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1. ABSTRACT

The aging of the immune system, referred to as
immunosenescence, is associated with a dramatic reduction
in responsiveness as well as functional dysregulation. This
deterioration of immune function with advancing age
contributes to the increased incidence among the elderly of
morbidity and mortality from infectious disease, and
possibly autoimmunity and cancer. In mammals, the
defense for fighting infectious agents is composed of the
innate and adaptive immune systems. Macrophages,
granulocytes, and natura killer cells are the major
components of the innate system whereas T and B
lymphocytes comprise the adaptive system. Although both
compartments are affected, adaptive immunity is most
susceptible to the deleterious effects of aging. Innate
immunity functions immediately after birth and manifests
little change throughout life. In contrast, adaptive immunity
is immature at birth, peaks at puberty and progressively
declines thereafter. Though marginal dterations in B
lymphocytes are apparent, the dramatic decline in humoral
and cell-mediated responses is predominantly the
consequence of senescent T cells. The following review
focuses on the aging effect on T cells as reflected in altered
function, subset representation, development, lifespan and
activation. Age-associated alterations in antigen presenting
cells are also discussed since these cells are required for T
cell activation and may impact T cell function.
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2. INTRODUCTION

Age-related changesin T cell function isevident in
proliferation to mitogenic and alogeneic stimulation, helper
function in antibody responses (1,2), delayed type
hypersensitivity responses (3), cytokine production (4), and
cytotoxic function (3). Included among the more dramatic
changes that contribute to diminished T cell function are a
decline in the frequency of CD4" T cells producing IL-2 and
a decreased expression of |1L-2 receptors (5). Thisis coupled
with a decrease in the early events of signal transduction (6-
8) and an overall decreasein proliferation of CD4" T cells (9-
11) in response to various kinds of T cell receptor (TCR) and
costimulus mediated stimulation. Superimposed on these
alterations is a shift toward an increased representation of
CD4* T cellswith amemory phenotype (10,12,13). Although
some functional changes found in the aged may be attributed
to the shift in the representation of T cell subsets (e.g.,
memory/naive), other alterations are likely to be intrinsic to
CD4* T cells from the aged. Even though the potential T cell
repertoire remains relatively unchanged in the aged (14), due
to the reduction in thymic output of mature, naive T cells, the
periphera repertoire of the aged is constricted. Moreover,
clonal outgrowths are common in both CD8 and CD4 T cells
of the aged. The accumulation of these alterations is
believed to lead to immune dysfunction such that individuals
are prone to the consequences of infectious disease,
autoimmunity and cancer.
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3. AGE-ASSOCIATED ALTERATIONS IN T CELL
FUNCTION

The activation of naive T cells requires the
engagement of TCR with peptide antigens presented by
MHC class Il on antigen-presenting cells (APC) and the
ligation of T cell co-receptors with their costimulatory
ligands found on APC. Upon stimulation a cascade of
signaling events occur in the T cell that lead to IL-2
secretion and limited proliferation. Concomitantly, the
expression of the IL-2 receptor apha chain (CD25) is
upregulated and IL-2 drives further expansion and
differentiation into effector cells. The effector cells, defined
as highly activated T cells that rapidly produce large
amounts of cytokines (other than IL-2) upon restimulation,
even in the absence of costimulation (15), are responsible
for the ensuing T cell response.

In T cells of aged humans and rodents, there is a
significant decrease in IL-2 production,
lymphoproliferation, and upregulation of CD25 expression
after TCR and costimulus mediated stimulation. Although
the overall decline in responsiveness reflects a loss with
age in the frequency of cells that can be induced to secrete
IL-2 and express CD25 (5,16,17), analysis of the reduced
number of immunocompetent cells suggest that these cells
retain their function (16,18). However, examination of the
antigen induced response by purified naive CD4 cells in
aged TCR transgenic mice reveded that the mgjority of
effector cells generated were not fully differentiated, i.e.,
they expressed an intermediate phenotype and did not
secrete significant levels of cytokines other than IL-2
(19,20). Even though some laboratories (4,20) have found
that addition of exogenous IL-2 can sometimes overcome
the age-related defect, most laboratories find IL-2 has only
alimited ability to restore full reactivity (21-23).

