-b), and NTO023426 (TNF-a). Five cis-acting
regulatory elements, AP1, AP2, NFY, PEA3, and Spl,
were considered in this example. The PROBE analysis is
not designed to model post-transcriptional processes.
Therefore, genes such as IL-1 on which the mRNA level is
regulated after transcription were excluded.
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4. RESULTS

4. 1. Examplel
4.1.1. Modeling of MMP transcript levels

Using the seven cis-acting elements (AP1, AP2,
NFY, PEA3, Spl, TFIID, and TIE) on the 500-bp upstream
DNA sequences, the least-square estimator was applied to
the dataset consisting of the transcript levels of 14 MMPs
for 19 samples (Figure 2). Two simulated expression
patterns were derived from the observed expression pattern
in a continuous gray code. The expression pattern
illustrated in Figure 2C was generated by the “leave-one-
out” cross-validation procedure, and the expression pattern
in Figure 2D was modeled using al available data. The
multidimensional scaling analysis was performed to locate
the 19 tissue samples in 2D Euclidian space, where the
black and white circles represented the samples from the
patients with rheumatoid arthritis and non-rheumatoid
arthritis, respectively, for the observed (Figure 3A) and
predicted expression patterns (Figure 3B). The model
error, defined by “J' in the Appendix, was calculated as
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Figure 2. Map of cis-acting elements and MRNA expression patterns for 14 MMPsin example 1. (A) Distribution of 7 cis-acting
motifs on the 500-bp upstream sequences where the indexes A through G represent AP1, AP2, NFY, PEA3, Spl, TFIID, and
TIE, respectively. The right end of the horizontal axis corresponds to a transcription initiation site. (B) Observed mRNA
expression pattern. Using 266 sguares corresponding to 14 MMPs in 19 tissue samples, the mRNA levels are illustrated in a
gray-code where darker color indicates higher expression. (C) Predicted mRNA expression pattern using a “leave-one-out”
cross-validation procedure. (D) Modeled mRNA expression pattern using all MMP data.

11.3 for the modeled pattern depicted in Figure 2D. When
the expression levels were randomly re-assigned among
266 data points, the mean error and the standard deviation
were 22.2 and 2.4 for 10,000 cases in the Monte Carlo
simulation (Figure 3C).

4.1.2. Sensitivity analysis

We next conducted a sensitivity analysis using
eigenvalues and eigenvectors as indicators where the
effectiveness of each cisacting element on MMP
expression was examined. There are seven sets of
eigenvalues and unit eigenvectors corresponding to the
seven selected cisacting elements.  An eigenvector
represents a specific combination of seven cis-acting
elements and an associated eigenvalue indicates
effectiveness of the combination in regulating mRNA
levels. The calculated eigenvalues were 1.44, 0.35, 0.11,
0.07, 0.02, 0.004, and 0.0001, and the eigenvector
corresponding to the largest eigenvalue was (0. 209, -0.209,
0.240, 0.004, 0.921, -0.055, 0.068)" in the 7-dim space of
AP1, AP2, NFY, PEA3, Spl, THID, and TIE. The

129

positive values in the elements of the eigenvector indicated
a stimulatory role of the corresponding cis-acting elements
(AP1, NFY, PEA3, Spl, and TIE) and the negative values
suggested an inhibitory role (AP2, and TFIID).

Since each skeletal tissue exhibited a unique
MMP mRNA pattern, the estimate of active cis-acting
elements must differ among the 19 tissue samples. In order
to examine the role of the selected cis-regulatory elements,
we determined a component of active cis-acting elements
projected onto the eigenvector with the largest eigenvalue.
In a linear estimation analysis, this projected component
serves as an indicator of the MMP expression levels.
Indeed, the component was positively correlated to each
tissue's mean MMP expression level with a correlation
coefficient of 0.98 (Figure 3D). The average value was
0.567 and 0.169 for the tissues derived from rheumatic
arthritis and traumatic diseases respectively, consistent with
the observation that the rheumatic arthritis tissues present a
higher level of MMP mRNAs than the traumatic disease
tissues.
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Figure 3. 2D scaling analysis and error analysis in example 1. (A) 2D Euclidian representation of 19 tissue samples based on
the observed MMP expression pattern. The black circles represent rheumatoid arthritis patients, and the white circles represent
non-rheumatoid arthritis patients. (B) 2D Euclidian representation based on the predicted MMP expression pattern. (C) Monte
Carlo simulation for model error with the randomly assigned expression levels. The mean error + standard deviation for 10,000
cases was 22.2 + 2.4. The arrow indicates the true model error of 11.3 for the expression pattern illustrated in Figure 2D. (D)
Positive correlation between the parameter a and mean MMP expression level for individual samples. The best-fit-line isy =

2.63x + 0.18 with r> = 0.98.

