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1. ABSTRACT

Advances in the understanding of the immune
response to tumors has led to the development of new
strategies to design therapeutic vaccines. One of these
strategies is the development of protein transfer of
immunostimulatory molecules onto the surface of tumor
cells, thereby directing the immune response to the tumor
antigens carried by the modified tumor cells. This strategy
has been developed as an dternative to gene transfer, the
more classical technique of introducing immunostimul atory
molecules onto tumors. In this report we briefly review
current strategies for immunotherapy and then focus on
severa approaches to protein transfer and their historical
basis. Finaly, the application of these protein transfer
approaches to develop cancer vaccines are reviewed and
discussed.

2. INTRODUCTION
Tumors have been shown to express unique

tumor antigens that can be used to immunize a host against
tumor cells bearing those antigens (1,2). Knowing that
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tumor cells possess antigens that can be recognized by T
cells as "foreign", immunotherapy for the treatment of
cancer has become an area of intense investigation. These
immunotherapeutic theories/approaches are not recent.
Hypotheses by both Paul Ehrlich and William Coley,
proposed in the late 1800's, suggested the use of anticancer
antibodies or bacterial toxins to stimulate the immune
system for anti-tumor therapy.

Tumor specific immunity is mostly cell-
mediated, with humoral immunity playing a minor role in
most cases. This cell-mediated immunity can be the result
of both CD8+ and CD4+ effector T cells (3,4). In many
cases, CD8+ cytotoxic T lymphocytes (CTLs) are the
effectors recognizing intracellularly-expressed tumor
antigens presented by class | major histocompatibility
complex (MHC) molecules at the tumor surface. However,
CDA4+ T cells also play an important role, as tumor antigens
can be ingested by professional antigen-presenting cells
(APC) and presented in the context of MHC class Il
molecules. The role of CD4+ T cells has been shown to
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enhance or regulate the CTL response and work in concert
with macrophages for cytokine production, while some
CDA4+ cells have adirect cytopathic effect (5-8).

3. TUMOR ESCAPE MECHANISM S

Although some tumor antigens have been
characterized and anti-tumor CTLs can be isolated and
shown to be effective, many tumor cells still fail to induce a
strong immune response. Many factors contribute to a
tumor's ability to evade an immune response. These factors
include the ability to modulate antigen, down regulate
surface molecules involved in T cell recognition of tumor
cells, or secretion of immunosuppressive factors (9-11).

3.1. Antigen modulation

Tumor cells can escape the immune response by
antigen modulation or by selective pressure of the immune
response (12-13). In the presence of specific antibodies or
CTLs, tumor cells can down-regulate or alter antigen
expression.  Alternatively, tumor cells may express a
heterogeneous array of tumor antigens at any given time.
Therefore, when a response to one antigen is mounted only
some of the tumor cells are destroyed. The tumor cells
expressing different antigens survive the response by not
being recognized.

Similarly, tumors cells can evade the immune
system by down-regulation of MHC molecule expression,
or a defect in the antigen processing and presentation
pathway (9). MHC molecules are highly polymorphic
glycoproteins controlling T cell immune responses by
binding and presenting certain peptides that have been
processed from either exogenous or intracellular antigens.
MHC class | is essential for recognition of antigens by
CD8+ cytotoxic T cells, the main effectors of tumor
immunity. Without the expression of MHC class I, tumor
cells cannot be recognized by CD8+ cytotoxic T cells.
Therefore, tumors can go undetected by tumor-specific
effectors. Many tumors of both human and murine origin,
such as human colon carcinoma (14) and the murine D122
Lewis lung carcinoma (15), have been shown to have
altered surface expression of MHC class I.  The
relationship between aloss in MHC class | expression and
tumor growth has been studied most rigorously in the AKR
strain of mice (16). These mice have a high incidence of
spontaneously arising leukemias. These leukemias have
significantly reduced levels of H-2K, one of the MHC class
| molecules. Determined through many in vitro studies, the
immune response against these leukemias is directed
toward tumor antigens presented by H-2K molecules.
Therefore, lack of H-2K expression severely inhibits T cell
immune responses to these leukemias.

3.2. Immunosuppressive factors

One way that tumors may escape recognition by
the immune system is through the release of soluble factors.
Some of these factors are tumor antigens released by the
tumor cell. When these antigens are taken up by resident
APCs in the absence of an inflammatory response,
tolerance is promoted (17-19). In addition tumor cells have
also been implicated to suppress the generation and activity
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of APCs in general, and more specificaly dendritic cells
(DC), by secretion of vascular endothelial growth factor
(VEGF) (20-23). These DCs, which are the most potent
activators of T cells, are altered in their migratory, homing,
and maturation patterns (20-24). In addition to secreting
VEGF, tumors have been reported to secrete IL-10 (10,17),
TGF-b (25), both anti-inflammatory cytokines, and MUC-
1, which has been reported to induce apoptosis of activated
T cells (11).