Information about other lymphokines in the aged
is not as well characterized and is less consistent. The
inconsistencies observed between laboratories are likely
dueto variationsin stimuli, culture conditions, and antigen-
presenting cells. In general, several groups have found an
age-related increase in IL-4 (12,24,25) and IL-5 production
(25,26). Many studies of CD4 T cells in mice show an
increase in IFN-gamma with age (9,25,26) while an almost
equal number show a decrease (27,28). However, the
production of IFN-gammaby CD8 T cells isincreased with
age (29). The production of IL-10 increases with age in
mice (30) and several groups have reported an age-
associated declinein IL-3 production (24,31,32).

The mechanism underlying the age-associated
decline in CD8 T cell responsiveness remains less clear.
Several studies of aged rodents and humans have shown
that cytotoxic T cells exhibit decreased responses to
mitogens and antigens, decreased cell division, and
increased IFN-gamma production (10,11,17,29,33,34).
These functiona changes may be the consequence of
aterations intrinsic to the T cells of the aged, the switch in
T cell subset representation and/or a manifestation of
extrinsic factors that are altered with aging and affect CD8
cell function. Although some or al of these factors may
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play some role in reduced CD8 responses, it is certain that
the decreased frequency of relevant antigen specific naive
cells that emigrate from the thymus of the aged contributes
to the overall declinein T cell responses (35,36).

In old mice and humans clonal T lymphocyte
expansions become more frequent and lead to skewing of
the T cell repertoire in TCR-V beta usage (37-39). Clonal
outgrowths are observed first among the CD8 population
and later in the CD4 population (40). Initially the expanded
clones are among the memory phenotype cells; however,
later clones expressing both memory and naive phenotype
can be detected (41). The findings of an increase in clona
T cell populations in conjunction with the decline in thymic
export of naive T cells predict a constriction in repertoire
diversity in the periphery in the aged. However, the extent
of repertoire diversity has yet to be measured in the elderly.

4. T CELL SUBSETS

In the periphery of the aged, the total number of
T cells as well as the ratio of CD4 to CD8 T cells remain
relatively unchanged (42). However, the representation of
naive vs. memory T cell subsets is altered with age such
that aging in rodents and humans leads to increases in the
proportion of T cells expressing markers typical of memory
cells, and declines in the proportion of T cells expressing
markers typical of naive T cells (10,12,13,29,43). Naive
and memory T cell subsets have been distinguished from
one another based on differential expression of the cell
surface glycoproteins, CD44, CD45RB, and CD62L (L-
selectin), wherein memory cells (44,45) and T cells from
aged mice express higher levels of CD44 and lower levels
of CD45RB and CD62L. The age-related transition to
higher proportions of cells with a memory phenotype
affects both the CD4 and CD8 populations. The magjority of
these cells that accumulate in aged subjects seem to be
resting lymphocytes based on their size, DNA profile, lack
of activation markers, and requirement for further
stimulation for cell cycle entry (43,46).

The switch to a greater representation of
memory-phenotype cells is consistent with models of T cell
ontogeny. As mentioned above, the thymus involutes with
advancing age (47) and the rate of production of newly
emerging naive cells from the thymus exported to the
periphery decreases to very low levels by late life (48).
Superimposed on the diminished supply of naive cells from
the thymus is the continued antigen-driven conversion of
naive to memory cells throughout life. Moreover, it has
been reported that apoptosis among naive T cells is
increased and among memory T cells is decreased (49).
Altogether, these could lead to a gradual transition from a
predominantly naive cell to a predominantly memory cell
population that is observed with aging. Indeed, within 13
weeks of thymectomy of adult mice, cells expressing a
memory phenotype predominate in the periphery (45,50).

The extent to which functional changes with
aging are the consequence of an accumulation of more
differentiated vs. intrinsically defective T cells (or both) has
been the focus of many studies over the past decade. A
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large body of evidence suggests that the shift from naive to
memory T cells contributes to the immunodeficiency
observed in old age (reviewed in (42)). Aging leads to a
decline in the proportion of T cells that respond to mitogen
or superantigen by the production of IL-2 or IL-3, as well
as a decline in the proportion of T cells that respond to
mitogen plus IL-2 by proliferation or by generation of
cytotoxic effectors (10,51). Since naive T cells respond
more frequently than memory T cells to the stimuli used, it
can be argued that the decline in responsiveness is
attributable to the decrease in the representation of the
responsive population with age.

