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1. ABSTRACT

Plasma lipid transfer proteins include plasma
cholesteryl ester transfer protein (CETP) and phospholipid
transfer protein (PLTP). Plasma CETP facilitates the
transfer of cholesteryl ester (CE) from high-density
lipoprotein (HDL) to apolipoprotein (apo) B-containing
lipoproteins, and is a key protein in reverse cholesterol
transport which protects vessel walls from atherosclerosis.
The importance of plasma CETP in lipoprotein metabolism
was highlighted by the discovery of CETP-deficient
subjects with a marked hyperal phalipoproteinemia (HALP).
The deficiency of CETP causes various abnormalities in the
concentration, composition, and functions of both HDL and
low-density lipoprotein (LDL). Although the significance
of CETPin terms of atherosclerosis has been controversia,
the in vitro evidence showed that large CE-rich HDL
particles in CETP deficiency are defective in cholesterol
efflux. Recent epidemiologica studies in Japanese-
Americans and in Omagari area where HALP subjects with
the intron 14 splicing defect of CETP gene are markedly
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frequent, have demonstrated an increased incidence of
coronary atherosclerosis in CETP-deficient patients.
Similarly, scavenger receptor Bl (SR-BI) knockout mice
show a marked increase in HDL-cholesterol but accelerated
atherosclerosis in atherosclerosis-susceptible mice. Thus,
CETP deficiency is a state of impaired reverse cholesterol
transport which may possibly lead to the development of
atherosclerosis.

PLTP transfers phospholipids from triglyceride
(TG)-rich lipoproteins to HDL during lipolysis. Human
plasma PLTP has a 20% sequence homology to human
CETP and human PLTP gene has amarked similarity in the
exon-intron organization. Both CETP and PLTP belong to
the lipid transfer/lipopolysaccharide binding protein (LBP)
gene family, which aso includes LBP and
bactericidal/permeability-increasing protein (BP).
Although these 4 proteins possess different physiological
functions, they share marked biochemical similarities. The
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Figure 1: Roles of plasma CETP in the reverse cholesterol transport. CETP isinvolved in the transfer of cholesteryl ester from HDL
particlesto apo B-containing lipoproteins. CETP isaso involved in the remodeling of HDL particlesin conjunction with HL.

current review will aso focus on the molecular genetics
and function of plasma lipid transfer proteins, including
CETPand PLTP.

2. INTRODUCTION

A number of epidemiological studies have shown
that serum HDL-cholesterol levels are negatively correlated
with the incidence of coronary heart disease (1).
Furthermore, patients with a genetic deficiency of HDL are
often accompanied by atherosclerotic cardiovascular
diseases (2). Thus, HDL plays an essentia role in the
protection of blood vessels from atherosclerosis. HDL
serves as a shuttle, delivering excess cholesterol from
peripheral tissues to the liver for excretion into the bile.
This pathway was named “reverse cholesterol transport”
(3). Theinteraction between HDL and peripheral cells such
as fibroblasts and macrophages is the initial step of reverse
cholesterol transport system. The molecular mechanism of
this interaction has yet to be clarified, however it is
postulated to include aqueous diffusion, scavenger receptor
class B type | (SR-BI)-mediated cholesterol flux, and lipid-
free apolipoprotein membrane microsolubilization (4-7).
The cholesterol picked up by HDL from peripheral tissues
is esterified by lecithin:cholesterol acyltransferase (LCAT)
to form cholesteryl ester (CE), which is subsequently
transferred by plasma CETP to very-low-density
lipoprotein (VLDL), intermediate-density lipoprotein (IDL)
and low-density lipoprotein (LDL) (8-9). IDL and LDL are
catabolized viathe LDL receptor in the liver. Furthermore,
the CE moiety of HDL is taken up selectively by the liver
via SR-BI (10). The HDL becomes enriched with TG after
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the CETP-mediated transfer of CE and the TG is
hydrolyzed by hepatic lipase (HL). Thus, the size of HDL
particle gets smaller to take up more cholesterol.

Plasma HDL particles are continuously
modulated by various enzymes and proteins such as LCAT,
LPL, HL and plasma lipid transfer proteins. Plasma lipid
transfer proteins include (1) plasma CETP which transfers
CE from HDL to apo B-containing lipoproteins to remodel
HDL particles, and (2) plasma phospholipid transfer protein
(PLTP) which transfers phospholipids from TG-rich
lipoproteins to HDL during lipolysis. The cloning and
sequencing of PLTP cDNA have demonstrated that PLTP
belongs to the lipid transfer/lipopolysaccharide binding
protein (LBP) family. This family includes CETP,
bactericidal permeability increasing protein (BPI), and
lipopolysaccharide-binding protein (LBP). These proteins
share some common functional and structural properties.
The current review will focus on the recent findings on the
molecular biology and functional properties of both CETP
and PLTP, which are the key proteins in the reverse
cholesterol transport system.

3. ROLES OF PLASMA CETP AND PLTP IN
LIPOPROTEIN METABOLISM

3.1. Roles of plasma CETP in lipoprotein metabolism
and conversion of HDL

The functions of plasma CETP and PLTP in
lipoprotein metabolism are illustrated in Figure 1. Plasma
CETP facilitates the transfer of CE from HDL to VLDL,
IDL and LDL (8-9). CE is bi-directionally transferred and
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TG istransferred simultaneously in the opposite direction with
an equimolar ratio of CE to TG. The HDL becomes enriched
with TG after the transfer of CE and is then hydrolyzed by HL.
The HDL particles may be recycled to accelerate cholesterol
efflux from periphera tissues, or catabolized via a putetive
HDL receptor. The CE of HDL is sdlectively taken up by the
liver via SR-BI (10). CETP aso mediates the bi-directiona
transfers of cholesteryl linoleate hydroperoxide and of
cholesteryl linoleate hydroxide between HDL and LDL (11).
HDL -associated cholesteryl linoleate hydroperoxide is reduced
to cholesteryl linoleste hydroxide. Both forms of oxidized
cholesteryl linoleate are rapidly removed via a sdlective uptake
and detoxified by the liver (12). CETP could facilitate the
remova and hepatic detoxication of oxidized lipids from the
site of high concentration such as atherosclerctic plagues.
Furthermore, CETP was demonstrated to play some roles in
the remova of cholesterol from lipid-laden macrophages,
fibroblasts and smooth muscle cells (13-14).

To darify the effect of CETP inhibition on plasma
lipoproteins, monoclona or polyclona antibodies to CETP
were intravenoudly injected in rabhits. The lipoprotein profiles
were dramatically changed and the HDL-cholesterol increased
markedly after injection (15-16). An intravenous injection into
cholesterol-fed rabbits of antisense oligodeoxynucleotides
againgt rabbit CETP coupled with asidoglycoprotein carrier
molecules inhibited the liver specific expression of CETP, and
the activity and mRNA of CETP were reduced at 24-96 h after
injection. Total cholesterol, VLDL-cholesterol and LDL-
cholesterol concentrations were decreased, while plasmaHDL-
cholesterol wasincreased at 48 h (17).
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Plasma CETP aso plays some roles in the
conversion of HDL particles. The incubation of HDL, and

VLDL with LCAT and CETP caused a shift of HDL into
HDLy-like subfraction (18). CETP and HL were
demonstrated to synergistically transform large HDL
particles into very small HDL particles (19). Different
effects of CETP and plasma phospholipid transfer protein
(PLTP) were shown on the size distribution of HDL (20).
CETP promotes the formation of HDLg, particles at the
expense of HDL »,, while PLTP accelerates the formation of
HDL ,, particles at the expense of HDL 3,