3.3. Lack of costimulation

By interfering with APCs, most specific T cells
are anergized during contact with tumor-specific peptides
either presented by the tolerizing APC, or by the tumor
cells themselves. During a normal immune response,
antigen specific T cells require and receive two specific
signals through surface receptors in order to proliferate and
respond to antigen (26). Tumor cells, when presenting
antigens on MHC molecules, can provide the first signal.
However, since most tumor cells lack costimulatory
molecules, such as B7-1 or B7-2, that are needed to provide
the second signal for development of full effector function
of T cells, they are anergized instead (27). This preventsan
anti-tumor immune response from developing, thereby
leading to the escape of tumors from the immune system.

4. IMMUNOTHERAPEUTIC TREATMENTS

Many immunotherapeutic strategies have been
designed for the treatment of tumors in mouse models.
However, these treatments or therapeutics have achieved
limited successin clinical trials, unless used in combination
with chemotherapy.

4.1. Adjuvants

Some mechanisms of inducing anti-tumor
immunity involve non-specific stimulation of the immune
system. Adjuvants, such as BCG (28-30), or mitogens
including anti-CD3 antibodies (31) or superantigens
(32,33), have been used to treat established tumors or have
been mixed with tumor lysates to create a tumor vaccine.
Although these treatments have had some effect, generally
immune activity is not heightened enough to induce full
tumor rejection.

4.2. Cytokinetreatment and TIL therapy

Another therapy, which received much attention
in the 1980's, is systemic administration of cytokines,
mainly IL-2 (34). IL-2 has been shown to be the major T
cell growth factor, and large doses of IL-2 in vitro stimulate
NK cellsand CTL to kill normally resistant targets (35,36).
Use of IL-2 in vivo has had limited success, and systemic
treatment often has severe side effects. Due to the toxic
effects, ex vivo stimulation of immune cells with cytokines
has been developed (36-39). This therapy involves the
generation of lymphokine activated killer (LAK) cells by
stimulation of T cells and NK cells with high doses of 1L-2
or other cytokines. These LAK cels are then
readministered to the patient. Lymphocytes isolated from
tumor tissue, tumor-infiltrating lymphocytes (TIL), are also
stimulated in vitro and readministered. This therapy has
had limited success and still requires systemic cytokine
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treatment. Other cytokines administered systemically, such
as IL-12 and GM-CSF, have also met limited success. |L-
12 has been found to be highly toxic when delivered
systemically, depending on treatment schedules (40). In a
recent study by Rosenberg and co-workers (41), co-
administering IL-12 or GM-CSF in tandem with tumor
specific peptide had no effect on the generation of anti-
tumor immunity. The side effects of delivering cytokines
systemically continue to outweigh the ultimate benefits for
tumor immunotherapy.

Recently, researchers have been looking at the
delivery of cytokines localy by genetically engineered
cells (42). Here, cytokines can be delivered locally by
tumor cells transduced with cytokine genes. IL-2 (43-45),
IL-4 (46,47), 1L-12 (48,49) and GM-CSF (50,51), have
been stably transfected into tumor cells. These tumor cells,
when administered to syngeneic hosts, have a lower tumor
incidence and in some cases induce rejection of established
tumor. Administration of cytokines locally can still prime
anti-tumor responses without adverse side effects.
Cytokines have also been administered locally by several
other methods. Some investigators have genetically
engineered fibroblasts to secrete cytokines such as IL-12
(52) and IL-2 (53). Mice immunized with tumor cells
mixed with transfected fibroblasts have a higher resistance
to tumor growth (53). Moreover, mice treated with IL-12
secreting fibroblasts mixed with tumor cells can reject
established tumors (52). Alternatively, cytokines can be
delivered by biodegradable polymer microspheres, which
dowly release cytokines into the surrounding area (54).
Pardoll and co-workers have found that if IL-12 is
encapsulated in microparticles, which time releases I1L-12,
and is co-injected with wild-type tumor cells, a strong anti-
tumor response develops which is equal to that of
transfected tumor cells (55). Many of these techniques for
cancer vaccination show promise in protecting mice from
further tumor challenge (44,46,52,56).

Both IL-12 and GM-CSF are potent activators of
not only acquired immunity, but innate immunity as well
(57,58). IL-12 augments the development of CTLs in vivo
(59-61). Tumor cells transfected with IL-12 or co-
administered with fibroblasts transfected with IL-12 have
been shown to attract macrophages (Mf) and NK cells
(48,62,63). This facilitates uptake of tumor antigens in an
inflammatory environment, thus leading to powerful anti-
tumor immunity. IL-12 has been reported to work in
concert with B7-1 in generating strong CTL responses, as
well as tumor regression (64-69). GM-CSF has been shown
to be a growth factor and activator of dendritic cells (70).
GM-CSF aone or in combination with B7-1+ tumor cells
can dlicit strong anti-tumor responses (50,51,71-74).