It has been argued that the relative proportions of
memory/naive T cell subsets determine changes in cytokine
secretion patterns. For example, the increase in IL-4 and
IFN-gamma production with age is also coincident with the
increase in memory cells with age, 1L-4 and IFN-gamma
being largely memory cell products (29,44,45,52-57).
However, age-associated alterations in cytokine production
are not determined solely by the subset changes, but also by
alterations within each of those subsets. For example, 1L-3
secretion is not necessarily prevalent in naive or memory
subsets, yet IL-3 secretion is decreased with aging
(25,31,51).

Although much of the age-related alterationsin T
cell function may be attributed to changes in the
representation of populations, in some studies decreases in
immunoresponsiveness  in  the memory/naive  cell
populations have also been documented. Limiting dilution
assays of IL-2 producing and IL-2 responding cells have
revedled a loss in responder cell frequency within the
memory cell subset (58). Analysis of subset-specific
protein-kinase-dependent phosphorylation pathways also
indicates age-dependent changes that cannot be explained
by shiftsin T cell composition (59). Li and Miller (60) have
shown that although memory T cells from old or young
mice produced far more IL-4 than naive T cells from mice
of the same age, aging nonetheless led to a decline in IL-4
production by memory cells after stimulation by anti-CD3
together with IL-2. Similar to the findings of a functional
decline in the memory phenotype cells from aged mice, are
findings demonstrating that naive CD4 cells are aso
hyporesponsive. Under conditions of optima antigen
presentation in vitro, naive CD4 cells isolated from aged
TCR transgenic mice produced significantly lower levels of
IL-2 upon antigen stimulation resulting in decreased
expression of CD25 and reduced proliferation (61,62).
Thus, changes inherent to the cells from the aged result in
diminished responses.

4.1. Other subset alterations: Tyl vs. Ty2, Rhodamine
12319 5 R123%™ CD8 CD122"

Given the profile of cytokines produced in the
aged, one may postulate that in CD4* T cells there may be
a propensity toward Ty2-like cells with age. Long-term
lines and clones have been divided into two subsets, Tyl
vs. T2, each secreting distinct patterns of cytokines which
may dictate their functional ability (63). Cells of the Ty1
type produce IL-2, IFN-gamma, TNF-apha, and
lymphotoxin and predominantly mediate cell-mediated
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immune responses and inflammatory responses, whereas
cells of the T2 type produce IL-4, IL-5, IL-6, and IL-10
and provide optimum help for humoral immune responses
(45,64). However, the shift in cytokine patterns with age
would only be partly explained by a predominance of Ty2-
like cellsin the aged since IL-3 is produced equally well by
both Ty subsets (63) and IL-3 production decreases with
age (25,31,51).

The naive and memory subsets of the CD4 and
CD8 populations can be further divided according to their
ability to extrude the fluorochromes Rhodamine 123
(R123) and Rhodamine-6G (65,66). Both of these
fluorochromes are known to be extruded by P-glycoprotein,
the 170-kDa ATP-dependent plasma membrane pump
encoded by the multiple drug resistance genes (67); thus,
higher levels of P-glycoprotein expression correlates with
R123d.Im staining cells. An increase in the proportion of
R123%™ T cellsin the naive and memory cell pools of CD4
and CD8 T cells in aged mice was observed (61,65,66).
Further separation of memory cells based upon R123
staining revealed that, within the CD4 memory pool, onl
cells with low levels of P-glycoprotein (i.e., R123%d"
staining cells) are able to respond to stimulation with anti-
CD3 plus IL-2 by producing IL-4 (68). Moreover, recent
data suggests that the recruitment of signaling molecules to
the immunological synapse, the site of APC:T cell
interaction, is diminished in this subset of memory cells
(69). Thus, the shift to increased representation of cells
with higher levels of P-glycoprotein may account for some
of the decline with age in IL-2 responsiveness. However,
the correlation with R123 expression and naive CD4 T cell
function remains untested.

