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1. ABSTRACT

Since many mycobacteria are facultative
intracellular pathogens, their ability to cause disease
involves entry, survival and replication within host cells.
Despite the fact that mycobacteria were first associated
with disease more than 125 years ago, the first step in the
production of an infection, entry into host cells, is not well
understood. Mycobacteria have the ability to enter a
number of different cell types, but the primary cell type that
they are thought to replicate within during human disease is
macrophages.  Since macrophages have a large number of
receptors that are designed for relatively non-specific
uptake of foreign particles, there are multiple routes by
which nearly any bacteria can be taken up.  The outcome of
mycobacterial entry into macrophages via different
mechanisms is unclear.  Although it is thought that
mycobacteria may enter macrophages by a mechanism that
allows them to avoid lysosomal fusion, it remains possible
that mycobacteria enter by more than one mechanism, yet
remain viable and replicate intracellularly through
modification of the phagosome.  In the current discussion
we will review mycobacterial research specifically relating
to the mechanisms of entry into host cells.  Although much
progress has been made in our understanding of entry by
mycobacteria, we anticipate that clarification of the role of
entry in pathogenesis will require further application of
newly developed molecular tools to dissect each of the
proposed mechanisms.

2. INTRODUCTION

Mycobacteria were first associated with human
disease in 1874 when Hansen found that a bacterium is
associated with leprosy (1).  Even today mycobacteria
represent some of the most important pathogens of humans

and animals.  Tuberculosis caused by Mycobacterium
tuberculosis is currently the number one cause of death
worldwide due to a single infectious agent (2, 3).
However, M. tuberculosis is not the only mycobacterial
species that causes respiratory disease.  M. avium (4, 5), M.
intracellularae (5, 6), M. malmoense (7), M. bovis (8), M.
kansasii (5), M. xenopi (5, 9), M. fortuitum (5, 9), M.
chelonae (5, 9), M. africanum (10), M. abscessus (11), and
M. scrofulaceum (11) have also been shown to cause
respiratory infections.  In addition, recent data suggest that
M. leprae may spread from human to human by aerosol
(12, 13).  Many pathogenic mycobacteria are facultative
intracellular pathogens of monocytic cells; however, they
can enter and survive in a number of other cell types.  Entry
into other cell types may be involved in mycobacterial
pathogenesis, for example, M. avium has the ability to enter
intestinal epithelial cells (14, 16) and M. tuberculosis may
enter respiratory epithelial cells during early stages of
infection (17).  Mycobacteria have also been shown to enter
microfold (M) cells (18, 19), which raises the question of
whether Peyer’s patches are one of the portals for
dissemination.  Since entry is likely to be an important step
for growth, dissemination and pathogenesis, the ability to
block entry is likely to be an effective mechanism of
control for mycobacterial infections.  Blocking this step in
pathogenesis has the added advantage that it prevents
infections early and, most likely, before any clinically
relevant pathology has occurred.

Before it is possible to design potential
intervention strategies, we must understand the preferred
mechanisms used by mycobacteria to enter host cells.
Though the entry mechanism used is commonly thought to
be important in establishing mycobacterial infections, it is
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not well understood.  The entry process in other
intracellular pathogens is thought to depend upon
participation of both the host cell and bacteria (20) and may
be controlled by either participant (21).  Our understanding
of entry into monocytic cells is complicated by their ability
to take up both pathogenic and non-pathogenic bacterial
species through non-specific uptake mechanisms.  In cells
of the monocytic lineage, the choice of receptor and
mechanism of uptake may determine the subsequent
intracellular fate of the bacterium within a potentially
hostile environment.  In order to better understand this
process, we will review the current literature relating to the
mechanisms of entry used by different mycobacterial
species, with an emphasis on mechanisms observed in cells
of the monocytic lineage.