4. 2. Example 2
4.2.1. Modeling of a heter ogeneous group of transcripts
In the second example, a heterogeneous set of
genes including MMPs, tissue inhibitor  of
metalloproteinases, and various growth factors was
modeled.  Three groups of tissues were derived from
chronic fibrosing patients, normal control, and Dupuytren’s
disease patients. We first predicted the mRNA level of one
gene from the mRNA level of the other genes. When the
mMRNA level was assigned to 3 levels, the prediction by the
least-square estimator gave the correct level in 26 (67%)
out of 39 total cases (Figs. 4A and 4B). Twelve cases were
incorrect by a single expression level, and one case was off
by two expression levels. Without a weight imposed for
compensating variations among genes, the correct cases
were reduced to 22 (56%). When the expression was
assigned to 2 levels, the maximum rate of successful
prediction increased to 34 cases (87%) (Figs. 4C and 4D).
Without any weighting factor, the correct prediction was
limited to 28 cases (72%).

4.2.2. Variations among genes

Weighting factors were introduced to evaluate
variations among genes. Since an element in the weighting
matrix was assigned inversely proportional to the mean-
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square error (see Appendix), each element should serve as a
fitness indicator of each gene. We have shown that
performance of the least-square modeler was enhanced by
the weighting matrix. A large element assigned to the
genes such as TIMP-1, IL-6, MMP-9, and MMP-1
indicated that their measured mRNA levels fit well with the
linear estimation model (Figure 5A). A poor fitting of
MMP-2, MMP-14, aFGF and TGF-b, on the other hand,
was suggested by a low value. We excluded four genes
such aslIL-1a, IL-1b, TNF-b, and PDGF-b because of poor
fitting.

4.2.3. Estimation of active cis-acting elements

The last step was to estimate a level of active cis-
acting elements for three tissue groups derived from
chronic fibrosing patients, control, and Dupuytren’s disease
patients (Figure 5B). In chronic fibrosing patients, the
active level of AP1 was significantly higher than the other
two groups, while the estimated level of NF-Y was highest
in Dupuytren's disease patients. Five sensitivity values
(eigenvalues) corresponding to the selected cis-acting
elements were 9.7, 2.1, 0.8, 0.005, and 0.003. The
eigenvector (a combination of cis-acting elements)
corresponding to the largest eigenvalue was (0.03, - 0.30, -
0.03, 0.65, 0.70)" in a 5-dim space of AP1, AP2, NFY,
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Figure 4. Comparison of the measured mRNA level and
the predicted mRNA level in Example 2. (A) Measured
MRNA expression in three levels: white - the level lower
than 1/3, gray - the level between 1/3 and 2/3, and black -
the level higher than 2/3. (B) Predicted mRNA expression
in three levels. (C) Measured mRNA expression in two
levels. (D) Predicted mMRNA expression in two levels.
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Figure 5. Weighting matrix and estimate of active cis-
acting elements in Example 2. (A) Diagonal components
of the weighting matrix for each gene. Among 13 genes, 7
genes, MMP-1, MMP-3, MMP-9, TIMP-1, b2-
microglobulin, IL-6, and PDGF-a, had a weighting factor
greater than 1. This suggests that their mRNA expression
pattern fits to the linear model better than the other genes
such as MMP-2, MMP-14, aFGF, bFGF, TGF-b, and TNF-
a. (B) Estimate of active cis-acting elements such as AP1,
AP2, NFY, PEA3, and Spl for three tissue groups. Three
tissue groups are: CF - chronic fibrosing patients, Control —
control individuals, and DD - Dupuytrenis disease patients.
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PEA3, and Spl. A large positive value for PEA3 and Spl
suggested a stimulatory role and a large negative value for
AP2 indicated an inhibitory role.

