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1. ABSTRACT

Physiological angiogenesis is a tightly regulated
process that occurs mainly during reproduction,
development and wound healing. Although angiogenesis is
a continuous process, different consecutive steps can be
identified, including: i) release of pro-angiogenetic factors;
ii) release of proteolytic enzymes; iii) endothelial cell
migration, morphogenesis and proliferation. Angiogenesis
is also a hallmark of malignant diseases, and an inverse
correlation between tumor vascularity and survival was
demonstrated. Thus, strategies aimed at interfering with
tumor blood supply by targeting tumor vasculature,
presently represent promising new approaches for the
treatment of solid malignancies. In fact, at least 30
angiogenetic inhibitors, utilized alone or in combination
with other therapeutic agents, are currently being tested in
clinical trials in humans. In this paper, we will review
current knowledges on selected molecules expressed by
endothelial cells and involved in distinct steps of the
angiogenetic process, that represent potential targets for
bioimmunotherapeutic approaches in human malignancies.

2. INTRODUCTION

Angiogenesis is a complex process that leads to
new blood vessels development from pre-existing
microvessels, and involves sequential events including
proteolysis and remodeling of the extracellular matrix, as
well as proliferation and migration of endothelial cells (1).
In the adult, with the exception of the reproductive cycle in
women, angiogenesis occurs in response to pathological

conditions such as inflammation, wound healing and
hypoxia (2). Furthermore, excessive or insufficient
vascularization has been associated with several non-
malignant diseases (2-6), and it has long been established
that angiogenesis plays a crucial role in tumor growth and
metastasis (7). In this regard, it has been demonstrated that
microvascular density correlates with distant metastasis and
prognosis in solid malignancies of different histotype (8-
13), and in hematological malignancies (14-15). Recent
progresses in identifying and characterizing physiological
regulators of blood vessels development, prompted several
pre-clinical studies designed to block tumor vessel growth
in order to interrupt blood supply to neoplastic cells. In
light of these pre-clinical data, a variety of angiogenetic
inhibitors are currently being tested in clinical trials aiming
to target specific molecules involved in blood vessel
neoformation, or to directly inhibit specific biologic
functions of endothelial cells or their response to
angiogenetic stimuli (16).

Due to their active involvement in angiogenesis,
targeting of proliferating endothelial cells presents several
advantages compared to conventional treatment of human
malignancies; in fact, it allows: i) easy accessibility of
therapeutic agents to endothelial cells through the blood
stream; ii) suitability of this therapeutic strategy to solid
tumors of different histotype; iii) targeting of a genetically
stable cell population, thereby reducing the possibility of
acquiring drug resistance. In addition, targeting of
proliferating endothelia potentially amplifies the killing of
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transformed cells since each blood capillary sustains the
growth of a great number of malignant cells (17).

Although anti-angiogenetic therapy currently
represents one of the most promising approaches for cancer
treatment, a number of limitations must be taken into
account when anti-angiogenetic therapies are carried out in
humans. In fact, angiogenesis is highly regulated by a
balance between positive and negative stimuli, that are
tightly coordinated (1). Additionally, the mechanism of
action of several angiogenetic inhibitors is poorly
understood yet (1). Furthermore, cytokines and pro-
angiogenetic molecules secreted by cancer and immune
cells can modulate the phenotypic profile of tumor
endothelia (1). Finally, the quantification of angiogenesis in
response to angiogenetic inhibitors remains, to date,
impractical in metastatic diseases; thus, the identification of
reliable soluble markers of angiogenesis is required to
monitor the effectiveness of anti-vascular therapies. In this
regard, recent findings suggested that measurement of
serum vascular cell adhesion molecule (VCAM)-1 might
help in the assessment of anti-angiogenetic drugs currently
in clinical trials (18).