Some laboratories have reported an increase in
extrathymic CD8 T cell development in the aged (70,71).
These cells are CD8" IL-2R beta (CD122)* and increase in
number in the liver, spleen and lymph nodes (71,72).
Moreover, cells in this subset as opposed to the CD8"
CD122 subset have been shown to produce large amounts
of IFN-gamma after stimulation with anti-CD3 antibody
(72), suggesting the increase in IFN-gamma by CD8 cells
of the aged may be a consequence of an increase in the
representation of this subset. However, previous studies
have shown that the memory phenotype CD8 T cells
(CD44"™) secrete high levels of IFN-gamma and the
increase in frequency of these cells accounts for the
reported increase in IFN-gamma levels upon TCR
stimulation in the aged (29). Whether the CD8 CD122" T
cells and the memory phenotype CD8 cells represent the
same or overlapping subsets is unresolved.

5. THYMUS

T lymphocytes differentiate and mature in the
thymus, an epithelio-lymphoid organ that is comprised of a
cortex and a medulla. The epithelial cells provide a
microenvironment in which the bone marrow-derived
thymocyte precursors develop. As the thymocytes mature,
they migrate from the cortex to the medulla of the thymus
and upon maturation, exit to secondary lymphoid organs as
naive T lymphocytes. The various stages of T cell
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development in the thymus are defined by the surface
molecules expressed on the thymocytes and the state of T
cell antigen receptor (TCR) gene rearrangement.

5.1. Involution

Among the most striking changes that occur with
age is thymic involution, the shrinkage of tissue mass. The
age-associated involution of the thymus is directly
correlated with the functiona loss of T cell immunity;
involution starts at puberty, preceding the onset of the
decline in T cell immunity. The rate of atrophy is greatest
just prior to mid-life and slowly but progressively continues
with age. The decrease in tissue mass results primarily from
the shrinkage of the thymic cortex (73). A decline in the
number of all thymocytes after an early developmental
stage, i.e, CD3, CD4, CD8, CD25%, and CD44, was
found upon examination of the thymus from aged mice
(74). This stage of transition from CD3, CD4, CDS§,
CD25", and CD44 to CD3, CD4, CD8, CD25", and
CD44* thymocytes is associated with the rearrangement
and expression of the TCR beta chain genes.

Although many factors may influence the
development of T cellsin old mice, the precise mechanism
underlying thymic involution has not been defined. It is
known that genetic makeup influences thymic involution
(75) as evidenced in particular rat strains that neither
experience thymic involution or T cell senescence. Since
thymocytes are derived from bone marrow-derived
precursors, it is possible that at least part of the age-related
alterations of the T cell compartment reflect qualitative
and/or quantitative changes in bone marrow stem cells.
However, no differences in the efficiency of bone marrow
from young or old donors to repopulate the thymus have
been noted (76,77). Severa other factors, extrinsic to the
thymus, may aso influence thymic involution. These
include various neuroendocrine hormones (78) and
nutritional  manipulations  (79). Recent studies of
alterations intrinsic to the aged thymus have focused on the
microenvironment. Although the number of thymic
epithelia cells may not change with age (80), the amount
of IL-7 produced in the thymus declines with age (81). IL-7
is an essential cytokine for T cell development, supporting
TCR beta chain gene rearrangement in T cell progenitors
(82,83). Thus, age-associated involution may be a
consequence of diminished IL-7 production.

5.2. Thymic productivity

The decline in thymus cellularity is accompanied
by a declinein thymic output in both humans (84) and mice
(48). Although the number of naive T cells exported from
the thymus to the periphery is markedly diminished, there
is evidence to suggest that thymic function is still retained
in the very old (85,86). Much of this data come from
studies of peripheral T cell recovery after depletion. In
general, the recovery of CD4 cells in humans and mice that
have been treated to deplete peripheral T cellsis inversely
related to age. Thus reconstitution is delayed in older
individuals after chemotherapy or CD4 depletion by
monoclonal antibody treatment (87,88). These studies also
revealed that independent of the influence of age, the rapid
recovery of peripheral CD4 T cellsin all patientsis directly
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correlated with the appearance of naive T cells and thymus
tissue, providing strong evidence that thymic activity is
essential for naive CD4 T cell recovery (84). In contrast,
CD8 cell recovery was more rapid and was not associated
with age (87).