3. COMPLEMENT RECEPTORS AND COMPLEMENT

The first mechanism demonstrated to play a role
in the ability of mycobacteria to gain access to the
intracellular niche was through opsonization with
complement (22) and uptake via complement receptors (23,
24).  Complement receptors occur in two distinct structural
forms; monomeric transmembrane proteins, such as
complement receptor one (CR1) (25), and heterodimeric
proteins of the integrin superfamily, including CR3 and
CR4 (26).  CR3 and CR4 contain identical beta subunits
(CD18 or beta2 integrin) and different alpha subunits
(CD11b (alphaM) or CD11c (alphax)).  Despite the fact that
complement receptors were implicated in mycobacterial
entry more than ten years ago, the role of this entry
mechanism in mycobacterial pathogenesis remains
somewhat controversial.  Initial reports demonstrated that
the presence of complement enhances the uptake of M.
avium (22), M. tuberculosis (23) and M. leprae (24) into
human peripheral blood monocytes between two and five-
fold.  Similar results were obtained using murine peritoneal
and alveolar macrophages (27).  The involvement of
complement receptors was confirmed by inhibiting uptake
of complement opsonized mycobacteria with monoclonal
antibodies against CR1 and CR3.  Inhibition of uptake with
these antibodies was around 40% but the combination of
two different monoclonal antibodies against CR3 inhibited
uptake by more than 80%.  These observations led to the
conclusions that the CR3 receptor is the predominant
receptor used by mycobacteria to enter monocytic cells and
that complement opsonization is required for optimal
uptake.

Studies with M. avium confirmed that
complement receptors could be used for entry by this
species as well (28).  M. kansasii has also been shown to
enter host cells by a CR3-mediated mechanism that is
enhanced by complement opsonization (29).  Under
opsonizing conditions M. avium enters macrophages
primarily by CR3, but receptors other than complement
receptors appear to be involved (28).  In addition, it appears
that opsonization with complement is not a prerequisite for
mycobacterial entry via complement receptors.  Entry
through complement receptors can also occur in the
absence of serum.  M. avium can enter human peripheral
blood monocytes and alveolar macrophages by a

nonopsonic mechanism that involves CR1 and CR3 (30).
These observations fit well with the fact that both M.
tuberculosis (31) and M. leprae (24) are thought to have
nonopsonic mechanisms for binding complement receptors.
Thus, the complement receptor-mediated uptake
mechanism appears to be broadly applicable to pathogenic
mycobacterial species and appears to occur in both the
presence and absence of serum.

Studies designed to demonstrate nonopsonic
mechanisms of uptake via complement receptors are
limited by the inability to totally remove newly synthesized
complement from macrophage tissue culture assays.  In
order to circumvent this problem other investigators have
utilized Chinese hamster ovary (CHO) cells transfected
with complement receptors (32, 33).  These systems
demonstrate the presence of nonopsonic mechanisms of
complement receptor binding in M. tuberculosis, M.
kansasii and M. avium.  However, they were unable to
demonstrate enhancement of M. tuberculosis binding to
CR3 in the presence of complement.  This observation
suggests that either 1) virulent M. tuberculosis strains are
primarily opsonized by C3b not C3bi and, hence, can bind
CR1 but not CR3 and CR4 or 2) these strains express a
lectin-binding site at such high levels that complement-
mediated CR3 interactions are negligible and only binding
at the CR3 lectin site is observed.  The possibility that C3b
is the primary opsonin is supported by the observation that
mycobacteria interact with C2a to cleave C3 causing an
increase in opsonization with C3b (34).  Furthermore, in
this case the primary receptor for M. avium is CR1 rather
than CR3.  In addition to CR1 and CR3, uptake of M.
tuberculosis (35) and M. leprae (36) can occur via a CR4-
mediated mechanism.  Transfected CHO cells were also
instrumental in demonstrating a role for CR4 in nonopsonic
M. tuberculosis entry mechanisms (37).  Though it has not
been determined whether nonopsonic binding to CR4 plays
a more important role than opsonic binding to this receptor.
There is an overwhelming body of evidence that pathogenic
mycobacteria have the ability to bind complement receptors
CR1, CR3 and CR4.  However, it is unclear whether
complement receptor-mediated mechanisms of uptake are
critical to the ability of mycobacteria to cause disease.