3. VASCULAR ENDOTHELIAL GROWTH FACTOR
(VEGF)

VEGF is a disulphide-linked dimeric
glycoprotein, that represents a key mediator of
vasculogenesis and angiogenesis (19-21), and presents at
least 5 isoforms (VEGF121, VEGF145, VEGF165,
VEGF189, VEGF206) generated by alternative splicing of
a single gene (19-20). These different isoforms show
similar biological activities, but differ for their binding to
heparin and to the extracellular matrix (22). The smaller
isoforms are secreted in a soluble form, whereas the larger
ones remain cell-associated and their availability is
regulated by proteolysis (22). Many different cell types,
including cancer cells, are able to produce VEGF that
exerts its biological activity predominantly on endothelial
cells (19-20). In vivo, it induces both vascular permeability
and angiogenesis, and contributes to vasculature
maintenance (20, 23). In vitro, VEGF promotes endothelial
cell proliferation and it modulates the expression of
adhesion molecules such as VCAM-1 and ICAM-1 on
endothelial cells (20). Additionally, it has been recently
demonstrated that VEGF prolongs the survival of human
dermal microvascular endothelial cells by inducing the
expression of the anti-apoptotic protein Bcl-2 (24).

Increased levels of serum VEGF and of VEGF
expression have been found in different angiogenesis-
related diseases including malignancies of different
histotype (25-26), and anti-VEGF monoclonal antibodies
(mAb) strongly inhibited the growth of human tumor
xenografts transplanted subcutaneously in nude or SCID
mice (27-30). Taken together, these studies demonstrated
that treatment with anti-VEGF mAb inhibited tumor
neovascularization in animal models, and interfered with
tumor vasculature maintenance, malignant ascites fluid
formation, and metastatic spreading (27-30). However,
tumor growth resumed upon cessation of the mAb

treatment, suggesting that it may not be sufficient for
complete tumor eradication (27, 31). Thus, curative therapy
in cancer patients may necessitate a combination of both
anti-angiogenetic agents such as anti-VEGF mAb and
cytotoxic agents, to disrupt both tumor and endothelial cells
(27). Humanized forms of anti-VEGF mAb, which retain
the same affinity and efficacy of murine mAb, have been
generated and are being tested in humans (16, 32-34, URL:
http://cancertrials.nci.nih.gov). Results emerging from
Phase I clinical trials with anti-VEGF mAb, administered
alone or in association with chemotherapy, showed that
these treatments are well tolerated; thus, human anti-VEGF
mAb can be safely combined with chemotherapy without
apparent synergistic toxicity (33-34). Phase II clinical trials
showed objective responses, including one complete
response, in breast cancer patients treated with anti-VEGF
mAb (33, 35). In addition, treatment of patients affected by
advanced non-small cell lung carcinoma or colorectal
cancer with anti-VEGF mAb in combination with
chemotherapy, increased the clinical response rate and
prolonged the time-to-disease progression compared to
chemotherapy alone (33, 36-37).

4. VASCULAR ENDOTHELIAL GROWTH FACTOR
RECEPTORS (VEGFR)

The main receptors that initiate signal
transduction cascades in response to VEGF comprise a
family of closely related receptor tyrosine-kinases VEGFR-
1, VEGFR-2 and VEGFR-3. Among these, VEGFR-1 and
VEGFR-2 expression is largely restricted to the vascular
endothelium, and both receptors bind VEGF with high
affinity (19-21). VEGFR-2 seems to mediate the major
growth and permeability actions of VEGF, whereas
VEGFR-1 may have a negative role, either by acting as a
decoy receptor or by suppressing signaling through
VEGFR-2 (19-21). In adult human tissues, VEGFR-3 is
mainly expressed in the lymphatic endothelia and in some
high endothelial venules (38). Noteworthy, the mRNA for
VEGFR-1 and -2 was found to be up-regulated in tumor-
associated endothelial cells (26, 39); thus, VEGF receptors
represent attractive targets in the aim to effectively block
VEGF activity. Opposite to anti-VEGF mAb, the efficacy
of SU5416, an inhibitor of the tyrosine-kinase activity of
VEGFR-2, was reported to be best against slow-growing
tumors, and more variable against fast-growing tumors
(27). In addition, it was demonstrated that SU5416 has
long-lasting effects on VEGFR-2 phosphorylation and
function (40), and that it reverts tumor resistance to
radiotherapy (41). Results from Phase I clinical studies
indicated that anti-VEGF therapy with antibodies (Ab) or
receptor kinase inhibitors is well tolerated; moreover,
patients with advanced disease appeared to respond to
therapy with disease stabilization or tumor shrinkage (27).
In addition, among 28 patients with metastatic colorectal
cancer enrolled in a Phase I/II clinical study, designed to
investigate the safety of SU5416 in combination with 5-
fluoruracil (FU)/leucovorin, 15 patients showed a clinical
response (i.e., 1 complete response, 5 partial responses, 9
stable diseases) (42). According to these results, SU5416 is
currently in Phase III clinical trials for advanced
malignancies.
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5. MATRIX METALLOPROTEINASES (MMP)

The MMP are a family of secreted and
membrane-associated endopeptidases that selectively
degrade components of the extracellular matrix and
basement membrane, allowing endothelial cells migration
and metastatic spread of cancer cells (43). These enzymes
are produced by a variety of cell types, including
endothelial and epithelial cells, fibroblasts, and
inflammatory cells (43).