3.2. Roles of plasma PLTP in lipoprotein metabolism
and conversion of HDL

The role of PLTP in lipoprotein metabolism is
illustrated in Figure 2. Plasma PLTP was initially shown to
transfer a variety of phospholipids from TG-rich
lipoproteins to HDL during lipolysis. Furthermore, PLTP
can promote the size redistribution of initial apha-HDL of
intermediate size. Both PLTP and CETP can contribute to
the formation of prebeta-HDL, however only PLTP favours
the appearance of large alpha-HDL. In contrast, CETP is
involved in the appearance of small alpha-HDL in
combination with TG-rich lipoproteins and HL. PLTP can
dissociate apo A-l from the HDL surface, which constitutes
a crucial step in the conversion of HDL particles. Prebeta-
HDL particles thus formed have been shown to have an
enhanced capacity for cholesterol efflux. PLTP is able to
act on both HDL, and HDL; as well as LpA-lI and LpA-
I/A-11 particles, but with a lower efficiency with apo A-Il-
containing lipoproteins.
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PLTP aso transfers cholesterol, diacylglyceride,
sphingomyelin, cerebroside, and alpha-tocopherol (21-23).
PLTP as wel as CETP belongs to the lipid
transfer/lipopolysaccharide binding protein (LBP) gene
family, which aso includes the lipopolysaccharide binding
protein (LBP) and bactericidal/permesability-increasing
protein (BPI). PLTP, CETP and LBP can transfer
phospholipids with different specificity. CETP only
exchanges phospholipids, while PLTP can affect a net mass
transfer of phospholipids. PLTP can bind and transfer
lipopolysaccharide between lipoproteins, suggesting a role
of PLTP in antimicrobia defence. However, the
physiological role of PLTP on the regulation of the cellular
response to lipopolysaccharide remains to be clarified.
PLTP is attributed to the majority of phospholipid transfer
in plasma, while LBP plays a dominant role in the transfer
of phosphatidylinositol. Specific anti-PLTP antibodies
blocks plasma phospholipid transfer activity amost
completely in a liposome-HDL experimenta system,
therefore PLTP could play a major role in the transfer of
phospholipids from large TG-rich lipoproteins to HDL in
Vivo (24).

In addition to its role in the transfer of
phospholipids between lipoproteins, PLTP may be involved
in the transfer of phospholipids between lipoproteins and
cells. Plasma PLTP activity was positively correlated with
its ability to promote cholesterol efflux from FuS5AH
hepatoma cells (25). PLTP might be involved in the initia
step of reverse cholesterol transport pathway by generating
prebetal-HDL since treatment of plasma with PLTP was
accompanied by an increase in cholesterol efflux from
fibroblasts (26). PLTP is aso involved in the remodeling of
HDL. Both CETP and PLTP contribute to the formation of
prebeta-HDL, an acceptor of cholesterol from cells, only
PLTP can favor the emergence of large alpha-HDL. In the
case of PLTP, two apha-HDLs of intermediate size can
fuse, leading to the concomitant formation of prebeta-HDL
as well as large CE-rich aphaHDL. PLTP may exert a
beneficial effect on reverse cholesterol transport via the
concomitant generation of prebeta-HDL, which is an initial
acceptor of cellular cholesterol, and large CE-rich HDL,
which can deliver alarge amount of cholesterol back to the
liver. Furthermore, recent data suggest that PLTP prevents
vascular endothelium dysfunction by delivering apha
tocopherol to endothelial cells (27).

As mentioned earlier, CETP and PLTP are the
members of the lipid transfer/lipopolysaccharide binding
protein gene family, which also includes LBP and BPI.
These 4 proteins possess distinct physiological functions,
but they share marked biochemical similarities. All of these
4 proteins can bind lipopolysaccharides (8,28) and
phospholipids (29-30) as well as a variety of other lipids.
CETP, PLTP and LBP are associated with plasma HDL,
however BPI exists on the membranes of secretory granules
of neutrophils. The crystal structure of BPI has recently
been elucidated. BPI is along boomerang-shaped molecule
that has two domains at the NH2- and COOH-terminus
with similar folds shaped like barrels (28). BPI contains a
central beta-sheet domain which forms an interface
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between the barrels. Each barrel has a pocket occupied by a
phosphatidylcholine molecule. Since phospholipid binding
was coupled with the release of bound lipopolysaccharide,
lipopolysaccharide may bind to the same pockets (30).

4. SYNTHESISOF CETPAND PLTP

4.1. Synthesisof CETP

Human plasma CETP is a very hydrophobic
glycoprotein with an Mr of 70-74 kD, consisting of 476
amino acid residues (8,31). Amino acid analysis of purified
CETP demonstrated an unusualy high content (45%) of
nonpolar residues. CETP is synthesized by the liver, small
intestines, spleen, adipose tissues, adrena gland, kidney,
heart, and skeletal muscles. CETP is secreted from cultured
monocyte-derived macrophages, B-lymphocytes (32),
adipocytes (33-34), hepatocytes and a human hepatoma cell
line, HepG2 cells, and CaCo-2 cells (a model of
enterocytes). CETP activity varies markedly between
species; CETP activity is very low in mice and rats and
high in rabbits. The CETP activity in humans is
intermediate between mice and rabbits (35). By Northern
blot analysis CETP mRNA can be detected in the liver,
small intestines, spleen, adrenal gland, heart, skeleta
muscle and adipose tissues. In cynomolgous monkeys, high
levels of CETP mRNA were detected in the liver and
thoracic aorta, whereas low but detectable levels of CETP
mMRNA were shown in mesenteric fat, adrenal gland, spleen
and abdominal aorta (36). Tissues containing LPL such as
adipose tissues and skeletal muscles are the major sources
of CETP mRNA in hamsters (37).

Human monocyte-derived macrophages in
culture synthesize and secrete CETP activity in a time-
dependent manner over 24 h. CETP expression is induced
during the differentiation of monocytes into macrophages
(38). The secretion of CETP activity into culture medium
is facilitated by phorbor myristate acetate, and is also
increased when macrophages are loaded with acetylated
LDL or free cholesterol. The secretion of CETP is
positively correlated with the intracellular accumulation
of CE, suggesting that CETP may function to maintain
intracellular cholesterol homeostasis during
differentiation and in response to an excess of cholesterol
accumulation. A human adipocyte-derived liposarcoma
cell line, SW872, produces 50-fold more CETP than
HepG2 cells with cholesterol loading (39). CETP mRNA
abundance in human adipose tissue was shown to be a
function of membrane cholesterol content rather than lipid
droplet cholesterol. CETP mRNA increased in paralel with
cholesterol enrichment via chylomicron remnants (34).
CaCo-2 cells, a human intestinal cell line, secrete CETP in
a vectoriad manner from the basolateral membrane, and its
secretion is increased 3-fold by adding fatty acids into the
culture medium (40). CETP activity is also detected in
seminal fluid and cerebrospinal fluid, which is about 12%
of that of plasma (41). CETP activity can be detected in a
conditioned medium from human neuroblastoma and
neuroglioma cells and from sheep choroid plexus,
suggesting that CETP is synthesized and secreted by the
brain and may play some roles in the transport and
redistribution of lipids within the central nervous system.
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4.2. Synthesisof PLTP

Human PLTP contains 476 amino acid residues.
Human PLTP has a 93% homology with pig PLTP and an
83% homology with mouse PLTP. Human PLTP is highly
expressed in the placenta, adipose tissue, pancreas and
lung. Intermediate levels of expression are detected in the
liver, heart and kidney (42-43). PLTP expression in the
lung suggests some role of PLTP in the synthesis or
delivery of pulmonary surfactants. In mice, PLTP mRNA
was aso observed in brain and testis with intermediate
levels (44). The synthesis of PLTP in the liver, adipose
tissue, and lung is assumed to contribute to most of the
plasma PLTP mass in humans and mice.