The role of opsonic mechanisms in initial M.
tuberculosis infections has been questioned because of the
low levels of complement present in the lung (38) despite
the endogenous synthesis of complement components by
alveolar macrophages and type II epithelial cells (39).
Careful examination of the available data suggests that this
conclusion may not be warranted.  Studies on opsonic
mycobacterial entry mechanisms indicate that
approximately 1% serum is sufficient for maximal
enhancement of mycobacterial entry (23, 24).  The level of
complement components C4 and C6 in the lungs of healthy
nonsmokers is approximately 1% of the levels in their
serum (38).  These data suggest that although the levels of
complement in the lung are lower than in serum, they are
sufficient to enhance entry into macrophages by
mycobacteria.  This conclusion does not; however, mean
that complement-mediated mechanisms of entry are critical
for pathogenesis.
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In order to determine the role of entry by
complement receptors in the disease process, investigators
have begun to utilize transgenic mouse models of infection
(40, 41).  One of these studies examined the effects of a
CD18 (CR3 and CR4) knockout on the course of M. avium
infections (41) and the second the effects of a CD11b
(CR3) knockout on M. tuberculosis infections (40).
Neither study found that the mutation had a significant
effect upon the course of disease.  The M. tuberculosis
study did, however, demonstrate that at low multiplicities
of infection, fewer cells became infected with bacteria (40).
This observation may provide some indication of why no
significant effects were observed.  Both studies utilized
high numbers of virulent organisms (>105 bacteria)
inoculated by tail vein.  This contrasts greatly with the
presumed course of disease in tuberculosis infections where
very few bacteria are thought to be required for infection
(42).  Thus, additional studies using a more natural route of
infection (i.e. aerosol for M. tuberculosis and oral for M.
avium) and lower numbers of infectious organisms are
likely to provide important information concerning the role
of complement receptors in mycobacterial pathogenesis.

Despite a great deal of research in this area, it
remains unclear whether complement receptors are critical
for the ability of mycobacteria to cause disease.  However,
many pathogenic mycobacteria do have the ability to enter
via CR1, CR3 and CR4 by both opsonic and nonopsonic
mechanisms.  There are a number of factors that affect
whether complement receptors are used for entry. The
growth conditions for (43) and strain of (35, 44)
mycobacteria as well as the type of macrophages used (31,
45) play an important role in this determination.  It is likely
that lavage methods have a significant impact on the
physiology of potential host cells. Thus, analysis of the
receptors present on alveolar macrophages in fixed lung
tissue may be necessary to provide information regarding
the state of the cells involved.  These studies, though
technically difficult, should help to determine whether
freshly obtained alveolar macrophages or those maintained
in culture for more than four days are representative of the
state of these cells in vivo.  This is particularly important
since these alveolar macrophages dramatically differ in
their ability to bind mycobacteria (45).

However, the type of macrophages used, may not
be nearly as important for determining the mechanism of
entry as is the phenotype of the bacteria.  In tuberculosis,
the primary route of infection is thought to be aerosols
produced by coughing.  This implies that the bacteria
initially infecting alveolar macrophages in the lung are
directly obtained from the airways of another individual,
where they are presumably produced through replication in
alveolar macrophages.  Growth in macrophages has been
shown to increase mycobacterial adherence (46), invasion
(43, 47) and cytotoxicity (46).  The mechanism of entry
into macrophages used by intracellularly grown
mycobacteria is primarily nonopsonic and does not appear
to involve complement receptors (43).  Based on these
observations, examination of mechanisms other than those
that are complement receptor-mediated is necessary to
better understand the preferred mechanisms of

mycobacterial entry into macrophages during natural
infections.