4.3. APC and DC-based vaccines

Another method of turning a tumor cell into an
APC is to fuse the tumor cell directly to APCs. This is
usually accomplished by incubating the tumor cells and
APCs together and using a fusogen, such as polyethylene
glycol. Introduction of B7-1 or B7-2 molecules onto the
surface of hepatoma cells by fusion with activated B cells
has been shown to induce tumor-specific immunity (75).
Recently approaches using the more potent T cell activator,
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DC, asthe fusion partner has resulted in induction of strong
anti-tumor immune responses (76-79). In one report it was
shown that merely pre-mixing DCs and tumor cells prior to
immunization resulted in induction of anti-tumor immunity
(80).

Current trends in cancer vaccines are being
designed to present tumor antigens on professional APCs,
such as dendritic cells (81-83). Dendritic cells are the most
potent activators of T cell responses. DCs or precursors are
recovered from hosts and stimulated in vitro to proliferate
and differentiate. They are then pulsed with peptides,
tumor antigens, tumor lysates, or tumor specific mMRNA
(84-86). Immunization with DCs under these conditions
can be used as a vaccine to successfully prevent tumor
development and therapy to treat established tumors. One
drawback of this therapy is that DCs are relatively low in
number and somewhat procedurally difficult to obtain in
large enough numbers to provide for routine administration
as avaccine. Recently, a cytokine known as FLT3 ligand
(FLT3L) has been described to elicit large numbers of DC
in vivo (87-91). FLT3L has aso been shown to induce
regression of established tumors (92-94). This may obviate
the need to generate DC in vitro, for subseguent
manipulations. This therapy, however, is most effective
when the identity of the tumor antigens responsible for
recognition by T cells is known. Although great strides
have been made in determining tumor antigens and
antigenic epitopes, many are still unknown (2,95).
Other cancer vaccines under investigation do not require
the identification of the tumor antigen. These
approaches rely on the tumor itself to present antigen to
the T cell (96,97). However, tumor cells may not
express all the necessary molecules needed to induce a
protective immune response, such as costimulatory
molecules and cytokines produced by normal host
APCs. Therefore, the tumor cells will be unable to
induce a protective immune response. Thus, methods
are available to introduce new proteins onto the surface
of cells. These methods include: gene transfer, in which
the gene of the cell surface molecule is transfected or
the tumor cells are transduced to produce new protein;
cell fusion, as discussed above, tumor cells are fused to
antigen presenting cells (APCs); and protein transfer, in
which the protein is coupled to a lipid tail and can be
inserted into the lipid bilayer of tumor cell membranes.

4.4. Gene transfer of tumor cells with costimulatory
molecules

As mentioned above, studies have shown that
tumor cells lacking costimulatory/cell adhesion molecules,
such as B7-1, are poorly immunogenic. Expression of B7-
1 (98-105) and other adhesion molecules, such as ICAM-1
(106,107), on the tumor cel by transfection result in
induction of tumor immunity and subsequent tumor
rejection in animals.

Previous results from our laboratory showed that
the human rena carcinoma cell line, RCC-1 does not
express B7-1 and does not stimulate autologous T cells in
vitro (104). After transfection of B7-1, RCC-1 induces
strong proliferative and CTL responses in vitro (104). This
has aso been shown for tumor cell lines of other
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Figure 1. The schematic of a recombinant glycosyl-
phosphatidylinositol anchored protein. The extracellular
portion of the recombinant molecule is linked to the GPI-
anchor through an ethanolamine at the C-termina end of
the protein. The glycan moeity connected to the
ethanolamine consists of three mannose residues and a
glucosamine  which links to a phospholipid,
phosphatidylinositol with two fatty acids.

histological origin (108). These results indicate that tumor
specific immunity can be generated by expressing
costimulatory molecules on tumor cells. Apart from B7-1,
other cell surface adhesion molecules, such as ICAM-1,
ICAM-2, ICAM-3, VCAM-1, LFA-3 have shown to
provide co-stimulation for T cell proliferation (109-113).
These molecules have also been demonstrated to stimulate
T cells at different stages of activation (110), indicating that
perhaps a combination of various costimulatory molecules
on the surface of tumor cells will create a potent tumor
vaccine.

The method of choice for introduction of new
proteins is gene transfer, by either transfection or vira
transduction of tumor cells. This technique can introduce
many disadvantages when initiating human clinical trias.
Transfection of primary tumor cells is difficult, therefore
the establishment of tumor cell lines is needed. In
addition, transfection of cells is time consuming, requiring
weeks for selection of homogeneous cell populations
expressing transfected molecules. Co-transfection, for the
expression of several genes, can also prove to be difficult.
The use of viruses to transduce cells has eliminated most
time constraints, but this technique aso has its
disadvantages. This method utilizes vectors of viral origin
that may introduce mutations at the site of DNA
integration. In addition, it has been shown that the host can
develop strong immune responses to the vector, making it
difficult to immunize more than once with the same vector
(114-116).