Thymic function may also be measured by the
detection and quantification of recent thymic emigrants in
the periphery. This has become feasible with the detection
of TCR rearrangement excision circles (TRECs) which are
episomal by-products of TCR V(D)J rearrangements that
are produced during thymopoeisis (36,89,90). TRECs are
stable and not duplicated during mitosis;, therefore, their
presence is diluted with each cell divison. TRECs are present
inthe naive T lymphocytes of the aged supporting the premise
that the thymus, though less productive, is nonetheless
functional. Moreover, the frequency of TRECs declinesin the
naive CD4 population with age suggesting that this population
becomes more heterogeneous in the elderly.

6. LIFESPAN AND HOMEOSTASIS

There are no overt changes with age in the total
number or relative ratio of CD4 and CD8 cells in the
peripheral lymphoid tissues, speaking to a coordinated level
of homeostatic regulation within the immune system.
While naive T cells are exported from the thymus
throughout life (90), the rate of release of newly developed
T cels is at its maximum early in life and drastically
decreases post-puberty (48). Despite this decrease in naive
cell development over time, such T cells are still present in
the periphery during old age. These are most likely the
long-lived progeny of T cells exported from the thymus
earlier in life. Naive peripheral T cells do not appear to
have a definitive life span (91) and may persist indefinitely
in the absence of new thymic emigrants. The interphase
lifespan of naive CD8 T cells has been measured in mice as
at least 8 weeks (92,93). The magjority of naive T cells are
in the GO/G1 phase of the cell cycle. In contrast, a large
percentage of memory-phenotype T cells are found to be
undergoing DNA synthesis at any given time (93,94).
Aging has little, if any impact on the fraction of cycling
memory T cells (MLT, personal observation).

The pool sizes of memory and naive T cells are
independently regulated (95-97), with the two subsets
occupying distinct environmental "niches' and requiring
unique conditions for survival.  Although the precise
composition of these "niches’ has not been defined, it is
clear that peripheral survival of T lymphocytes requires
specific environmental elements. For example, naive cells
require the continuous presence of the selecting MHC
molecules for long-term survival (97-100). In an elegantly
designed experiment, Tanchot and Rocha (97)
demonstrated that the level of MHC Class | expression
within the periphera microenvironment controlled the
number of naive CD8 T cells. In contrast, survival of
memory cells requires MHC expression, but not the
specific restricting element or peptide (97-100).

In addition to MHC molecule expression, various
cytokines are known to impact T cell survival. The
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peripheral survival of CD8 memory T cellsisinfluenced by
the relative abundance of IL-15 and IL-2, with IL-15
promoting memory expansion and IL-2 suppressing this
process. This was demonstrated by transfer of memory T
cells into host animals treated with anti-cytokine
antibodies. In this system (101), CD8 T cells from aged
mice appear to respond similarly to those of young mice.
These conclusions are further supported by the findings
utilizing mice with targeted disruption of either the IL-2
beta or IL-15 apha receptor chain. Mice without effective
high affinity IL-2 receptors have a peripheral T cell
population that is hyperplastic and displays a "partially"
activated cell surface phenotype (102). In contrast, mice
without high affinity 1L-15 receptors are lymphopenic and
largely devoid of CD8 peripheral cells (103). IL-7 may
also play arole in naive T cell homeostasis through its
ability to induce naive cell proliferation in vitro, without
causing a concomitant maturation shift to an activated state
(104). However, it is not yet clear that this is the case in
vivo.

In addition to the role of cytokines, the accessory
molecules B7/CD28 has been implicated in homeostasis of
T cell subsets. In mice displaying enhanced B7.2
expression, there is periphera T cell hyperplasia and a shift
in the CD4 to CD8 ratio, towards increased CD8
representation. Decreased B7 expression had the reciprocal
effect on CD4/CD8 ratio (105).

Under certain conditions, T lymphocytes can
undergo nonspecific expansion in the periphery. Memory
cells have a well-documented capacity for expansion in
conditions of low T cell numbers (58,106). Seria transfer
experiments indicated that transferred cell populations may
undergo a 10,000-fold increase (58).  This expansion
requires TCR signaling as clearly demonstrated using T
cells derived from mice bearing transgenic TCR. When
transferred into mice not expressing the appropriate
stimulatory MHC molecules, no expansion of memory T
cells occurs (107). Aging does not appear to alter this
property of memory cells, as extensive peripheral memory
T cell expansion has been identified in both aged humans
and rodents made lymphopenic by irradiation, drug or
antibody treatment (reviewed in (108,109)).