4. FIBRONECTIN RECEPTORS AND FIBRONECTIN

Fibronectin receptors have also been implicated
in the uptake of mycobacteria into monocytes.  Early work
demonstrated that mycobacteria had the ability to bind to
fibronectin (48, 49), facilitating adherence to the
extracellular matrix (50).  A potential role in entry into
monocytes was suggested when it was found that M.
avium-M. intracellulare adheres to the alphaVbeta3
fibronectin/vitronectin receptor on monocytes (51).  The
alphaV subunit can combine with beta subunits 1, 3, 5, 6 or
8, and most of the resulting combinations can bind to
vitronectin, fibronectin and fibrinogen (52).  The
fibronectin receptor, alpha5 (Itga5), may also be involved,
but separation of the activities of this receptor from those of
the alphaV receptors is not straightforward.  The fibronectin
receptor alpha5 is thought to combine with integrin subunit
beta7 (53), but this has not been clearly demonstrated.  In
mycobacteria it has been suggested that fibronectin-
mediated adherence may enhance complement-receptor
mediated entry (54).  Certainly, the interaction of the M.
avium GroEL protein with fibronectin receptor(s) enhances
complement receptor levels on monocytes (55).  Although
the interaction of the M. avium GroEL with fibronectin
receptors is thought to be direct (55), the antigen 85
complex (Ag85A, Ag85B and Ag85C) proteins are thought
to interact with these receptors indirectly, via a fibronectin
bridge (54, 56).  These data suggest that there are at least
two different pathways by which mycobacteria can enter
host cells using fibronectin receptors.

The involvement of multiple receptors and
several potential mycobacterial proteins greatly
complicates analysis of the role of fibronectin receptors in
entry by mycobacteria.  The construction of specific
mutants in mycobacteria is necessary in order to dissect the
role of each of the potential mechanisms in pathogenesis.
Although specific mutants in the Ag85A and Ag85B genes
have been constructed by allelic exchange, the effects of
these mutations on entry into monocytes have not been
examined (57).  However, it is likely that single, marked
mutations, such as those previously constructed, will not be
useful for determination of the role of fibronectin-receptor
mediated mechanisms in entry.  Multiple mutations are
required due the fact that all three Ag85 proteins have
similar fibronectin-binding activities (58) and there are
actually two Ag85C genes (59).  Thus, a single mutant,
where only one of these genes is inactivated, may not have
a measurable phenotypic effect and the construction of
mutations in four genes will require the use of multiple
selectable markers with greater risk of having unrelated
effects on the bacteria.  These effects can be avoided by the
construction of multiple unmarked in-frame deletions (60).
Since the existing mycobacterial Ag85 mutants have not
been evaluated for their effects on entry, it is unclear what
role fibronectin-receptor mediated adherence mechanisms
play in entry of mycobacteria.  The possibility remains that
the primary role of these proteins in mycobacterial
pathogenesis is in adherence to infected tissues (61) via the
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extracellular matrix or biosynthesis of the mycobacterial
cell wall (62).

5. SURFACTANT PROTEINS AND THEIR
RECEPTORS

Examination of patients with human
immunodeficiency virus (HIV), who are thought to be more
susceptible to tuberculosis (63, 64), found that surfactant
proteins affect entry by mycobacteria into macrophages
(65-67).  It has been suggested that this enhancement is due
to upregulation of other host cell receptors, possibly
mannose receptors (68).  A link between the expression of
receptors for surfactant proteins and mannose receptors has
been observed previously (69).  However, the fact that one
of the surfactant protein receptors, complement component
1q receptor (C1qR), also serves as a receptor for mannose-
binding protein (70, 71) and that surfactant proteins
themselves bind mannose (72, 73) complicates
interpretation of these results.  Another surfactant protein A
(SP-A) receptor has been identified (74) and is thought to
play a role in SP-A-mediated uptake of mycobacteria (74,
75).  Thus, in the case of surfactant-mediated uptake of
mycobacteria, multiple host cell receptors may also be
involved.