5. STRUCTURE AND REGULATION OF HUMAN
CETP GENE

5.1. Structure of human CETP gene

The CETP cDNA was cloned from humans,
rabbits, cynomolgous monkeys, and hamster (37,45-47).
Human CETP cDNA has an 80% homology to that of
rabbits. The CETP cDNA sequence of cynomolgous
monkeys demonstrated a 95% homology to that of humans
(47). Human CETP gene, located in chromosome 16
(16012-16qg21) near the LCAT gene, spans over 25 kb and
consists of 16 exons and 15 introns (48). In the promoter
region of the human CETP gene, sequences resembling a
“TATA” box and an SP1 hinding site were identified
upstream of the trandation initiation codon (48). In the
promoter region of human CETP gene, there is a sequence
resembling the binding site for the transcription factor
CCAAT/enhancer-binding protein (C/EBP), which may be
preserving CETP gene promoter activity (49). Thereis also
a 105-bp tissue-restricted promoter which contains a
nuclear hormone receptor response element required for
transcriptional activity (50). Three specific binding sites of
nuclear extracts were identified within the promoter region.
Nuclear hormone receptors, including ARP-1 and its
homol ogue Ear-3/COUP-TF, were occupants of the region -
93 to -118 in HepG2 and Caco-2 cells. ARP-1 was shown
to play a dichotomous role as both a transcriptiona
repressor and a transcriptional activator, depending on the
promoter context.

There are two isoforms of CETP mRNA in
human tissues expressing the CETP gene; one is a full-
length form which produces an active Mr 74,000 CETP,
and the other is a shorter variant in which exon 9-derived
sequences had been removed (51). The shorter form of
CETP mRNA is produced by an alternative splicing of the
CETP genetranscript. By transfection of the exon 9-deleted
cDNA to COS cells, a shortened form of CETP is poorly
secreted and inactive. By co-transfection of full-length and
exon 9-deleted cDNAs to COS cells, the secretion of full-
length active CETP was inhibited, suggesting that the exon
9-deleted protein may have a dominant negative effect on
the expression of full-length CETP and that alternative
splicing of CETP gene may modulate the level of active
CETP (52). The Caco-2 cells, an intestinal cell line, show a
reduction of active CETP mRNA under basal conditions
and about 60% of reverse transcribed CETP cDNA
corresponds to exon 9-deleted transcripts, while addition of
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sodium oleate into the culture medium induces a 2-fold
increase in full-length CETP cDNA transcripts without
affecting exon 9-deleted transcripts, resulting in an
enhancement of CETP activity secreted into the medium
(53).

5.2. Regulation of CETP synthesis

Plasma CETP activity is enhanced when rabbits
are fed a high-fat, high-cholesterol diet (54), which is
mainly due to the increased hepatic production of CETP
(55-56). CETP activity is increased in WHHL rabbits
compared with wild-type rabbits, suggesting that
endogenous hypercholesterolemia may aso increase the
expression of CETP gene. As will be mentioned later, in
the human CETP transgenic mice with its natural promoter,
amarked increase in CETP mRNA and protein is observed
in response to a high-fat, high-cholesterol diet, whereas the
same transgene under the control of the mouse
metallothionein promoter exhibits no significant change in
CETP mRNA or protein in response to an atherogenic diet
(57). Thus, the sequences necessary for the increment of
CETP mRNA in response to dietary cholesterol may be
located in the natural flanking regions. The sequences in
the natural flanking regions which may be responsive to
sterols and important for tissue-specific expression of
CETP mRNA were examined, using transgenic mice (58).
CETP expression was not changed in response to dietary
cholesterol when the downstream flanking sequence was
deleted. In contrast, by deletion of the 232-bp sequences
between —138 to —370 bp upstream of the transcription start
site, the response to dietary cholesterol was abolished,
suggesting that this region contains element(s) that is
responsive to sterols. Moreover, the CETP transgenic
mouse line containing an additional 200-bp segquence
upstream of the flanking region —138 to -570 bp showed a
more remarkable increase in response to dietary
cholesterol, indicating that there are segquences in this
region affecting the response to dietary cholesterol (58).

The upstream sequence responsible for an
authentic tissue distribution of CETP and its induction in
response to dietary or endogenous hypercholesterolemia
was further examined, using transgenic mice expressing 6
DNA constructs that contain different amounts of natural
flanking sequence of the CETP gene (58). The upstream
flanking sequence between —138 to —370 bp of CETP gene
contained sequence with homologies with promoters of
other genes responsive to sterols. Figure 3 shows the
upstream flanking sequence of the CETP gene. There was a
tandem repeat of a seguence with identity to the sterol
regulatory element (SRE) in the 3-hydroxy-3-
methylglutaryl-coenzyme A  (HMG-CoA) reductase
promoter that is responsible for the sterol-mediated
regulation of the HMG-CoA reductase gene (59). The
tandem repeat of SRE element was identical to that in the
HMG-CoA reductase promoter except for the last
nucleotide of the second repeat. By gel shift assays, this
element was shown to bind SRE binding protein (SREBP-
1) (60) and Red25 (61), which is identicad to the
transcription factor Yin Yang-1(YY-1). Point mutations
were prepared in the SRE-like element, designated MUT1-
and MUT2-CETP promoter fragments, which resulted in
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Figure 3. (A) Complete nucleotide sequence between +60 and —580 of the human CETP promoter region. Consensus elements
for known transcription factors are demonstrated. There is a tandem repeat of the sterol regulatory element of the HMG-CoA
reductase gene (Red 25), the ubiquitous nuclear factor-1 (NF-1), C/EBPalpha, hepatocyte nuclear factor-1 (HNF-1), a nuclear
hormone receptor (NHR), PEA-3, Spl, and the muscle-specific element MLC1F. Arrows show direct and inverted repeats.
Asterisks indicate sequences found using MACAW program in the proximal promoter of rat, mouse, hamster, and human
cholesterol 7 alpha-hydroxylase, human PLTP, and human, rat, and mouse apo E. Tg C, D, E, and F show the 5’ ends of
transgenes that were used to study the in vivo expression of CETP in transgenic mice. (B) Distribution of tissue-specific elements
in the 3.4 kbp of the human CETP promoter. Tissue names in parenthesis indicate the presence of regulatory elements with minor
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decreased binding of SREBP-1 in MUT1 or SREBP-1 and
YY-1in MUT2 (62). CETP transgenic mice expresssing
these promoter point mutations were prepared, and both
MUT1 and MUT2 transgenic mice expressed CETP
activity and mass. Both MUT1-CETP and MUT2-CETP
showed an induction of plasma CETP activity upon loading
high-fat and high-cholesterol diets. Using a stable
transfectant of adipocyte cell line (3T3-L1) with MUT1 and
MUT2 CETP promoter-reporter genes, a significant
induction of reporter activity was observed in response to
sterols. CETP transgenic mice with natural flanking region
(NFR) and those with MUT1-CETP promoter were crossed
with SREBP-1 transgenic mice to elucidate transactivation
by SREBP-1. Induction of SREBP transgenes in the liver
with alow carbohydrate diet resulted in a 3-fold increase in
plasma CETP activity in NFR-CETP/SREBP transgenic
mice, whereas CETP activity was not significantly changed
in MUT1-CETP/SREBP transgenic mice. Therefore, the
NFR-CETP transgene is transactivated in vivo by SREBP-1
through the interaction with the CETP promoter SREs.
However, this interaction is not necessary for positive
sterol induction of CETP gene transcription. Taken
together, CETP gene may be independently regulated by
SREBP-1 and a distinct positive sterol response factor (62).
A fragment between nucleotides —361 and —-138 was
involved in a positive response to cholesterol loading (63).
Both SREBP-1a and YY-1 were shown to trans-activate
the luciferase activity of constructs harboring the
cholesterol response element. SREBP-2 was also shown to
trans-activate the luciferase construct, although much less
effectively than SREBP-1.