The identification of natural tissue inhibitors of
MMP (TIMP), that are primarily secreted by endothelial
cells, has stimulated studies focused on MMP inhibition to
reduce the metastatic spreading of neoplastic cells. Among
TIMP, TIMP-1, which is mainly released by endothelial
cells (44), was shown to inhibit angiogenesis both in vitro
and in vivo (45-46). Furthermore, TIMP-1 over-expression
induced on endothelial cells by gene transfer, strongly
decreased their migration and invasion of the extracellular
matrix (47); furthermore, levels of TIMP-1 expression
correlated with prognosis in patients with gastric carcinoma
(48).

Extensive pre-clinical data generated in animal
models have shown that the administration of synthetic
MMP inhibitors (MMPI) reduces primary tumor growth as
well as  the number and size of metastatic lesions. Based on
these promising results, synthetic MMPI have been
developed and taken into clinical trials (49). Among these,
Marimastat, BAY- 129566, CGS-27023A, Prinomastat
(AG-3340), BMS-275291 and Metastat (COL-3) are in
different stages of clinical development, ranging from
Phase I to Phase III trials (50). Furthermore, with the aim to
potentiate tumor cytotoxicity, as well as to reduce the size
and number of metastatic lesions, several MMPI are being
administered in clinical trials in combination with
chemotherapy (49-51).

6. ALPHA V BETA 3 INTEGRIN (CD51/CD61)

The integrin family member alpha v beta 3 is an
adhesion receptor, strongly implicated in the response of
endothelial cells to angiogenetic stimuli. Its expression on
angiogenetic endothelial cells is thought to facilitate their
adhesion to the extracellular matrix during migration; in
fact, alpha v beta 3 integrin was shown to bind directly to
the MMP-2 on the surface of vascular endothelial cells
during angiogenesis, suggesting a possible functional link
between these endothelial cells surface proteins (52).

Furthermore, alpha v beta 3 integrin has been
described as a marker for angiogenetic blood vessels, as it
has been found predominantly expressed in wound healing
and in tumor-associated blood vessels (53-54). Although
the vasculature within apparently normal tissues also
stained for alpha v beta 3 integrin, the percentage of stained
vessels and their staining intensity were lower compared to
neoplastic tissues (55). The relevance of this integrin in
neovascularization was strongly supported by the ability of
the anti-alpha v beta 3 integrin mAb LM609 to induce
endothelial cells apoptosis within angiogenetic blood

vessels (56), and to promote tumor regression by inhibiting
tumor angiogenesis (57).

Clinical trials utilizing a humanized version of
mAb LM609 (Vitaxin) have been initiated, to evaluate its
safety and pharmacokinetics in late stage cancer patients
(58). Results emerging from a pilot study have shown that
Vitaxin was generally well tolerated; however, no objective
regressions or significant stabilizations of disease were
observed in 15 patients with advanced leiomyosarcomas
(59).

7. ENDOSTATIN

Endostatin is a 20 kDa terminal fragment of
collagen XVIII, that was originally isolated as an inhibitor
of endothelial cells proliferation from the culture medium
of the EOMA hemangioendothelioma cell line (60).
Endostatin shows a widespread distribution in blood vessel
walls and basement membrane zones, and a strong
association with elastic fibers of aorta and with large
arteries was found in adult mouse tissues (61).

Functional studies demonstrated that Endostatin
inhibits endothelial cell proliferation (60) and migration
(62), and that it induces endothelial cell apoptosis (63). The
action of Endostatin seems to be endothelium-specific since
it has no activity on fibroblasts and smooth muscle cells
(60, 63-64); however, its mechanism(s) of action remain to
be elucidated. It has been suggested that Endostatin inhibits
the proteolytic activation of pro-MMP-2 and the catalytic
activities of Membrane Type (MT)1-MMP and MMP-2
(65). In addition, most recent findings indicated that
Endostatin down-regulates many genes involved in
proliferation, apoptosis and migration of growing
endothelial cells, resulting in a potent anti-migratory effect
(66).