It remains unclear whether SP-A-mediated entry
mechanisms are advantageous for mycobacteria.  One of the
primary roles of surfactant proteins in the lung is prevention of
potentially damaging immune responses (76-84).  However,
SP-A is also important in defense against bacterial pathogens
by enhancing killing and clearance (85-90).  Surfactant protein
D appears to play a protective role in mycobacterial infections
where it reduces phagocytosis and increases agglutination (91).
However, the effects of SP-A on macrophage function remain
somewhat unclear, since both stimulatory (87, 92-96) and
inhibitory (97, 98) effects have been observed.  Similarly, both
enhanced killing (99) and survival (100) of mycobacteria have
been observed under different conditions after entry via SP-A
into macrophages.  One explanation for these discrepancies
may be the different activation states of the macrophages used.
Interferon-gamma primed macrophages were used for the
studies demonstrating suppression of reactive nitrogen
intermediate production and enhanced mycobacterial survival
(100).  These data suggest that SP-A may suppress
macrophage bactericidal activity later in infections, when the
bacteria come in contact with activated macrophages, or in
chronically ill patients such as those infected with HIV.  At this
stage, inhibition of reactive nitrogen intermediate production
may serve to protect the host tissues from damage.  Overall,
based upon current data it appears that the primary role of
surfactant proteins, particularly early in infection, is to protect
against mycobacterial disease.  However, later in the course of
infections or in chronically ill patients, SP-A may inadvertently
assist in the progression of disease by suppressing the
bactericidal activity of macrophages.

6. THE ROLE OF MANNOSE

There are two receptors involved in uptake of
mannose-containing particles in macrophages.  The
macrophage mannose receptor (MR), also known as the

insulin-like growth factor II receptor (101-103), mediates
attachment to glycoconjugates terminating in mannose,
fucose and N-acetylglucoseamine (104-105).  MR is
thought to be expressed on mature macrophages but only at
low levels on monocytes (106).  The second receptor is the
collectin receptor, also known as the complement
component 1q receptor, which interacts with mannose
indirectly through mannose-binding protein (71, 107, 108).
A role for mannose in entry into macrophages was initially
demonstrated for M. avium, where mannose-containing
compounds were found to inhibit binding to these cells (28,
30).  Later studies extended these observations and
suggested that there may be a correlation between
mannose-mediated uptake and virulence (35).

It has been suggested that the mannose-capped
lipoarabinomannan (ManLAM), present in some strains of
virulent M. tuberculosis (109), plays a role in adherence to
macrophages and acts as a ligand for MR (110, 111).   The
mannosyl units present on ManLAM, and not on AraLAM
from non-pathogenic mycobacterial species (112, 113), are
thought to be essential for those interactions.  These
observations contrast with those indicating that both
ManLAM and AraLAM can inhibit binding of M.
tuberculosis to human macrophages (114).  These
seemingly conflicting observations may be at least partially
due to the fact that LAM also has the ability to bind to the
CD14 (LPS) receptor (115).  In addition, there appears to
be cross-talk between the CD14 receptor and the mannose
receptor in macrophages (116).  It is important to note that
no correlation between LAM structure and mycobacterial
virulence has been found (117).   Furthermore, uptake of
LAM by macrophages results in particle delivery to a
lysosomal compartment (118).  It has been suggested that
capsular polysaccharides, other glycolipids such as
phosphatidylinositol mannosides (44, 119) or as yet
unknown glycoproteins may also be involved in the
interaction of mycobacteria with mannose receptors.
Despite the presence of multiple potential bacterial ligands,
the mannose receptor remains a strong candidate for an
important receptor in the uptake of mycobacteria,
particularly since uptake via this receptor may reduce
oxygen radical production (120).  However, this entry
mechanism does not appear to be specific to pathogenic
mycobacteria (44, 119, 120), suggesting that it may not be
critical for pathogenesis.