Plasma CETP levels and hepatic CETP mRNA
are also markedly increased in response to endogenous
hypercholesterolemia as observed in the LDL receptor and
apo E knockout mice. These increases were due to an
enhanced transcription of CETP gene in the liver and
peripheral tissues. Since plasma cholesterol level positively
correlated with plasma CETP in CETP transgenic mice and
humans (64-65), it is speculated that CETP gene expression
is driven by a mechanism which senses high levels of
plasma cholesterol independent of apo E and LDL
receptors (66). Orphan nuclear receptors such as LXRalpha
(NR1H3), LXRbeta (NR1H2), and SF-1 (NR5A1) have
recently been shown to be activated by sterols in cell
culture (67-70). LXRs were aso activated by hydroxy
sterols at physiological concentrations (67-68). A retinoic
acid receptor element (RARE) was identified in the —165/—
134 region of the CETP gene (71). A direct repeat of a
nuclear receptor binding sequence separated by 4
nucleotides (DR4 element, —384 to —399) was identified in
the CETP promoter region (72). To evaluate the induction
of CETP gene, mice carrying normal or mutated promoter
sequences were prepared. DR4 element was responsible
for the induction of CETP gene after cholesterol loading.
Both LXRalpha/RXRapha and LXRapha/RXRbeta
transactivated the CETP promoter viaits DR4 element in a
sterol-responsive manner, suggesting that the positive
response of CETP gene to sterols is mediated by a nuclear
receptor binding site which is activated by LXRs. There is
a hinding site for LXR in the promoter of the Cyp7a gene
that encodes cholesterol 7 alpha-hydroxylase, the first rate-
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limiting enzyme in the pathway converting cholesterol to
bile. LXRalpha was shown to transactivate the Cyp7 apha
promoter (69). Taken together, LXRalpha coordinates the
regulation of HDL-CE catabolism and bile acid synthesisin
the liver.

5.3. Determinants of plasma CETP levels

Which is the predominant source of CETP that
regulates the plasma level of CETP? A positive correlation
was observed between plasma CETP and hepatic CETP
mRNA abundance, and the liver was shown to be one of
the predominant sources of plasma CETP in primates (73).
Although hepatocytes were assumed to be a primary site of
CETP synthesis, it was suggested that non-parenchymal
liver cells (sinusoida cells) are a predominant source of
plasma CETP in primates (74). CETP mRNA was detected
only in non-parenchymal cells, while apo A-l and B were
produced only by parenchymal cells, and apo E by both
types of cells. In situ hybridization showed that hepatic
sinusoidal cells in primates were responsible for the high
CETP mRNA levels.

Moreover, CETP is aso synthesized by adipose
tissues (34,37). CETP mRNA is detected in preadipocytes
and is present throughout differentiation (75). In contrast,
LPL and adipsin are detected by day 2 or 3 of adipocyte
differentiation. The transcription factors such as
peroxisome proliferator-activated receptor (PPAR) gamma,
ADD1/SREBP1 and C/EBPalpha are expressed by day 2.
CETP expression is induced at an early stage of adipocyte
lineage and may be activated by transcription factor(s),
which are not members of the PPAR, ADD1/SREBP1 or
C/EBP families (75). In an attempt to explain the low
plasma HDL-cholesterol levels in obese subjects, Arai et a
showed that both CETP activity/mass and postheparin
hepatic lipase activity were increased in obese subjects,
while postheparin LPL activity was significantly decreased
(76). Plasma HDL-cholesterol level was correlated
positively and independently with plasma CETP activity,
but not with LPL or HL activity. CETP activity in obese
subjects was positively correlated with body weight, body
mass index (BMI), body fat mass and subcutaneous fat area
determined by CT scan, while it was negatively correlated
with the ratio of visceral fat area / subcutaneous fat area
Therefore, low plasma HDL-cholesterol level in obese
subjects is attributed mainly to the increased CETP activity
produced by adipose tissues, especialy subcutaneous fat
tissues, which may be a predominant source of plasma
CETP in obese subjects (76). In contrast, Dusserre et al.
reported that CETP mRNA levels were more abundant in
visceral fat tissues than in abdominal subcutaneous fat (77).

6. STRUCTURE AND REGULATION OF HUMAN
PLTP GENE

Human plasma PLTP has a 20% sequence homology to
human CETP (78). It is noteworthy that human PLTP gene
has a marked similarity in the exon-intron organization
(79). Two distinct basic amino acid residues, Lys233 and
Arg259, were implicated in the ionic interaction of CETP
with negatively charged groups (80). The two specific basic
amino acid residues of CETP are remarkably conserved



Roles of plasma lipid transfer proteinsin rever se cholesterol transport

among all the members of the lipid transfer/LBP family,
and Arg218 and Arg245 of PLTP correspond to Lys233
and Arg259 of CETP, respectively. Thus, Arg218 and
Arg245 of PLTP might mediate the electrostatic interaction
of PLTP with lipoprotein negative charges (81). The N-
termina regions of PLTP, CETP, LBP and BPI are
markedly homologous, while the C-terminal regions are
less conserved. It is suggested that C-terminal region may
possess the specific properties of PLTP and CETP, namely
the binding and transfer of surface lipids in the case of
PLTP and the binding and transfer of apolar lipids in the
case of CETP, respectively.

PLTP activity and mRNA are increased in
response to a high-cholesterol diet in mice (44). Mice fed a
high-fat, high-cholesterol diet showed a significant increase
in plasma phospholipid transfer activity in association with
PLTP mRNA in the lung. PLTP promoter shows no strong
homology to known SREs. The promoters of human and
mouse PLTP genes show 5 consensus sequences for the
transcription factor Spl that is necessary for PLTP
transcription (82-83). Injection of lipopolysaccharide into
mice was shown to downregulate PLTP expression (44).

7. STRUCTURE-FUNCTION RELATIONSHIP OF
CETP

The carboxyl-termina sequences of CETP (26
amino acids) are important for neutral lipid transfer
activity, which are the epitope of a neutralizing monoclonal
antibody (TP2) (84). The binding sites of CE and TG may
be different since some monoclona antibodies completely
inhibit TG transfer, but not CE transfer (85). The changes
of amino acids 48-53, amino acid 165, and amino acids
373-379 by linker insertion scanning mutagenesis markedly
impaired CE transfer activity (86). By expressing full-
length and mutant human CETP cDNAs with overlapping
deletions in the C-termina region in baculovirus-
transfected Sf9 insect cells, the characteristics of mutant
proteins were analyzed (87). Both CE and TG transfer were
impaired in the mutant proteins and the C-terminal
sequence -Phe-Leu-Leu-Leu- (residues 454-457) was
essential for normal binding of CETP to each lipoprotein
and the effective transfer of CE and TG possibly together
with the other sequences in the C-terminal region. Several
other proteins that are reported to function in binding non-
polar lipids, including LCAT, cholesterol 7 apha
hydroxylase, cholesterol esterase, and hormone-sensitive
lipase possess similar conserved sequences. The in vitro
point mutagenesis and expression in COS cdls
demonstrated that the binding of TP2 to CETP was
abolished by mutations of charged amino acids existing

periodically within the sequence between His?66 and

Leu#’> and at Asp460, athough CE transfer activity was
well preserved in these mutants (88). In contrast, mutations
of hydrophobic amino acids in this region (especialy
Phe?>4 Phe?®l, Leu?68, pne?’L and Leu475) caused a
marked reduction in CE transfer, but norma binding of
TP2. Therefore, these paradoxical effects of mutations on
TP2 binding and CE transfer activity suggest that the
hydrophobic face of a C-terminal helix of CETP is
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involved in CE transfer and that TP2 inhibits activity by
local sterical hindrance. The hydrophobic character of this
region due to the abundance of hydrophobic amino acids
Leu and Phe may be crucia for CE transfer.