45. Protein transfer of tumor cells with
immunostimulatory molecules

We have investigated an alternative method for
the introduction of costimulatory molecules onto the
surface of tumor cells to eliminate the problems
encountered with gene transfer (117-119). This method,
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termed “protein transfer” can be used to anchor proteins to
surface of the cell membrane, one of which uses unique
proteins that are anchored to cell membranes via a
glycosyl-phosphatidylinositol (GPI) linkage (120-122).

5 GLYCOSYL PHOSPHATIDYLINOSTOL-ANCHORED
PROTEINS

The majority of known cell surface proteins are
anchored to the membrane by a transmembrane domain that
spans the entire lipid bilayer, followed by a cytoplasmic
tail. Some cell surface glycoproteins are anchored to the
cell membrane by utilizing lipids attached co-
trandationally to the protein. The most well characterized
is the GPI-anchor (123-125). This anchor is composed of
an ethanolamine and three mannose residues, a
nonacetylated glycosamine and a phosphatidylinositol
(Figure 1). The GPI-anchored precursor protein contains a
hydrophobic signal sequence at the C-terminus. When the
precursor protein enters the ER, the C-termina
hydrophobic sequence is cleaved and the attachment to the
ethanolamine moiety of the pre-formed GPI-tail occurs by a
transamidase through the ethanolamine residue (126,127).
These proteins are then glycosylated and transported to the
cell surface. Many proteins such as decay accelerating
factor (DAF) (128), CD59 (129), LFA-3 (130,131), neura
cell adhesion molecule-1 (NCAM-1) (132-134) and Fc
gamma receptor 111 (CD16B) (135,136) are anchored to the
cell surface by a GPI-linkage.

Membrane anchoring via a GPI-anchor has been
associated with many unique properties. These proteins
have a higher lateral mobility within the cell membrane
(137) and are targeted to the apical cell membrane
(138,139). Moreover, purified GPI-anchored molecules
can spontaneously incorporate into membranes through
their lipid tail (120). Observations by Medof et al. (140)
have shown that incubation of cells with the complement
regulatory protein, now known as DAF, results in its
incorporation onto the surface of erythrocytes and
subsequent inhibition of complement activity. Since then,
most of the known GPIl-anchored molecules have been
shown to reincorporate onto erythrocytes and nucleated
cells after a short incubation with cells (120). GPI-
anchored mediated protein transfer has even been reported
to occur in vivo in transgenic mice expressing CD59 under
an erythroid restricted promoter (141). Endothelial cells
lining the blood vessels in transgenic mice acquire CD59
from circulating erythrocytes (141). Most importantly,
after incorporation onto the cell surface, these molecules
retain their function.

The property of GPI-anchored proteins to transfer
to foreign cell membranes has evolved into a simple and
useful technology to express novel proteins on the cell
surface without resorting to gene transfer. This has been
proposed as an dternative to gene transfer to develop
cancer vaccines where gene transfer is not desirable or
feasible (118,119). Subsequently, other approaches to
protein transfer, have been described and tested in the
development of cancer vaccines (142,144). In the
following sections we discuss the evolution of the protein
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Figure 2. Single or two step methods of protein transfer.
Proteins which are engineered with hydrophobic amino
acids or the signa sequence for GPI attachment can be
expressed by direct incubation in asingle step (I). Proteins
which do not directly incorporate into lipid bilayers need a
scaffolding or platform to anchor them onto the cell
membrane (11, 111). The advantage of the one step process
isthe transfer of multiple proteinsistightly controlled. The
scaffolding or platform approach reduces the need to
engineer purify proteins from membranes of mammalian
cells and instead soluble proteins can be anchored through
the meta chelating NTA-lipids (II) or lipid-modified
scaffolding molecules, such as palmitate-protein A (l11).
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transfer technology and current applications of GPI-
anchored and engineered lipid-linked proteins of clinica
interest in the devel opment of therapeutic cancer vaccines.

6. STRATEGIES OF PROTEIN TRANSFER

There are many proposed strategies for protein
transfer, however they al fall into one of two categories, a
one step method or a two step, scaffolding method (Figure
2). The one step method utilizes recombinant proteins
which are directly linked to a GPl-anchor or a stretch of
hydrophobic amino acids. The two step method requires a
scaffolding protein or metal chelator directly linked to
lipids which can incorporate into the cell membrane (first
step). The recombinant protein is then linked to the
scaffolding protein or metal chelator (second step). In the
following sections, four approaches of protein transfer are
described which fall into these two categories.

6.1. Transmembrane proteins engineered into GPI-
anchored forms

Although  mature  GPl-anchored  proteins
expressed on the cell surface do not have a transmembrane
polypeptide domain, their mRNA sequence predicted that
the precursors of GPl-anchored proteins have a
hydrophobic stretch of amino acids at the C-terminus
resembling TM domains. Site directed mutagenesis and
recombinant DNA techniques revealed that the C-terminal
hydrophobic domain and 15-20 amino acids of the
extracellular domain proximal to the C-terminus posses the
signal for GPl-anchor attachment. Analysis of the GPI-
anchor attachment signal sequences of many cloned GPI-
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anchored proteins revealed a lack of consensus sequence
for GPl-attachment (145-147). In the case of Qa-2 protein,
the TM domain carries the signa for the GPl-anchor
addition. Extensive studies by Udenfriend and coworkers
have established the amino acid requirements for GPI-
anchor attachment (145,148-150).