7. INVASION OF NON-PHAGOCYTIC CELLS

Though considered very successful parasites of
macrophages, mycobacteria are also known to enter other
cell types.  Alveolar epithelial cells outnumber
macrophages in the alveolar space and are likely to interact
with an aerosolized droplet of M. tuberculosis.  The ability
of mycobacteria to bind and enter epithelial cells has long
been documented (121, 122).  Despite the possibility that
interaction with non-phagocytic cells may play a role in
mycobacterial dissemination and pathogenesis, few studies
have been conducted in this area.  M. leprae is an obligate
intracellular pathogen that infects Schwann cells, muscle
cells, epithelial cells and macrophages.  M. leprae targets
Schwann cells in the peripheral nervous system and  the
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neurology associated with leprosy is thought to be
primarily due to infection of Schwann cells (123).  M.
avium is thought to infect HIV infected individuals through
the gastrointestinal tract (124).  The gastrointestinal route
of infection has been confirmed using animal models for M.
avium (14, 15).  M. avium enters epithelial cells efficiently
in vitro (125-127) and these high levels of entry are not
seen with less pathogenic mycobacterial species (126).  M.
bovis BCG has also been shown to traverse the
gastrointestinal epithelium of rabbits, where it is thought to
use M cells as a portal for entry (18).  Furthermore, M.
tuberculosis can enter M cells in the respiratory mucosa
(19) as well as type II alveolar (17) and other types of
epithelial cells (126) in vitro.  Blocking of beta-integrin and
vitronectin receptors on alveolar epithelial cells inhibits M.
tuberculosis adhesion and entry by 80%.  M. tuberculosis
triggers release of TNF-alpha, which may be responsible
for increasing the permeability of the epithelial layer (128).
Disruption of the epithelium would allow large numbers of
bacteria to translocate; thereby, gaining access to the
lymphatics and blood stream allowing further
dissemination (129).  Entry of M. tuberculosis into
epithelial cells also seems to enhance virulence and bacilli
released from these cells may invade macrophages more
efficiently (130).  These observations suggest that a number
of bacterial factors involved in entry are regulated during
intracellular growth.  The majority of studies on
mycobacterial entry have used bacteria grown under
standard laboratory conditions, rather than intracellularly.
This suggests that there may be an entire spectrum of
mycobacterial factors involved in this process that remain
to be discovered.

A number of bacterial factors have already been
identified that may play a role in entry by mycobacteria
into non-phagocytic cells.  In the case of M. leprae,
phenolic glycolipid is thought to be involved via its ability
to interact with laminin (131, 132) and alpha-dystroglycan
in Schwann cells (133).  Phosphatidylinositol mannoside
can mediate adhesion of M. tuberculosis to fibroblasts and
endothelial cells (119).  In addition, several mycobacterial
proteins have been implicated in adhesion (127, 134) and
entry (126) into epithelial cells for M. avium.  However,
none of these determinants have been well characterized
and no mutations have been constructed in the bacterial
genes involved.  The best-characterized gene that may play
a role in entry into non-phagocytic cells is designated mce
for mammalian cell entry (135).  Unfortunately, the original
genomic fragment (GI #44606) that confers the entry
phenotype is non-contiguous, consisting of at least five
different fragments of the M. tuberculosis genome (136).
However, the activity of this fragment has been attributed
to a 636 bp region internal to the mce1 gene, the first of
four mce genes that are present in M. tuberculosis.  Each of
the mce genes is present within a putative eight-gene
operon where the mce gene is third (136).   Similar genes
have been found in M. leprae (137), M. avium, M.
intracellulare and M. scrofulaceum (138).  Interestingly,
most of the mce3 operon is missing from M. bovis BCG;
whereas, the other three copies of this operon are intact
(139).  A mutant constructed in the mce1 gene of M. bovis
BCG, displays a defect in entry into epithelial cells after 4-

8 hours of infection (140).  While these results are certainly
intriguing, it is unclear that the mce1 gene is responsible for
the phenotype since an insertion mutation was used, which
would have polar effects on the five genes downstream.  In
addition, when assayed at such late time points after
addition of the bacteria, it is difficult to ascertain whether
the mce1 gene plays a role in entry or survival in these
cells.  Lastly, since this mutation has not been
complemented, it remains possible that a secondary
mutation elsewhere in the chromosome, arising during
genetic manipulation, is responsible for the phenotype.
Clearly, further studies are necessary to demonstrate a
crucial role for these genes in entry.  Further examination
of the mechanisms involved in entry into non-phagocytic
cells by mycobacteria is likely to provide important insight
into how mycobacteria disseminate to other tissues from
the primary site of infection.