The Mr of CETP deduced from the cDNA is
53,108, however purified plasma CETP appears as a broad
band containing two different molecular forms (89). This
microheterogeneity can be explained by the variable N-
linked glycosylation. There are 4 potential N-linked
glycosylation sites in the CETP cDNA sequence at amino
acid positions 88, 240, 341 and 396 (90). Site-directed
mutagenesis analysis demonstrated that the mutant proteins
88N:Q and 396N:Q were poorly secreted, while the
341N:Q protein was well secreted with a higher CE transfer
activity compared to the wild type (90). Thus, plasma
CETP consists of a mixture of two forms reflecting a
variable glycosylation at Asp 341. Rabbit CETP was
expressed and secreted by Pichia pastoris (91), and the
recombinant CETP was synthesized as an inactive
polypeptide that is processed and secreted as a functional
protein. N-linked glycosylation was essential for activity of
recombinant rabbit CETP.

As mentioned earlier, although CETP and BPI
have a relatively low sequence similarity (23% identity at
the nucleotide and amino acid level), both proteins are
homologous in the whole structures. When the sequences
of CETP and BPI are aigned, the C terminus of the 476
amino acid-long CETP extends by 12 extra residues, which
are predicted to form an amphiphilic helix (88) and the
epitope of a monoclonal antibody that inhibits the neutral
lipid (but not phospholipid) transfer activity of CETP.
Based upon the binding characteristics of anti-CETP
monoclonal antibodies, a model of CETP structure was
presented. Four epitopes composed of CETP residues 215-
219, 219-223, 223-227, and 444-450 were predicted to be
present on the external surface of the central beta-sheet and
a fifth epitope (residues 225-258) on an extended linker
that connects the two domains of the molecule (92). A
possible lipid transfer mechanism for CETP was
hypothesized; the initial step involves the disordering of
lipids in the lipoprotein surface, followed by the flipping
and entry of a lipid molecule into the hydrophobic lipid-
binding pocket (93). A monoclonal antibody against rabbit
CETP was developed, which selectively inhibited TG
transfer without affecting CE transfer (94). The epitope of this
monoclona  antibody was the segment  465-473
(EHLLVDFLQ) of human CETP or 485-493 (KHLLVDFLQ)
of rabbit CETP (core epitope), dthough neither peptide by
itself bound to the antibody (95). Circular dichroism analysis
showed that the limited interaction of monoclonal antibodies
with acommon lipid interaction site causes selective inhibition
of TG transfer that has possibly lower priority than CE for the
CETPreaction.

8. TRANSGENIC ANIMAL MODEL S OF CETP AND
PLTP

8.1. CETP transgenic animal models
CETP transgenic mouse lines with mouse
metallothionein promoter were developed (57). Plasma
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CETP concentration was increased approximately 1.4 - 1.6
fold and the CETP activity was proportionally elevated.
The transgene overexpression after zinc induction was
detected in the liver and small intestines. CETP transgene
expression caused a reduction in serum cholesterol due to a
20-30% decrease in HDL-cholesterol and HDL particle
size, although no significant changes were observed in total
cholesterol in VLDL and LDL fraction. Transgenic mice
expressing cynomolgus monkey CETP were a so developed
(96). The aterations in plasma lipoprotein profile were
partly similar to those of CETP transgenic mice with
metallothionein promoter (57), but more striking increases
in plasma cholesterol, (VLDL+LDL)-cholesterol, and apo
B were demonstrated probably due to much higher CETP
levels (96). There was a strong negative correlation
between plasma CETP activity and total plasma
cholesterol, plasma apo A-I levels and apo A-1/apo B ratio.
The size of apo A-I-containing lipoproteins became smaller
because of the disappearance of HDL1 and HDL 2 particles.
Several lines of CETP transgenic mice with natural
flanking sequences of human CETP gene were developed,
using a minigene linked to the natural flanking sequences
of the human CETP gene (64). A transgene containing 3.2
kb of upstream and 2.0 kb of downstream flanking
sequence was utilized. A 4 to 10-fold increase in liver
CETP mRNA was noted in response to a high fat, high
cholesterol diet. The increase in liver CETP mRNA was
associated with a 5-fold increment of the transcription rate
of CETP transgene and a 2.5-fold increase in plasma CETP
activity/mass. In contrast, CETP transgenic mice with the
CETP minigene linked to metallothionein promoter rather
than to its own flanking sequences, demonstrated no
significant changes in liver CETP mRNA in response to
cholesterol loading. Taken together, the natural flanking
sequences of CETP gene may contain elements which
mediate authenti ¢ tissue-specific expression.

The human CETP transgenic mice were mated
with human apo A-I transgenic mice (97). Overexpression
of both human CETP and apo A-l genes resulted in a more
prominent reduction in HDL-cholesterol level and HDL
particle size than mice expressing only CETP, athough
plasma level of CETP activity was similar. The CETP in
CETP/apo A-l transgenic mice was associated with HDL
particles, however only one-fifth of CETP was bound to
HDL in the CETP transgenic mice, suggesting that the
HDL containing human apo A-l1 may be a better substrate
for CETP (97). The CETP transgenic mice were also mated
with hypertriglyceridemic human apo C-I11 transgenic mice
(98). These CETP/apo C-llIl transgenic mice showed
markedly decreased levels of serum HDL-cholesterol and
apo A-l and the HDL size. These changes were due to an
increased fractional catabolic rate of HDL-CE and apo A-l.
A mouse model with some of the features of familia
combined hyperlipidemia was developed by crossing mice
carrying the human apo C-I11 transgene with LDL-receptor
knockout mice (99). The human CETP transgene was
introduced onto the LDL-receptor (-/-)/apo C-I11 transgenic
mice, which resulted in redistribution of cholesterol from
HDL and IDL-LDL to VLDL and of TG from VLDL to
IDL-LDL and HDL. In the transgenic mice expressing both
human apo B and human CETP, the percentages of total
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cholesterol within the HDL, LDL and VLDL fractions were
30%, 65% and 5%, respectively, under a normal chow diet
(100). These lipoprotein profiles were similar to those of
normolipidemic human subjects. The liver LDL receptor
was downregulated at the transcriptional level in the apo
B100/CETP double transgenic mice compared with the
nontransgenic mice (101).

Regarding the atherogenicity of CETP
overexpression, the rate of progression of arterial lesions
was accelerated in the transgenic mice expressing simian
CETP (102). To create transgenic mice, they used C57BL/6
mouse, an inbred strain in which the development of
atherosclerosis was well characterized. The plasma
(VLDL+LDL)-cholesterol and apo B levels increased to a
greater extent in the CETP transgenic mice than in the non-
transgenic mice when fed atherogenic diet. The plasma
HDL-cholesterol level in the CETP transgenic mice was
significantly lower than that of non-transgenic mice when
they were consuming a norma chow. The overexpression
of CETP caused an increase in (VLDL+LDL)/HDL ratio,
which positively correlated with the mean lesion area in
aorta. However, the atherosclerotic lesion area was not
significantly different between the LDL-receptor (-/-)/apo
C-Ill transgenic mice and the LDL-receptor (-/-)/apo C-
I11/CETP transgenic mice despite the marked decrease in
HDL-cholesteral (99). In contrast, CETP overexpression
was shown to inhibit the development of early
atherosclerotic lesions in hypertriglyceridemic apo C-lI
transgenic mice (103). In the human LCAT transgenic
mice, plasma HDL-cholesterol levels are elevated, but
enhanced atherosclerosis is observed (104). The LCAT
transgenic mice were crossbred with CETP transgenic mice
(105). The CETP expression could normalize both the
plasma clearance of CE from HDL and the hepatic uptake
of CE from HDL in LCAT transgenic mice. On the
atherogenic diet, the mean aortic lesion area was decreased
by 41% in LCAT/CETP double transgenic mice compared
to the LCAT transgenic mice. Thus, the overexpression of
CETP was assumed to reduce atherosclerosis in LCAT
transgenic mice by correcting the dysfunctional properties
of LCAT-transgenic mouse HDL and promoting the hepatic
uptake of HDL-CE.