TM-proteins can be converted into GPl-anchored
forms by replacing the TM and cytoplasmic domains with a
GPI-anchor (127,139,151-159). This manipulation involves
ligating the cDNA encoding the extracellular domain of a
TM-anchored protein to the cDNA coding for the anchor
attachment signal of a GPl-anchored protein. The chimeric
construct is transfected into cells, which are then analyzed
for surface expression of the protein and its susceptibility to
phosphotidylinositol-phospholipase C (PI-PLC). Initial
studies using this recombinant DNA methodology were
focused on constructing chimeric molecules to identify the
signal sequence for GPI-anchor attachment on endogenous
GPI-anchored proteins. In a series of experiments, Caras et
al (139, 158, 159) and Tykocinski et al (146) assigned the
GPI-anchor addition signal of DAF to the last 37 amino
acids at the C-terminus. Subsequently, GPI-anchored forms
of type | and type Il integral membrane proteins and
secretory and viral envelope proteins were constructed to
characterize the structura requirements of their
extracellular domains to carry out specific functions.

The immunologically important CD4 protein was
converted to a GPl-anchored form to map the domains
required for HIV-1 bhinding and infection (160,161).
Further investigation found that incorporating GPI-CD4
onto CD4 negative cells could render them susceptible to
HIV infection (162). Other immunologically important
molecules such as CD16A (163,164), CD8 (165), mouse
MHC class | (154,166,167), MHC class Il (152), TCR
(168), ICAM-1 (153,169), B7-1 (119,170), B7-2 (170,171)
and LFA-1 | domain (172), were aso converted to GPI-
anchored forms for investigating the functional
consequences of this new mode of membrane association.
Studies from our laboratory (164) and others (173) on
membrane isoforms of CD16 have shown that GPl and
TM-anchored forms differ in their signal transduction.
GPI-anchored T cell receptor efficiently recognized antigen
presented by MHC class Il molecules (168). GPI-anchored
mouse MHC class | molecule H2-D® conferred protection
from NK cell lysis in vivo and in vitro (166). However, in
other studies GPI-anchored H2-D° was not able to load
endogenously processed antigenic peptides, though it
bound to exogenously added antigenic peptides as
efficiently asits TM-counterpart (174). Studies with Thy-1
and CD16A also suggest that membrane anchor can induce
subtle conformation changes in the extracellular domain of
areceptor (175,176). DAF protects cells from complement
mediated damage equally well whether in GPI- or TM-
anchored form (177). Recently, we have demonstrated that
GPl-anchored B7-1 can bind to CD28 and induce T cell
proliferation as efficiently as the transmembrane B7-1
(119,120). These results suggest that the type of membrane
anchor can influence function of extracellular domain in
some receptors, but not in all.
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Table 1. Applications of protein transfer using GPI-anchored proteins

Molecule Application Reference
DAF Reconstitution of complement regulation in vitro 140, 181, 182
CD59 Invitro and in vivo reconstitution of complement-deficiency 182-184, 211
CD16B Ligand binding and endocytosis 118

Human B7-1 Stimulation of alogeneic T cells, Stimulation of anti-tumor immunity in vivo 119, 207
CD4 HIV-mediated gene transfer of CD4- cells 162

Mouse B7-1 Stimulation of anti-tumor immunity in vivo 205

MHC class| Sensitize MHC class negative cellsto CTLs 154

6.2. GPI-mediated protein transfer

Purified proteins that contain a GPl-anchor are
able to spontaneously incorporate into the lipid bilayer of
nucleated (117-119,178) and non-nucleated cells (130,140).
Recongtitution of GPl-anchored proteins into cell
membranes is a specific process, mediated by hydrocarbon
chains of the lipid moiety as chemica or enzymatic
removal of the acyl chains completely abolished the
incorporation. The GPl-mediated protein transfer, has
become an attractive strategy to express new proteins on
cell membranes. Both naturally occurring and engineered
GPl-anchored proteins transfer equally well. The
membrane incorporation process is dependent on
temperature and duration of incubation and concentration
of the purified protein (117,118,140). Fatty acid binding
serum proteins such as BSA and orosomucoid inhibit the
transfer (118,140). Under serum free conditions,
genetically engineered, affinity purified GPl-anchored
proteins incorporate maximally after 2 h incubation at 37°C
(119,179). A number of tumor cell lines including primary
breast carcinoma cells have been modified with GPI-B7-1
and show similar kinetics of incorporation (119).