Naive T cells also can expand when presented
with a lymphopenic environment. The signals necessary
for triggering this expansion include appropriate MHC and
peptide (110-113). This homeostatic expansion appears to
result in an increased density of cell surface CD44, but not
in CD25 or CD49d expression. Furthermore, these cells
are not activated to express effector function (110-112).

Taken together, all these results indicate that the
size of the periphera T cell population and its composition
are regulated by active processes requiring the interaction
of the lymphocyte and the microenvironment, rather than to
afixed intrinsic property of the T cell. There have been few
investigations which directly address the effect of ageon T
cell survival. However, age has a significant impact on the
quantity and profile of cytokine production as well as more
subtle effects on the expression of various "costimulatory"
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molecules. These changes may alter the type and number
of "niches" in the aged and thus the survival of various T
cell subsets.

6.1. Replicative Senescence and Sensitivity to Apoptosis

Replicative senescence, a phenomenon first
described by L. Hayflick (114), is the loss of the ability to
undergo cell division after a finite number of cell
doublings. This process is now understood at the
molecular level as being a reflection of telomere shortening
with each division to the point that chromosomal
replication cannot occur, halting cell divison. Telomere
shortening occurs at different rates in various cell lineages
(115), and appears to occur at different rates over the
lifespan of the organism (115,116). Immunosenescence
has been suggested to result as lymphocytes reach critical
telomere length and undergo replicative senescence
(117,118). This hypothesis has considerable support in that
memory cells have been found to have, in generd, shorter
telomeres than naive T cells (119), and older individuals
yield lymphocytes with shorter telomeres than young
individuals (120). Telomerase, the ribonucleoprotein
enzyme which lengthens telomeres is induced in T
lymphocyte populations following activation (121-123).
The capacity for telomerase activation is not impaired by
aging (115). However, repetitive stimulation in vitro
results eventualy in a state in which telomerase is not
upregulated, and telomere shortening occurs. In cultures of
human cells this is accompanied by a loss of CD28
expression (118). These data suggest a role for telomere
shortening in T cell senescence.

Proliferative responsiveness, clona expansion
and survival may also be regulated by the sensitivity of
lymphocytes to activation-induced cell death (AICD).
Advancing age is accompanied by increased sensitivity to
AICD. Both memory and naive-type CD4 and CD8 human
lymphocytes grow more sensitive to TNF-mediated
apoptosis with increasing age possibly due to increased
constitutive levels of TNF receptors and the associated
death domain protein (TRADD), as well as increased
activation of caspases (124,125). Likewise, sensitivity to
apopotosis induced through the Fas/FasL pathway is aso
heightened in aged human lymphocytes. Some
investigators have reported higher FasL expression by aged
CD4 and CD8 T cells than on their young counterparts, as
well as other alterations in the Fas/FasL signaling pathways
with age which would increase the sensitivity to apoptosis
induction in these populations (126).

7. T CELL ACTIVATION

The dramatic decline in T cell responses of the
aged has been attributed to the marked diminution in the
production of IL-2 after stimulation with mitogens, antigen,
or anti-CD3 antibody (42). These responses are generated
upon signaling through the TCR or through the cytokine
receptor. In addition to signals transmitted through either of
these receptors, an additional second signa from APC
costimulation via other surface molecules, such as CD28, is
needed. Thus, aberrations in any of these molecules and/or
their ligands would lead to compromised T cell responses.
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Because the numbers of TCR, cytokine receptors and CD28
molecules do not decline in resting T cells with age (7,11),
it has been postulated that changes in the signa
transduction machinery with age might be responsible for
the impairment of T cell function. Indeed, several studies
have shown in T cells after stimulation significant changes
in the activity or expression of many signal-related
molecules (6-8) as well as defects in calcium signa
generation (127,128).