5. DUSCUSSION

In an attempt to establish a systematic model for
eukaryotic transcription activities, a promoter-based
estimation algorithm was developed and a sensitivity
analysis for the selected cis-acting regulatory elements was
conducted.  The described mathematical formulation
allowed us to highlight the merits and limitations of linear
approximation in anayzing complex eukaryotic
transcriptional regulation.

Two merits of the described promoter-based
estimation analysis are the capability of modeling and
predicting mRNA levels and the unique sensitivity analysis
for active cisacting elements. One magjor difference
between the current work and other linear regression
modelsis a system’s formulation (10). In our formulation a
direct MRNA level rather than a logarithm of an expression
ratio was used as a measurement variable, and an activation
level of cis-acting elements was defined as a state variable.
This formulation allowed us to estimate the state variables
(cellular states) and to model and predict the measurement
variables (MRNA levels) from the promoter matrix and the
associated matrices.  Our least-square modeler can
accommodate, if necessary, supplementary datain the form
of a priori information or weighting factors, and it can be
extended into a dynamica model without altering the
definition of state and measurement variables. In this
study, 5-7 cis-acting elements were chosen from 500-bp
promoters (Example 1) and 800-bp promoters (Example 2).
A careful determination of promoter length and cis-acting
elements seems to further improve performance of the
described least-square linear estimator. Although a model
with 7 cis-acting elements was presented in Example 1, the
combination of 5 elements such as AP1, AP2, NFY, PEAS,
and Spl gave the minimum model error for the 500-bp
upstream regulatory sequences and different combinations
of cisacting elements were better for other regulatory
regions (data not shown).

The sensitivity analysis provided a good measure
for the combinatorial effects of cis-acting elements. A set
of combinations of cis-acting elements, eigenvectors,
represent independent (orthogonal) combinationsin a space
of cis-acting elements, and associated sensitivity values
(eigenvalues) indicate the effectiveness of particular
combinations of cis-acting elements in altering mRNA
expression. The primary eigenvector corresponding to the
largest eigenvalue indicates the most effective combination
of cis-acting elements to regulate a mean-square sum of
mRNA levels. For instance, the positive value in the
primary eigenvector for APl1, PEA3, and Spl in two
examples suggested a stimulatory effect of transcription
factors such as c-fos, c-jun, and ets-1. On the other hand,
AP2 had a negative value in both examples, suggesting an
inhibitory effect. Although the above interpretation of
AP1, PEA3, Spl, and AP2 appears consistent with several
lines of biochemical observations, a role of these elements
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depends on tissue samples, individua genes, and growth
conditions (16-18). The linear PROBE model should be
able to predict the role of cis-acting elements specific to
individual tissues or genes.

The modd in the PROBE andysis is a coarse
approximation of eukaryotic regulatory networks. Genes
that are regulated on a post-transcriptional level such as|L-
la and IL-1b did not fit the model (19). When an
expression level was randomly assigned in the Monte Carlo
simulation, the predicted mMRNA level also became nearly
random. Therefore, the linear model represents, at least in
part, complex transcriptiona  machinery  related
inflammation and degeneration of skeletal tissues. The
following three reasons provide justification for our
approach. Firgt, cis-acting elements are indispensable in
transcription activities and the 5'-end regulatory promoter
focused in this analysis represents a core region besides
other regulatory regions located in 3'-ends or introns (20).
Second, eukaryotic transcriptional activities are controlled
by a combination of multiple cis-acting elements and a
weighed sum of the number of cis-acting elements appears
as a simplified representation of their contribution. Third,
transcriptional assays such as a reporter gene assay and an
electrophoretic mobility shift assay are able to simulate the
functional significance of cis-acting elements using shorter
DNA fragments in 20 — 500 bp than complete gonomic
DNA sequences (21).

6. FUTURE WORK

The promoter-based estimation anaysis
described here is a an infancy stage, and some future
works are therefore suggested. First, a set of cis-acting
elements has to be carefully chosen. Although
representative 5-7 elements were chosen in our examples,
other elements such as NF-kB are shown to affect some of
the MMP expression (22-24). A cluster analysis may help
identify active cis-regulatory elements from a cluster of co-
regulated genes. Second, the size of the promoter and the
degree of sequence degeneracy need to be evaluated.
Third, implementing any nonlinear effect needs to be
investigated. Modeling a nonlinear system using a linear
perturbation from a reference state may facilitate the
incorporation of cooperative or competitive binding of
multiple transcription factors.