8.2. PLTP transgenic animal models

The transgenic mice expressing moderate levels
(~30% increase) of human PLTP do not exhibit marked
changes in lipoprotein metabolism, wheress the PLTP
transgenic mice expressing human apo A-1 showed a
sgnificant increase in the plasma levels of aphaHDL and
prebetaHDL (106). The little changes in lipoprotein
distribution in the PLTP transgenic mice may be explained by
the substantia levels of PLTP that are dready present in
control animals, but these data suggest that prebetasHDL
paticles are generated by PLTP reaction. In contrat,
adenovirus-mediated overexpression of human PLTP cDNA in
the liver resulted in a 10- to 40-fold increase in plasma PLTP
activity in mice (107). These mice were characterized by the
increased prebeta-HDL levels, an increased fractiona catabolic
rae of HDL, and enhanced hepatic upteke of HDL-CE
compared with the wild-type mice, suggesting the role of
PLTP in stimulating reverse cholesterol transport in vivo.



Roles of plasma lipid transfer proteinsin rever se cholesterol transport

The PLTP knockout mice on a chow diet showed
a marked decrease in HDL phospholipid, cholesterol and
apo A-l, but no significant change in non-HDL lipid or apo
B levels, compared with the wild-type littermates (108). On
a high-fat diet, HDL levels were similarly decreased, but
there was also an increase in VLDL and LDL phosphalipids,
free cholesterol and cholesteryl ester without changesin apo B
levels, demongtrating the important role of PLTP-mediated
transfer of surface components of TG-rich lipoproteins in the
maintenance of HDL levels. Interestingly, lamellar lipoproteins
were observed in the free cholesterol- and phospholipid-rich
IDL/LDL fraction. Furthermore, the HDL of the PLTP
knockout mice was enriched with protein and poor in
phosphatidylcholine, and turnover studies showed a 4-fold
increase in the catabolism of HDL protein and CE compared
with that of wild-type mice (109). Thus, the impairment of
phospholipid transfer from TG-rich lipoproteinsinto HDL may
leed to hypodphdipoproteinemia characterized by
hypercatabolism of HDL protein.

9. HUMAN PLASMA CETP DEFICIENCY

9.1. Abnormal properties and functions of plasma
lipoproteinsin CETP-deficiency

Hyperal phalipoproteinemia (HALP) is caused by
a variety of genetic and environmental factors, and is also
associated with certain diseases. Families of HALP with
hypobetalipoproteinemia accompanied by longevity due to
alow incidence of coronary heart disease were previously
described (110). Matsuzawa et a reported two patients with
amarked HALP and premature corneal opacity, which is a
sign of lipid depositions in tissues, and one of these patients
complained of angina pectoris (111-112). Thus, it was
suggested that HALP may be a condition of “impaired
reverse cholesterol transport” and could be accompanied by
atherosclerosis. The most important cause of primary
HALP is a genetic CETP deficiency. Patients with CETP-
deficiency show markedly elevated serum HDL -cholesterol
levels, while their serum total cholesterol is moderately
increased (113-115). Serum apo A-I, C-Ill and E levels are
also very high, whereas apo B is normal or dlightly
decreased. The increment of HDL-cholesterol is due to the
increase in HDL,-cholesterol, while HDLs-cholesterol is
not increased. The HDL of the patients is more enriched
with CE and poorer in TG than control HDL. In contrast,
the CE content of the VLDL and LDL fraction is reduced.
LDL-cholesterol level is norma or dlightly elevated.
However, it is noteworthy that the ultracentrifugally
separated LDL fraction (d=1.019-1.063) contains apo E-
rich HDL with a slow aphamobility in agarose gel
electrophoresis in addition to the apo B-containing LDL
(116). These HDL c-like particles have a high affinity to the
LDL receptor of fibroblasts. The HDL particles of CETP-
deficient patients resemble partly those of SR-BI knockout
mice in their characteristics (117). SR-Bl is an HDL
receptor involved in the selective uptake of CE from HDL
and is abundantly expressed in the liver and steroidogenic
tissues (118). SR-BI knockout or SR-BI attenuated mice
show a marked increase in serum cholesterol, especially
HDL-cholesterol, while serum apo A-l level is not altered.
The size of apo A-l-containing lipoproteins was much
enlarged (117,119). These changes of lipoproteinsin SR-BI
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knockout mice are in part similar to those in CETP-
deficient patients, suggesting that both CETP and SR-BI
may regulate the concentration and size of HDL particles.
However, the contribution of hepatic SR-BI expression to
the regulation of HDL-cholesterol levels in humans
remainsto be clarified.

Furthermore, the LDL particles of CETP-
deficient patients are smal and very heterogeneous
(designated as polydisperse LDL) and HDL particles are
markedly large when examined by native polyacrylamide
gradient gel electrophoresis or analytical ultracentrifugation
(115,120). In analyses using equilibrium density gradient
ultracentrifugation, the LDL of CETP-deficient patients is
composed of heterogeneous lipoprotein particles distributed
in awide density range without any prominent peak (120).
To the contrary, the LDL of controls comprises of a
homogeneous group of lipoprotein particles distributed in a
narrower density range with a single sharp peak (120). The
LDL in each subfraction obtained from the patients is poor in
CE and enriched with TG. In native polyacrylamide gradient
gel eectrophoresis, each subfraction of control LDL contains
only one species of homogeneous LDL particles that decreases
in dze with an increase in the dendity. In contrast, each
subfraction of patients LDL contains two species of LDL
particles, smdler LDL particles are present in addition to the
LDL particles that are identical to the control LDL particles
observed in the corresponding subfractions. The IDL of the
patients also comprises of two species of lipoproteins. Thus,
two metabalic pathways were hypothesized in the process of
mature LDL formation (120). VLDL is secreted from the liver
as two species of lipoprotein particles different in Sze. Each
species of VLDL is successively metabolized to LDL through
IDL by a separate pathway. Various modulations in plasma
might take place to produce cholesterol-rich LDL particles
with a high affinity for LDL receptors. The hydrolysis of TG
by lipoprotein lipase and HL is important for this process.
Moreover, CETP may play a crucid role in converting small
TG-rich LDL particles to large CE-rich homogeneous LDL
particles by transferring CE from HDL.

Since the lipoprotein particles from CETP-
deficient patients show marked changes in their
composition and size, they also exhibit functional
abnormalities. The HDL, particles from control subjects
can protect macrophages from cholesterol accumulation
and enhance cholesterol efflux from cells when incubated
with acetylated LDL. In contrast, the CE-rich large HDL,
particles from CETP-deficient patients have areduced capacity
for inhibiting acetyl LDL-induced accumulation of CE in
macrophages when HDL is added to the culture medium
together with acetylated LDL (121). The HDL, from the
patients has a less capacity than normal HDL., for cholesteral
efflux from macrophages loaded with acetylated LDL,
suggesting that large CE-rich HDL, particles from CETP-
deficient patients do not possess anti-atherogenic functions.
Human plasma contains two types of HDL particles; HDL
particles with only apo A-I (LpA-I) and those with both apo A-
I and A-ll (LpA-I/A-Il). The LpA-l is reduced in CETP-
deficient patients, resulting in a significant decrease in the
efflux and LCAT-mediated esterification of cholesterol
compared to normal controls (122). In a stable isotope



Roles of plasma lipid transfer proteinsin rever se cholesterol transport

Intron 10 splice donor site

Intron 14 splice donor site
+1G > A

Exon 10
309GIn > X

Exon 9
[2e8Arg — X
Exon 2 Exon 6
[eala>x] [e6ly—-x]
STTyr > X

1011 121314 1516

1
1
1

9

Exon 12 Exon 14 Exon 15

[Mspl] [s73A1a > Pro]  [40slle > val] [+42Asp —> Gy

Figure4: Mutations and polymorphisms in the human
CETP gene reported so far. The intron 14 splicing defect
and 442 D:G mutation are the most predominant in the
Japanese subjects with HALP.

study, the fractional catabolic rates (FCRs) of apo A-l and
A-Il were sdignificantly lower in the CETP-deficient
patients than in the controls, while the rates of apo A-1 and
apo A-ll production were normal (123). Thus, homozygous
CETP deficiency causes a markedly delayed catabolism of
apo A-l and A-Il. Furthermore, the apo B-containing TG-
rich LDL particles from CETP-deficient patients have a
reduced affinity to the LDL receptor of fibroblasts
compared with the control LDL particles (124). These LDL
particles may be susceptible to the in vivo oxidation. Taken
together, CETP deficiency causes both compositional
changes and functional abnormalities of both HDL and
LDL.