7.1. TCR signaling

Upon contact with an activated APC, a quiescent
T cell passes through several extracellular membrane
events prior to reaching full activation and the induction of
the TCR signaling machinery. The first stage is adhesion.
Integrins and adhesion molecules are likely to provide the
essential elements needed for the initial APC-T cell
contact. The next stage is the aggregation of the signaling
complex that allows the TCR to initiate signal transduction.
This requires active cytoskeleton-driven clustering of
accessory molecules and TCR as well as the exclusion of
molecules that may inhibit peptide-MHC:TCR interaction
(129-132). Glycolipid-enriched microdomains in the cell
membrane (133,134) facilitate the organization of severa
interactive molecules that participate in the induction of T
cell activation at the T cell: APC synapse. The final
checkpoint to achieve the minimal threshold for activation
is the maintenance of a stable contact cap, which is the
fundamental signaling unit. With regard to the initial stage
of T cell activation in the aged, Jackola et al. (135) have
reported defects in cell-cell binding that is associated with
the altered activation capacity of the integrin, LFA-1. In a
recent study, Tamir et al. (8) have shown that the
redistribution of kinase substrates and coupling factors to
the microdomains in the contact cap is atered in T cells
from aged donors.

TCR dignaling events can be summarized as
follows. Occupancy of the TCR causes the initial activation
of Fyn and/or Lck. Considerable evidence suggests that
Lck and Fyn mediate phosphorylation of immunoreceptor
tyrosine-based activation motifs (ITAM) on CD3-zeta
(136-138). This leads to the recruitment and activation of
ZAP-70 (139), which binds to the phosphorylated ITAMs
(140,141). Lck or Fyn then phosphorylates the kinase
domain of ZAP-70 and augments ZAP-70 activity
(141,142). Subsequently, additional sites of tyrosine
phosphorylation can be detected on ZAP-70. Accumulation
of phosphotyrosine on proteins of the TCR complex sets
the stage for all subsequent signaling interactions.

T cells from healthy old mice display multiple
defects early in the signaling cascade initiated by TCR
stimulation. Data on the induction of Lck and Fyn activity
has been variable, with results suggesting either no change
or adeclinein activity with age (6,143,144). An age-related
decrease in the phosphorylation of the TCR-associated
CD3-zeta chain has been detected in resting T cells and
after activation (145,146). The amount of ZAP-70
associated with CD3-zeta in resting T cells of the aged is
increased, and upon activation, ZAP-70 phosphorylation
increased only in the young (145,147) athough no age-
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related changes were observed in ZAP-70 protein kinase
activity (147). Many of these aterations in TCR signaling
could be a consequence of structural changes in the
signaing molecule itself, downregulation by other
molecules, and/or dysfunction of other molecules upstream.
Regardless, these findings point to an early defect in TCR
signaling. Although the primary molecular cause(s) of age-
related changesin T cell activation has yet to be identified,
a picture of the overal scheme for altered signaling is
emerging.

7.2. Costimulation

Two independent signals are required for T cell
activation, the TCR provides the first signd and a
costimulator molecule provides a requisite second signal. It
is believed that costimulators function mainly to enhance or
modify TCR signaling and do not signal independently by
themselves. Costimulators may act by enhancing the
strength or duration (or both) of signaling by the TCR by
enhancing antigen presentation or the stability of the
contact cap. This was suggested by the finding that CD28
was critical only for antigens that have a short half-life
(148). CD28 may aso function to potentiate T cell
activation by helping to recruit signaling proteins or by
enhancing the activation of tyrosine kinases. Moreover,
cytoskeletal movement is regulated by CD28-B7 and LFA-
1-ICAM-1 interactions (129). This active accumulation of
receptor pairs and other cytoskeleton-linked molecules at
the T cell-APC contact cap, and the signal amplification
that would result from these increased receptor densities,
further support the idea that costimulatory molecules
function to increase the overall amplitude and duration of T
cell signaling. Several aterations in costimulation molecule
expression and/or function have been reported with aging
but very little has been reported describing the consequence
of these effects to the early TCR signaling mechanism
(8,149). Proliferative responses through CD28 in naive and
memory CD4 T cells decrease with aging (11). Although
CD28 expression is equivalent on cells from either age
group (11), the mechanism by which CD28 responsiveness
is diminished is unknown.