The described PROBE analysis for modeling and
analyzing transcription activities offers a computational
tool for life scientists and biomedical engineers to integrate
experimental expression data with available genome
information. It was a unique application of a linear
estimation theory popularly used in navigating spacecraft
or processing electric signals (25). In this study we started
with the smallest number of essential components, since an
elegant model can often have greater intrinsic value than an
accurate one overloaded with detail (26). We did not
follow a commonly accepted scheme of modeling that
reguires a number of parameters related to binding affinity
and stability of trans-acting regulatory elements (27).
Although the linear model described here is a coarse
approximation of complex eukaryotic regulation, a simple,
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but genera mathematical framework provided logical
insightsin acombinatorial role of cis-acting elements.

In order to examine the prediction of the
promoter-based estimation analysis regarding the role of
cisacting regulatory elements, a biological assay using
DNA oligonucleotides can be considered (28). In this
assay DNA fragments consisting of specific cis-acting
elements are transferred into cultured cells.  Since
exogenous DNA fragments act as a competitor of genomic
cis-acting elements, reduction in specific gene transcriptsin
the assay suggests that the transferred cis-acting elements
mimic the binding capacity of endogenous cis-acting
elements. The integrated approach of the promoter-based
estimation analysis with the biological competition assay
will likely provide a power tool for life scientists and
biomedical engineers to elucidate molecular mechanisms
underlying tissue growth and differentiation.

7. APPENDIX

Formulation of Promoter-Based Linear Model: A transcript
level of “n” genes and a level of “m” functional cis-acting
elements are represented by a vector z, and a vector Xy,
respectively, and they are linearly linked:

Z = HHaX, + Vi

where H is an (n x m) promoter matrix, Ha isan (m x m)
promoter-associated matrix, vy is a vector for measurement
error, and subscript k designates tissue samples. The (i, j)
component of H corresponds to the number of the j-th cis-
acting element for the i-th gene. The software SIGSCAN
(Version 4.05, Advance Biosciences Computing Center,
University of Minnesota) was used to identify H from 5'-
end regulatory regions (Figure 2A and Table 1). H, isa
diagonal matrix whose j-th diagonal component weighs a
contribution of the j-th cis-acting element to transcript
levels. We determined the vector hy = (H™H)*H"Z and
set the j-th component of hy to the j-th diagonal component
of Ha. The vector z represents the mean mRNA level
among tissue samples.

In order to estimate x, from the observed z,, the function J
is defined:

J= (2« - HHaX) "Rz - HHAXY)

where R is a diagonal weighting matrix. The i-th diagonal
component of R? is set to 1/s? where s is the
approximate mean-square variation of the mRNA level for
thei-th gene. The least-square estimate of x, is obtained by
24 ?x, = 0:

&= (HaTH'RMHHA) "HATH'R 'z

Eigenvalue Analysis: In order to evaluate the effectiveness
of the selected cisacting elements on the mRNA
expression, the eigenvalue and the eigenvector of the
matrix, A = Ha\TH'RHH,, was analyzed. In a linear
equation such as Ay = | y, ascalar | and a unit vector y are
caled an eigenvalue and an eigenvector. There are in
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Table 1. Promoter matrix H for Example 2

Gene cis-acting element

AP1
MMP-1 2
MMP-2
MMP-3
MMP-9
MMP-14
TIMP-1
b2-microglobulin
aFGF
b-FGF
IL-1
PDGF-a
TGF-b
TNF-a
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The promoter 800 bp in length was used.

general m sets of eigenvalues and eigenvectors
corresponding to “m” cis-acting elements. In evaluating
effectiveness of a particular combination of cis-acting
elements for each tissue sample, we determined a,:

ak=Vi'x¢

where a, represents the component of x,° paralel to the
primary  eigenvector. Matrix operation such as
multiplication, transposition, and inversion as well as
solving eigenvalues and eigenvectors were conducted using
MATLAB (version 6, The Math Works, Inc.).
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