These changes in the lipoproteins from CETP-
deficient patients can be modified by CETP in vitro. The
addition of CETP into the patients plasma caused a
disappearance of large HDL particles together with a
formation of very high density lipoprotein (VHDL)-like
particles and the addition of HL further accelerated this
process (125). The VHDL-like particles isolated by gel
permeation  chromatography  were enriched  with
phospholipids and protein and the protein moiety was
amost exclusively apo A-l. The VHDL-like particles
which migrated at the prebeta-position and partly at the
alpha-position in agarose gel electrophoresis showed a
more increased capacity than normal HDL 3 for cholesterol
efflux from acetyl LDL-loaded macrophages. Prebeta-HDL
levels, cholesterol efflux and LCAT-mediated esterification
in vivo were increased in mice overexpressing human
CETP and human apo A-l transgenes (126). The HDL
particles of human CETP transgenic mice removed
cholesterol from macrophages more efficiently than those
of non-transgenic mice. The co-expression of both human
apo A-l and CETP further improved the cholesterol efflux
efficiency of HDL particles in the human apo A-1 / CETP
transgenic mice when compared with the human apo A-I
transgenic mice (127). Therefore, CETP may play essentia
roles in remodeling of large HDL particles into small ones
that possess a potent anti-atherogenic function.

9.2. Genedefectsin CETP deficiency
Most of the CETP-deficient patients have been
reported so far from Japan. A G-to-A mutation in the 5'-
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splice donor site of intron 14 was first identified in a
Japanese patient with CETP deficiency (128). This defect
was aso identified in other Japanese CETP-deficient
subjects (129-130) and is thus common in the Japanese
HALP subjects and in the genera population (130-131). A
missense mutation (442D:G) in the exon 15 was later
identified (132). Although the patients were heterozygous
for this defect, they showed a 3-fold increase in plasma
HDL-cholesterol and markedly decreased plasma CETP
activity and mass, suggesting that the 442D:G mutation
may have dominant effects on CETP and HDL leve in vivo.
Expression in vitro of wild-type and mutant proteins in COS
cdls confirmed this possibility. The 442 D:G mutation is also
common in the Japanese HALP subjects and generd
population (133-134). A nonsense CETP mutation in exon 10
which causes premature stop codon and another nonsense
mutetion in exon 6 (G181X) were aso identified (135-136).
The latter mutation is aso common, athough its frequency in
the Japanese HALP subjects is lower than that of intron 14
splicing defect and 442 D:G mutation. Furthermore, adefect in
the intron 10 splice donor site of CETP gene was found, which
causes exon 10 skipping, resulting in anormal downstream
lice site selection (137). Mogt of CETP-deficient subjects
have been found in the Japanese population, however severa
mutations have recently been identified in the HALP subjects
from the German, Caucasian and Asian populations (138-141).
In the CETP-deficient patient with a heterozygous nonsense
mutation (*'Tyr->stop), the presence of anull alele in addition
to the allele with the nonsense mutation was suggested. The
patient was associated with a marked postprandia lipemia
(141). The dte of gene mutations and polymorphisms in the
CETP genereported so far is summarized in Figure 4.

9.3. Atherogenicity of CETP deficiency

A positive correlation was reported between the
extent of coronary atherosclerosis and plasma LDL-
cholesterol or CETP concentrations in cynomolgus
monkeys fed a high-fat, high-cholesterol diet (142). Aortic
atherosclerosis was more marked in some CETP transgenic
mouse lines after cholesterol feeding compared to non-
transgenic mice (96,102). Antisense oligodeoxynucleotides
against CETP coupled to asiaoglycoprotein carrier
molecules targeted to the liver were intravenoudly injected,
which inhibited plasma CETP activity and increased
plasma HDL-cholesterol in cholesterol-fed rabbits (143).
Furthermore, the injection of antisense but not sense
oligodeoxynuclectides attenuated aortic atherosclerosis in
the cholesterol-fed rabbits (144). A CETP inhibitor has
been shown to attenuate aortic atherosclerosis in
cholesterol-fed rabbits (145). Thus, the pro-atherogenic
function of plasma CETP was previously hypothesized in
animal models (146). However, these data under
unphysiological conditions such as cholesterol feeding in
animal models do not preclude the possibility that CETP
may play an anti-atherogenic role in vivo in humans.

A high prevalence of stroke was observed in
some CETP-deficient families and corneal arcus was noted
in CETP-deficient patients (147). Homozygous and
heterozygous CETP-deficient subjects were sometimes
accompanied by atherosclerctic cardiovascular diseases
such as coronary heart disease (147-148), cerebrovascular
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disease and arteriosclerosis obliterans (147). The HALP
subjects whose CETP and HL activities were both reduced
were accompanied by atherosclerotic cardiovascular
diseases (147). The increased HDL, particles in CETP-
deficient subjects were deficient in cholesterol efflux (121),
moreover the addition of CETP and HL transformed the
large HDL particles of CETP deficiency into small VHDL-
like particles with a potent antiatherogenic function (125).
The HDL particles isolated from mice expressing CETP
showed a 2- to 4-fold increase in SR-Bl-mediated HDL-CE
uptake compared to those from mice lacking CETP (149).
The addition of CETP to HDL in cell culture did not cause
an increased selective uptake of HDL-CE by cdls.
However, when human HDL was enriched with TG by
incubation with TG-rich lipoproteins in the presence of
CETP followed by treatment with HL, HDL-CE uptake
was significantly enhanced. Thus, the remodeling of human
HDL by CETP, involving CE-TG exchange, followed by
the action of HL, leads to the enhanced uptake of HDL-CE
by SR-BI.

Plasma CETP activity was also shown to enhance
plasma CE formation (150). The incubation of CETP
transgenic mouse plasma showed a 20% to 40% increase in
plasma cholesterol esterification rate compared to control
mice. Mean plasma cholesterol esterification rates were
lower in CETP-deficient patients than in normal subjects.
Since LCAT mass was normal in CETP-deficient patients,
genetic changes in CETP levels induce secondary
alterations in the plasma LCAT reaction, due possibly to
remodeling of HDL by CETP and other proteins in vivo.
Thus, a moderately impaired plasma LCAT reaction may
contribute to an abnormality of reverse cholesterol
transport.