In vitro, Endostatin significantly reduced
endothelial and malignant cells invasion into reconstituted
basement membrane (65), while in vivo, it regressed
established syngeneic Lewis lung carcinoma, T241
fibrosarcoma, and B16 melanoma tumors in xenograft
models (60). Moreover, repeated cycles of Endostatin
therapy prolonged tumor dormancy in mice, suggesting that
it does not generate drug resistance (67); however, anti-
angiogenetic therapy with Endostatin in tumor-bearing
mice required prolonged administration and high doses of
protein (60, 64). Further support to the potential usefulness
of Endostatin for cancer therapy, has recently derived from
the demonstration that intratumoral delivery of the
Endostatin gene efficiently suppressed MCa-4 murine
mammary carcinoma growth in immunodeficient mice
(68). In this study, it was also demonstrated that the
observed reduction of tumor growth was associated with a
marked reduction in vascular density as assessed by CD31,
CD105 and DiOC7 staining. Noteworthy, radiation has
been shown to increase the production of Endostatin; in
fact, plasma levels of Endostatin were twice as high in mice
that underwent tumor irradiation as compared to mice that
underwent tumor resection (69). In addition, a significant
tumor growth inhibition was observed in mice bearing
radio-resistant tumors following combined treatment with
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Endostatin and radiotherapy, compared to mice treated with
irradiation alone (70). Altogether, these findings suggest
that the efficacy of combined anti-angiogenetic and
conventional anti-cancer therapies should be further
investigated for their potential implications in the treatment
of human cancer. Interestingly, Ab to Endostatin were
detected in the serum and in the tumor tissue of a patient
with a multifocal glioblastoma, suggesting that Endostatin
over-expression might induce a humoral immune response
(71).

At present, Phase I clinical trials are ongoing to
test the efficacy and toxicity of Endostatin in patients with
advanced solid tumors (i.e., breast cancer, melanoma, head
and neck cancer, colon cancer, renal carcinoma and
sarcoma) for which no other standard therapy exists (URL:
http://cancertrials.nci.nih.gov).

8. PLATELET ENDOTHELIAL CELL ADHESION
MOLECULE-1 (PECAM-1/CD31)

CD31 is a 130 kDa glycoprotein that belongs to
the immunoglobulin (Ig) superfamily (72), and that is
mainly expressed on endothelial cells of large and small
vessels (73). In cultured endothelial cells, and in continuous
endothelia of blood vessels in human tissues, CD31 was
found predominantly localized at intercellular junctions
(73-74); additionally, CD31 is constitutively expressed on
platelets, monocytes and leukocytes (75).

The role of CD31 in angiogenesis has not been
fully clarified yet, however, several experimental findings
suggest that it is involved in neovascularization. In this
respect, CD31 was found to play a role in endothelial cell
migration (76), endothelial cell-cell adhesion (77), and in
the development of the cardiovascular system (72).
Additionally, it was reported that high levels of CD31
inhibited endothelial cells morphogenesis (78), and anti-
CD31 Ab inhibited tube formation in Matrigel by human
umbilical vein endothelial cells (HUVEC) (79-80). In vivo,
CD31 has proven to represent an useful
immunohistochemical marker of blood vessels, and it is
currently considered as the “golden standard” for the
assessment of angiogenetic activity in tumors (81);
however, it was recently demonstrated that opposite to
Endoglin, levels of CD31 expression inversely correlate
with HUVEC proliferation (82).

9. ENDOGLIN (CD105)

CD105 is a homodimeric cell membrane
glycoprotein of approximately 180 kDa, composed of
disulphide-linked subunits of 95 kDa (83), which has
limited species-specificity (84-85). Two different isoforms
of CD105, L-CD105 and S-CD105 have been characterized
(86-87). L-CD105 is predominantly expressed on
endothelial cells and shares regions of sequence identity
with betaglycan, a component of the Transforming Growth
Factor (TGF)-beta receptor complex, that is weakly
expressed or absent on endothelial cells (88).