Initially, the GPl-protein transfer was used to
determine the functional consequence of defective
expression of GPl-anchored receptors in Paroxysmal
Nocturnal Hemoglobinuria (PNH) patients erythrocytes.
PNH is an acquired abnormality of hematopoietic cells
affecting GPl-anchor biosynthesis or attachment, thus
selectively affecting the membrane expression of GPI-
anchored proteins (125,180). The complement regulatory
activity of erythrocytes from PNH patients could be
reconstituted by incorporation of GPl-anchored DAF and
CD59 (140,181-183) by protein transfer. Other cell types
that are sensitive to complement mediated lysis can also be
rescued by incorporation of CD59 (184). Apart from
complement regulatory proteins, PNH erythrocytes also
lack the cell adhesion molecule LFA-3 and therefore, do
not adhere to T cells expressing CD2, a natural ligand for
LFA-3 (185). Expression of LFA-3 by protein transfer
reconstituted the ability of PNH erythrocytes to adhereto T
cells (130) suggesting that adhesion function of a cell can
be manipulated by protein transfer.

In all these studies, purification and incorporation
of GPl-anchored proteins did not alter their ligand binding
capacity (154,160,161). Also, modification of tumor cells
with GPI-B7-1 led to the stimulation of allogenic T cells
(119). Applications in which GPI-anchored proteins have
been tested for treatment of diseases are shown in Table
1.
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6.3. Chemical modification of proteins with palmitic
acid

The chemica modification of antibodies by
pamitic acid has been well described (186-189). The
advantage of this process is the ease of which it can be
accomplished. Derivatization by palmitic acid covalently
couples the protein to the N-hydroxysuccinimide ester of
pamitic acid (186). The derivatized protein can be inserted
into the plasma membranes of cells. This method has been
used to study in vitro cell-cell interactions, receptor-
mediated events, and to dissect distinct receptor pathways
through a more natural interaction (190-195). The primary
drawback of this methodology is that the pamitate
derivatization of functionally active amino acids on the
protein can lead to loss of functional activity of the protein.
Moreover, the random nature of the palmitate derivatization
also results in random orientation of proteins or antibodies,
that when incorporated onto the surface of cells, may not be
best to facilitate interactions with its ligands. More
recently, a method to use palmitate derivatization in a two
step process to add proteins to the surface of cells was
shown. Peacock and co-workers (196) have shown that it
is possible to modify protein A by pamitic acid. They
showed that the resulting pal-protein A could incorporate
onto the surface of cells and retained its ability to bind the
Fc portion of antibodies (196). This method allows the
construction of a platform, palmitate-protein A (pal-protein
A) on which one can then assemble any number of
antibodies or Ig-fusion proteins. The advantage of this
design is that once cells were coated with pal-protein A,
antibodies could be coated or expressed in the correct
orientation, thereby maximizing interactions with its
ligands and retaining Ag-binding affinity. This could be
useful in studying receptor-ligand interactions in vitro
using Ig-fusion proteins aswell. Recently, Chen et al (143)
using pal-protein A and B7-1-1g-fusion protein showed that
by varying the level of costimulatory signal, i.e. by level of
B7-1-1g-fusion protein onto cells, they could dissect
differences in cytokine release and T cell proliferation
depending on the level of costimulation. Historicaly, these
responses and studies were conducted using cells modified
by gene transfer.

6.4. Protein transfer using metal chelator lipids
Immobilized meta  chelators, such as
iminodiacetic acid and nitrilotriacetic acid (NTA), have
been used routinely for the purification of recombinant
proteins by meta-ion affinity chromatography (197).
These chelators, in the presence of Ni?* or Zn**, facilitate
the binding to polyhistidine tags (histag) of the
recombinant proteins. Some recent studies have shown that
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NTA can be covalently linked to lipids, which can be used
to anchor histag proteins onto planar lipid membranes
(198). A recent study by van Broekhoven et. a. described
the incorporation of a novel-chelator lipid (NTA-DTDA)
and the anchoring of recombinant B7-1 and CD40
extracellular domains fused to a his-tag (142). In this study
they show the expression is strictly dependent on the
incorporation of chelator-lipids into the plasma membrane
of cells. This is because this technique uses a two-step
process, instead of just a one-step method like protein
transfer by GPl-anchored proteins (Figure 2). The
advantage in this system, is that soluble proteins which are
significantly easier to produce and purify can be anchored
to the cells as well. GPl-anchored proteins due to their
surface expression must be purified from cell membranes
which requires significant labor and the protein yields are
limited (143). Incorporation of chelator lipids is
concentration dependent and can be enhanced by helper
lipids, such as DMPC and POPC, and aso fusogens like
polyethylene glycol. van Broekhoven et. al. showed that
anchoring of B7-1 and CD40 his-tag fusion proteins could
costimulate an alogeneic T cell response in vitro (142).
Their studies also extended to generating an anti-tumor
response in vivo, which is discussed in section 7.