Hirano et a identified a unique area in the
northern part of Japan named Omagari, where the
prevalence of the intron 14 splicing defect was extremely
higher than in the other part of Japan (151). In Omagari
area, both the prevalence of HALP subjects (serum HDL-
cholesterol more than 100 mg/dl) and the frequency of
CETP deficiency were significantly lower in subjects over
80 years of age than in those under 80 years. The
prevalence of ischemic changes in electrocardiogram was
higher in the HALP subjects with serum HDL-cholesterol
more than 90 mg/dl than in those whose HDL-cholesterol
was 50-70 mg/dl. Furthermore, CETP-deficient HALP
subjects showed higher atherosclerotic scores by an
ultrasound examination of carotid arteries compared with
control  CETP-positive  subjects.  Transesophageal
echocardiography aso demonstrated an enhanced
atherosclerosis in descending aorta (152). Therefore, it
could be speculated that CETP-deficient HALP patients are
not accompanied by longevity, but by atherosclerotic
cardiovascular diseases. Zhong et a reported partly similar
findings in Japanese-American men living in Hawaii. The
incidence of coronary artery disease was higher in subjects
with CETP mutations than in those without mutations,
however the difference was significant only in subjects
whose HDL -cholesterol level was between 41 and 60 mg/dl
and men with increased HDL levels (> 60 mg/dl) in this
population had a low risk of coronary artery disease
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irrespective of the CETP genotype (153). In contrast, a
study in the Kochi area showed no significant difference in
the prevalence of coronary heart disease between HALP
subjects with and without CETP mutations, but HALP
subjects (HDL-cholesterol > 80 mg/dl as well as HDL-
cholesterol from 60 to 79 mg/dl) appeared to be protected
against coronary heart disease irrespective of the presence
or absence of CETP deficiency (154). The reason for the
discrepancy between the data of Omagari and Kochi
remains to be clarified.

As mentioned earlier, CETP-deficient patients
have lipoprotein profiles similar to those observed in SR-BI
knockout mice, which show a marked increase in serum
HDL-cholesterol and HDL size. Significant atherosclerotic
lesions in the aortic root and coronary arteries were
developed in the SR-BI/apo E double knockout mice (155).
Similarly, increased LDL cholesterol and atherosclerosis
were demonstrated in LDL receptor knockout mice with
attenuated expression of SR-BI, which also showed a slight
increase in HDL-cholesterol (156). Thus, reduced
expression of hepatic SR-BI may be proatherogenic despite
high HDL-cholesterol levels, since reverse cholesterol
transport is impaired in this condition. Since CETP-
deficient patients show similar lipoprotein patterns, CETP
deficiency is adso a condition of impaired reverse
cholesterol transport which may be accompanied by
increased atherosclerosis.

9.4. Pathophysiological significance of polymorphisms
in the CETP gene

Severa restriction fragment length
polymorphisms (RFLPs) have been reported in the human
CETP gene, including Tag | (Tag IA and IB) in intron 1,
Stu I, Mspl (in intron 8) and EcoNI (157-159). The Taq IB
polymorphism is a silent base change affecting the 277th
nucleotide in the first intron (160) and has been extensively
studied. Subjects with the B2 allele (absence of the Taq |
site at this polymorphic site) were more likely to have high
HDL-cholesterol levels and low levels of CETP activity
and mass (161-167). This association was implicated to be
population specific (168-169), and influenced by
environmental factors such as alcohol consumption and
tobacco smoking (170-171). The association between Tag
IB  polymorphism and plasma HDL-cholesterol
concentrations can be influenced by the presence of
abdomina obesity and insulin resistance syndrome (172).
The association of Taq IB polymorphism with plasma
HDL-cholesterol concentration was independent of plasma
CETP concentration in diabetic patients (173).

A G-to-A substitution in exon 15, which changes
arginine 451 to glutamine, was also identified (174). Men
heterozygous for the R451Q mutation showed 27% higher
CETP activity than controls with normal genotype. Women
heterozygous for the mutation had 16% lower total
cholesterol compared to matched controls, but no such
difference was detected in men. Isoleucine 405 to valine
polymorphism (1405V) in exon 14 was aso identified,
however thisis a neutral mutation since the specific activity
of CETP with a valine or an isoleucine at residue 405 is
similar (175). The frequency distribution of plasma CETP
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concentration among men homozygous for the 405V allele
was bimodal, however that for the 4051 homozygote was
not. Therefore, a subpopulation of these men may carry a
functional mutation(s) in linkage disequilibrium with this
polymorphism that may influence the expression levels of
CETP (175). Three RFLPs at the CETP locus were shown
to independently influence plasma CETP levels among
subjects matched for factors that affect HDL levels (163).
In this study, Taqg IB, Mspl, and 1405V RFLPs accounted
for approximately 11%, 17%, and 4%, respectively, of the
variance in CETP mass in a healthy Dutch population. The
haplotype of Tag | B1-Msp | M1-405I alele was overly
represented in the lowest HDL decile, while the Tag | B2-
Msp | M2-405V haplotype was predominant in the highest
HDL decile (163). Underlying mutation(s) in partial
linkage disequilibrium with these loci may be responsible
for these effects on plasma CETP levels.

A new functional polymorphism, CETP/-
629A/C, has recently been identified in the control subjects
from the ECTIM study (176). The —629A dlele was
associated with lower CETP mass and higher HDL-
cholesterol levels than the —629C allele. Nuclear factors
Spl and/or Sp3 suppressed CETP promoter activity, while
the binding of nuclear factors to the -629C alele had no
effect on promoter expression. Furthermore, a G to A
substitution at the —69 nuclectide in the promoter region (—
69G—A), corresponding to the second nucleotide of
PEA3/ETS binding site (CGGAA) located upstream of the
putative TATA box, has been identified in HALP subjects
with low CETP levels (177). Luciferase reporter gene assay
demonstrated that the mutated promoter appeared to lose
transcriptional activity in HepG2 cells.

Concerning the relationship of RFLPs in the
CETP gene to atherosclerosis, a significant dose-dependent
association of Tag | B1B2 genotype marker with
atherosclerosis progression was observed in the placebo
group, while this link was abolished by pravastatin-
treatment (164). Pravastatin attenuated the progression of
coronary atherosclerosis in B1B1 carriers (with higher
CETP levels), but not in B2B2 carriers (with lower CETP
levels). This RFLP appeared to predict whether men with
coronary artery disease may benefit from pravastatin
treatment to delay the progresson of coronary
atherosclerosis. The protective effects of B2 allele on the
development of coronary heart disease in association with
increased HDL-cholesterol and decreased CETP activity
were observed in men of the Framingham population, while
no significant protective effects were observed in women
(178). Tagl RFLPs were examined in type Il diabetic
patients; HDL-cholesterol was higher and the incidence of
coronary heart disease was lower in men with the B2B2
genotype than in those with the B1B1 or B1B2 (179).
However, women showed higher HDL-cholesterol levels
than men and an equally high incidence of coronary heart
disease in B2 homozygotes as in other genotypes,
suggesting that the Taq 1B polymorphism appears to be
sex-dependent and affect HDL-cholesterol level and
atherosclerosis only in type Il-diabetic men. In the
Honolulu Heart Program cohort, the 1405V polymorphism
was examined to clarify the relationship between the
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polymorphism, CETP and HDL levels, and coronary heart
disease (165). The V/V genotype was associated with lower
CETP concentrations than the I/V or I/l genotype. Plasma
HDL-cholesterol levels were higher in men with the V/V
genotype than in men with the I/V or 1/l genotype, but the
increase in HDL-cholesterol was only significant in
hypertriglyceridemic men with the V/V genotype. The
prevalence of coronary heart disease was not significantly
different among the 3 genotypes, however it was
significantly higher among V/V than I/V or I/l subjects.
Thus, the V/V genotype may be associated with higher
HDL-cholesterol levels and increased coronary heart
disease in hypertriglyceridemic men. Similar findings have
recently been reported in women not treated with hormone
replacement  therapy, who were heterozygous or
homozygous for Val405 (167). These subjects were
associated with lower CETP activity and higher HDL-
cholesterol level and had a 1.4-fold to 2.1-fold increase in
the risk of ischemic heart disease, whereas no significant
association was found in men. Furthermore, the Q451 allele
was associated with significantly higher plasma CETP
activity and reduced intima media thickness in men, and the
1405V genotype was associated with lower plasma CETP
activity and significantly affected intima media thickness in
men with the highest alcohol consumption (180). Taken
together, the contribution of RFLPs in the CETP gene to
the development of atherosclerosis is still complex and
should be evaluated prospectively. Further studies may be
necessary in the future.
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