CD105 is an accessory component of the TGF-
beta receptor complex (89-90), and it binds several factors

of the TGF-beta superfamily including TGF-beta 1 and -
beta 3 (90-91), activin-A, BMP-7, and BMP-2 (90). The
exact role of CD105 in TGF-beta signaling remains
unclear. However, CD105 over-expression on different cell
types modulates several cellular responses to TGF-beta 1,
including inhibition of cellular proliferation and down-
regulation of c-myc mRNA, stimulation of fibronectin
synthesis, cellular adhesion, platelet-endothelial cell
adhesion molecule-1 phosphorylation, and homotypic
aggregation (89, 92-93). On the contrary, using an
antisense approach, it was shown that the inhibition of
CD105 expression in cultured endothelial cells enhanced
the ability of TGF-beta 1 to suppress their growth and
migration (93).

Concerning its tissue distribution, CD105 was
found mostly expressed on cellular lineages within the
vascular system, and preferentially and strongly expressed
on endothelial cells (83, 94-95). Noteworthy, highest levels
of CD105 expression were identified on cultured
endothelial cells with protein, RNA, and DNA levels
consistent with cellular activation and proliferation (96). In
agreement with this observation, a significant correlation
was found between levels of CD105 expression and
endothelial cells proliferation and density in culture (82,
97), as well as with markers of cell proliferation (i.e., cyclin
A and Ki-67) in tumor endothelia (98). Consistently, a
stronger intensity of staining for CD105 was detected on
vascular endothelial cells in tissues undergoing active
angiogenesis, such as regenerating and inflamed tissues or
tumors (96, 98-99), compared to normal tissues. In solid
malignancies of different histotype investigated, anti-
CD105 mAb reacted almost exclusively with venous and
arterial endothelium of both peritumoral and intratumoral
vessels (96-97, 100). Additional support to the involvement
of CD105 in angiogenesis derives by the demonstration that
mutations in the coding region of CD105 gene are
associated with hereditary hemorrhagic telangiectasia type
1 (HHT), a dominantly inherited vascular disorder
characterized by multisystemic vascular dysplasia and
recurrent hemorrhage (101). In addition, mice heterozygous
for CD105 showed signs of HHT (102), and CD105
knockout mice died of defective vascular development at
gestational day 10-11 (102-103).

The identification of CD105 as an optimal
marker of endothelial cells proliferation has encouraged
studies designed to test the clinical usefulness of anti-
CD105 mAb for the in vivo diagnosis and treatment of
malignant diseases. Consistently, CD105 was shown to
represent an ideal marker to quantify tumor angiogenesis
(104); furthermore, microvessel density assessed by using
an anti-CD105 mAb, was found to be an independent
prognostic factor in breast cancer patients (104).
Additionally, using in vivo models of spontaneous canine
mammary adenocarcinoma (82) or human melanoma
xenografts in C57BL/6 mice (105), it has been recently
demonstrated that targeting of endothelial CD105 by
radiolabeled mAb is an efficient procedure to image solid
malignancies, regardless of their histological origin. Most
interestingly, in vivo studies conducted in SCID mice
bearing human breast carcinomas, demonstrated that
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radiolabeled or immunotoxin-coniugated anti-CD105 mAb
had a highly effective anti-tumor efficacy (106-108). In
light of these findings, Phase I clinical trials have been
initiated to evaluate the therapeutic efficacy and toxicity of
anti-CD105 mAb in cancer patients (109).

10. CONCLUSIONS AND FUTURE DIRECTIONS

Agents that target the tumor vasculature by
killing and/or interfering with biological functions of
endothelial cells (i.e., proliferation, migration and
differentiation), represent promising candidates to set up
new therapeutic approaches in solid malignancies,
regardless of their histotype. The pre-clinical and clinical
experiences so far obtained demonstrate that a more in-
depth knowledge of the endothelial cell molecules playing
a role in angiogenesis, and of the molecular mechanism(s)
regulating angiogenesis in tumors, may allow to design
more specific and eventually more effective therapeutic
approaches to cancer. Furthermore, these anti-vascular
therapeutic strategies, that potentially do not induce drug
resistance, might represent useful approaches for the long-
term maintenance of cancer treatment, following or in
association with conventional therapeutic strategies such as
surgery, chemotherapy, radiotherapy and immunotherapy.
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