6.5. Protein transfer using proteins with engineered
hydrophobic tails

Recently another approach to protein transfer was
described. Wahlsten et. a. (144) described a novel way to
attach the super-antigen toxic shock syndrome toxic-1
(TSST1) to tumor cells using hydrophobic amino acids. In
their report, they created a genetic recombinant form of
TSST1 by fusing TSST1 cDNA to the transmembrane
region sequence of c-erb-B-2 caled TSST1-TM. The
protein was produced in E.coli and purified by metal
affinity chromatography. Wahlsten et al. utilized the
hydrophobic tail from c-erb-B-2, instead of a lipid tail, to
facilitate incorporation of TSST1-TM (144). Studies in
E.coli as well as eukaryotic cells have demonstrated that
hydrophobic protein sequences can facilitate membrane
insertion (199,200). Incorporation of TSST1-TM onto
tumor cells led to a polyclonal stimulation of human
PBMCs. They also tested this protein transfer method in
tumor studiesin vivo. (See section 7).

7. DESIGNING CANCER VACCINES USING PROTEIN
TRANSFER

Most murine and human tumors develop despite
being antigenic. This lack of immunogenecity even in the
presence of unique tumor antigens has been attributed to
three factors: the lack of costimulatory molecules on most
tumors, immunosuppression by tumors, and T cell
ignorance or anergy to the antigens displayed by the tumor.
The lack of costimulatory molecules, especialy B7-1
(98,105,201) and B7-2 (202,203), necessary for T cell
activation, render tumors unable to provide costimulatory
signals to tumor specific T lymphocytes. However, they
can provide the first signal, TCR recognition by presenting
the tumor antigen on MHC class| molecules. In the
absence of a costimulatory signal these TCR stimulated
tumor-specific T cells become anergic and may eventually
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die. In this way, tumor cells can incapacitate the T cell
population specific for their antigens and escape from any
immunosurveillance. Expression of B7-1 (98-104) and
other costimulatory molecules such as ICAM-1 (106,107)
on the tumor cell by gene transfection can induce specific
anti-tumor immunity and subsequent tumor rejection in
animal models. Gene transfection of tumor cells, as
previously stated, has many disadvantages. Thus, protein
transfer has been pursued as an alternative method to create
therapeutic cancer vaccines.

7.1. Protein transfer modified tumor cells asa vaccine

Protein transfer provides an aternative method
for the introduction of immunostimulatory molecules onto
the surface of cells and eliminates most of the problems
encountered with gene transfer (117-119,122,204). GPI-
protein transfer, as well as the other described protein
transfers, is fast and requires only a short incubation of the
cells with the purified protein. This technique also alows
for simultaneous incorporation of a number of molecules,
virtually on al cell types including primary tumor cells, at
any stage of their cycle.

Studies conducted by our laboratory have shown
that GPI-B7-1 coated onto tumor cells augments an
allogeneic response (119). GPI-protein transfer studies, by
Tykocinski and co-workers and our laboratory, have shown
that more than one molecule can be delivered to the cell
surface simultaneously without interference and both
molecules retain functional activity (205, Poloso et. al.
unpublished observations). Using the his-tag system, van
Broekhoven et al. was able to ssimultaneously incorporate
mB7-1 and CD40 (142). There are some differencesin the
ability of both mB7-1 and CD40 to incorporate between the
two proteins, which they attributed to difference in the
molecular mass of B7-1 and CD40 (45 kDa and 25 kDa,
respectively).  Because the proteins are not directly
anchored with lipid or hydrophobic tail, his-tag proteins
compete for alimited number of chelator lipids which must
be incorporated into the plasma membrane prior to his-tag
binding (142). Nevertheless, the incorporation of mB7-1
and CD40 onto tumor cells used to immunize mice resulted
in the priming of CTLs as measured by an in vitro CTL
assay (142). Immunization with what the authors call
‘engrafted tumors' with mB7-1 and/or CD40 resulted in
a significant delay in the development of tumors after a
parental tumor challenge. In this study, mice
immunized with tumor cells engrafted with both mB7-1
and CD40 had the largest delay in tumor development,
justifying the idea that more than one
immunostimulatory molecule may be necessary for an
optimal anti-tumor response. These results agree with
previous studies using gene transfected tumor cells with
multiple molecules, such as B7-1 and ICAM-1 (107).

Wahlsten et al. has described the congtruction of a
superantigen TSST-1-TM, which contains a hydrophobic tail
alowing for the insertion into the membrane of cells (144).
Using this method to express a superantigen on tumor cells,
these investigators have simultaneoudly lowered the toxicity
of super-antigen treatment and linked it directly to the
tumor cells that need to be lysed in order to
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Figure 3. Preparation and modification of isolated membranes with GPI-B7-1 by protein transfer. A) Intact cells are suspended
in a hypotonic buffer and homogenized. The lysate is then centrifuged over a sucrose gradient and the interface (containing
cellular membranes) is harvested and washed. Recombinant GPl-anchored proteins, such as B7-1, can then be incubated with
these membranes and the resulting membranes incorporate B7-1 into their lipid bilayers. B) Flowcytometric analysis of isolated
membranes from MDA-231 breast cancer cells (upper panels) and SKMEL melamona (lower panels) after incubation with (right
panels) or without (left panels) GPI-B7-1. Filled histograms represent staining by PSRM 3, an anti-B7-1 antibody, while the open

histogram represents staining by an isotype control.