8. PERSPECTIVE

There are a number of potential mechanisms that
mycobacteria can use to enter host cells.  The presence of a
large number of pathways is particularly evident in cells of
the monocytic lineage (figure 1).  Interestingly, the
majority of the receptors that have been investigated, thus
far, are commonly used by macrophages to kill potentially
dangerous bacteria in a non-specific fashion.  Clearly, the
innate immune response of humans has developed elegant
systems for the removal of invading bacteria without a need
for specific recognition.  This observation suggests that
bacterial entry into macrophages via these receptors
primarily results in killing and degradation.  Somehow
mycobacteria must have the ability to either avoid or resist
the bactericidal activity that would normally occur.  There
are a number of potential pathways by which  mycobacteria
might circumvent the bactericidal mechanisms of
macrophages: 1) mycobacteria interact with a number of
different receptors for adhesion, but an as yet unidentified
receptor leads to an advantageous uptake mechanism; 2)
mycobacteria interact with one or more of the previously
identified receptors in an unusual manner that affects
signaling leading to an advantageous uptake mechanism; 3)
mycobacteria secrete factors prior to entry that affect
signaling pathways in the host cell leading to an
advantageous uptake mechanism via any receptor; 4)
mycobacteria can enter host cells through a number of non-
specific mechanisms followed by modification of the
intracellular compartment to allow survival.  Survey of the
current literature suggests that a number of different entry
mechanisms can lead to intracellular survival.  However, it
will be necessary to construct specific mutations in the
genes involved in each of these potential entry mechanisms
and assess their phenotypes in both resistant and
susceptible animal models to properly evaluate these
alternative hypotheses.

In addition to a role for host factors in the
importance of different entry mechanisms, growth
conditions for the bacteria are also critical.  In natural
infections one would assume, at least in the case of M.
tuberculosis, that the bacteria are released from an



Mycobacterial entry

742

Figure 1.  Potential mechanisms used by mycobacteria to
enter macrophages.  Each of the components shown
represents either a bacterial ligand, opsonin or a potential
host cell receptor.  A complex combination of these factors
is likely to play an important role in the ability of
mycobacteria to trigger a preferred mechanism of entry.
Arrows and plus symbols in the macrophage represent
pathways where activation or binding to one receptor has
been shown to affect the activity or expression of a second
receptor or class of receptors.  Arrows in mycobacteria
represent regulons of genes involved in entry that are either
expressed under standard laboratory growth conditions
(constitutive) or regulated by intracellular growth
(regulated).  Many of the interactions proposed in this
model have not been characterized fully, but are put
forward as possibilities based on the available data.
Abbreviations:  CR, complement receptor; SpA, surfactant
protein A; C1q, complement component 1q; C1qR, C1q
receptor; 210 KDa, the uncharacterized 210 KDa protein
demonstrated to bind surfactant protein A (74); MBP,
mannose-binding protein; Ag85A, B, C, antigen 85A, 85B
and 85C; LPS, lipopolysaccharide; MRC1, macrophage
mannose receptor.

intracellular growth environment prior to infecting a new
host.  Intracellular growth of mycobacteria appears to
significantly affect the mechanisms of entry used (43, 46,
47).  These observations suggest that a large number of the
mycobacterial factors involved are yet to be determined.  In
addition, these as yet unknown factors are likely to be the
most relevant to the mechanisms used by mycobacteria in
natural infections.  By further examination of the genes
involved in entry of intracellularly-grown mycobacteria it
may be possible to eliminate at least some of the potential
entry mechanisms previously identified and narrow the
scope of future research.  A number of the previously
identified entry mechanisms have been blocked for M.
avium (30) and M. tuberculosis (141) without preventing
the ability of the bacteria to survive intracellularly.  Both of
these studies support the concept that there are a number of
different mycobacterial factors that may be involved in
entry and have not yet been identified.  Clearly, there is a

great deal of work that remains to be done in order to
understand the mechanisms involved in entry into host cells
by mycobacteria.  With the rapid advancement of
molecular tools to understand both the host and pathogen
involved, we expect that great strides will be made in this
area of research in the near future.
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