facilitate uptake of tumor antigens from these cells.
Immunization with tumor cells coated with TSST-1-TM or
TSST-1-TM lacking the MHC class Il binding domain
resulted in significant anti-tumor immunity. Immunization
with this vaccine induced regression of established parental
tumors (144).
7.2. Protein transfer modified isolated
membranes as a vaccine

One of the limitations of protein transfer is
related to the stability of the incorporated molecule on the
cell surface. Live or irradiated cells gradually lose surface
expression of the incorporated protein upon multiple cell
divisions (118,119,142). However in clinical settings
where live cells are undesirable to use, non-proliferating,
irradiated cells or cell membrane preparations can be
modified by protein transfer and for subsequent use.
Isolated tumor cell membranes offer many advantages over
intact cells. Since membranes do not have the metabolic
functions of cells and do not divide, they provide a stable
environment for protein transfer of GPl-anchored
molecules. Cell membranes are isolated from intact cells
by homogenization and centrifugation over a sucrose
gradient (Figure 3a, (206)). Isolated membranes can then
be modified by protein transfer, washed, and analyzed by
flowcytometry or ELISA (Figure 3b). Stability studies
using GPI-B7-1 have shown that this protein is stable on
isolated membranes from a mouse thymoma for at least 4,
and up to 7 days on isolated membranes from various

tumor
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human tumor cell lines (179,207). Moreover, membranes
can be prepared from fresh and frozen tumor tissue and the
membranes can also be easily stored in frozen aliquots.
The fresh or frozen membranes can be modified equally to
express GPl-anchored costimulatory molecules by protein
transfer, for immunization protocols (207). The
costimulatory molecule modified membranes can also be
stored as frozen aliquots with minima loss of the
incorporated molecules (179). The optimal conditions for
protein transfer of GPI-proteins onto isolated membranes is
much the same as cells. Optimal expression is seen at 37°C
for 2-4 hours (179).

To our knowledge, protein transfer is the only
method available to add new cell surface receptors on
isolated membranes (207). Isolated membranes can be
made directly from tumor tissue obtained from patients and
subsequently modified by protein transfer (179). This is
advantageous since the establishment of cell lines from
surgically removed or frozen tumor specimens is difficult
and often not successful (179,208). It has also been
determined that a major limiting factor in gene transfer
based vaccines in clinical studies is the limited number of
successfully transfected tumor cells (209).

Vaccination with GPI-B7-1 modified isolated
tumor membranes results in the generation of tumor
specific T cellsand also CTL generation in vivo, which can
be measured in vitro (207). The responding cells in the
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cytotoxicity assay were determined to be CD8+ T cells by
antibody depletion studies. Vaccination also completely
protects mice from a parental tumor challenge in this
thymoma tumor model (207). Vaccination of GPI-B7-1
modified membranes in other tumor systems have resulted
in either partial protection or a significant delay in tumor
development (unpublished observations). Furthermore, our
collaborative work has shown that tumor liposomes
recongtituted with mB7-2 can protect mice from parental
tumor challenges (210).

Our data showing protein transfer of GPI-B7-1
onto isolated membranes as a vaccine in combination with
soluble IL-12 suggests that the addition of IL-12 greatly
enhances the cytolytic activity of tumor specific T cells
recovered from the spleen of immunized animals (207).
Whether this is due to the actual activity of individual T
cells or due to eliciting alarger number of CTLsis unclear.

8. CONCLUDING REMARKS

Understanding the mechanism of GPI-anchor
modification of proteins has resulted in techniques to create
GPl-anchored forms of cell surface glycoproteins
(119,154,170). The specia property of naturally occurring
and engineered GPl-anchored molecules to incorporate
spontaneously onto cell membranes has been utilized in a
simple, rapid technique for transient expression of foreign
molecules on virtually any cell type. This technique has
overcome several of the limitations of gene transfer
techniques and thus offers many advantages in
consideration of human clinical trials. Using this technique
we have demonstrated that GPl-anchored B7-1 can
spontaneously incorporate onto many tumor cell lines (117-
119) and provide them with the capacity to stimulate tumor
specific T cells. Also, we have demonstrated this approach
can result in the complete protection of mice from
developing tumors after a wild-type tumor challenge (207).
Beyond the GPI-method of protein transfer there are
several other attractive alternative methods of protein
transfer which have been successfully applied to cancer
vaccines in mouse models (142-144). An important next
step will be to see if these methods can prove to be
effective in the clinical setting and compare to other
strategies currently undergoing  trials. We have
demonstrated  that  protein  transfer of  GPI-
immunostimulatory molecules can also be applied to
human isolated tumor membranes from human tumor
specimens (179).  Whether these dtrategies are as
efficacious as tumor transfected or DC-based vaccines till
needs to be determined.
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