8. INFLUENCE OF THE AGED ENVIRONMENT

8.1. Cytokines

Asadluded to above, there is much evidence that the
cytokine network is atered in old age (150). Cytokines present
during antigen stimulation are known to influence the type of
effector cells generated. Consequently, the type 2 cytokine
profiles that dominate in the elderly (151) may impact on the
ensuing T cell responses. T cell differentiation in the presence
of type 2 cytokines (IL-4, IL-5, IL-6, IL-10 and IL-13) would
inhibit the production of type 1 effectors while promoting the
generation of type 2 effectors, which are considered anti-
inflammatory and mediate humoral responses (45,63). Thus,
the dominant type 2 cytokine profile found in the elderly might
induce decreased production of type 1 cytokines, such as IFN-
gamma, thereby resulting in the inhibition of cell mediated
immune responses and CD8 responsiveness (27,152).
Alternatively, or in conjunction with the switch in cytokine
milieu with aging, is the possibility that the function of
APCs (i.e., dendritic cells) is altered.
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8.2. APC

There is some evidence for age-associated
changes at the level of the accessory cell. In mice, the
precursor frequency of memory cytotoxic T cells that
respond to influenza is entirely dependent upon the age of
the APC donor. These studies demonstrate that memory T
cells from influenzaprimed old mice showed a
significantly higher response in limiting dilution cultures
when stimulated with influenza-infected splenocytes from
young as compared to old mice (153). Responses to
trypanosome (154) and pneumococcal antigens (155) are
also compromised in aged mice due to suboptimal
accessory cell function.

Whereas a large number of studies have
described the ability of severa cell types to function as
APC, eg., monocytes and macrophages, B lymphocytes,
Langerhans' and dendritic cells, very few studies have
examined alterations in APC function with age. Of the
aforementioned cell types, the accessory cell function of
macrophages and monocytes has been studied most
extensively in the aged and has been reviewed elsewhere
(156,157). Although several studies of accessory cell
function have found little evidence for an age-effect on the
accessory cell’s ability to support T cell activation (158-
160), many studies have observed a decline in APC
function (9,161). Studies of macrophage cytokine
production have yielded inconsistent results (162). Very
little data are available on the age-associated changes of
costimulatory molecule expression on APCs. Although one
study in humans failed to find any decreases in expression
of CD86 on either resting or IFN-stimulated monocytes
from the elderly (163), follicular dendritic cells in germina
centers of aged mice may lack expression of CD86 (164).
The latter would encourage the induction of anergy or
apoptosis in the antigen-specific cells with which they
interact.

Information on the function of dendritic cells
from the aged is very limited. Studies of aged mice have
shown that the density of Langerhans cells in the epidermis
declines (165-167). Detailed studies of age-related changes
in the number or distribution of dendritic cells found in
tissues other than skin have not been reported. No
consensus has been reached concerning the function of
dendritic cells in the aged. Whereas some studies report a
decline in function (165,168,169), other studies report no
change (167,170,171). Dendritic cells generated by culture
of adherent peripheral blood mononuclear cells (PBMC)
from young and old donors in GM-CSF and |L-4 exhibited
no age differences in surface phenotype, morphology, IL-
12 production, and tetanus toxoid antigen presenting
function (170,172,173). Thus it appears that given optimal
culture conditions, the generation of dendritic cells in the
elderly may not be impaired. However, it is unclear if less
physiological activation of dendritic cellsin situ might take
place in the elderly.

9. CONCLUDING REMARKS

It has long been appreciated that advancing age is
accompanied by a host of changes in immune function,
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many of which have been attributed to atered T
lymphocyte activity. Identifying and understanding the
basis of these functional changes remains a work in
progress. Although the most obvious aging effect on this
population is the reduction in T cell output by the thymus,
the decline of peripheral T cell function with age is not due
to a decrease in number. Two hypotheses have been
advanced to explain T cell immunosenescence. The first of
these speculates that gradual changesin T cell biochemistry
are evidenced by altered signal transduction and abberant
responses in the individual aged T cell. The second
hypothesis proposes that the age-associated changes in T
cell activity are due to global changes in the frequency of
specific T cell subsets, resulting in the ateration of the
entire population, even though individua cells retain
normal function. The most accurate description of the
aging effect on T lymphocyte activity combines elements
of both hypotheses. In addition it isincreasingly clear that
age-associated dterations in structura and functional
characteristics of other cells in the immune
microenvironment play arole in directing the activity of T
cells. Therefore, any hypothesis must take into
consideration not only alterations intrinsic to the T
lymphocyte component but also those in accessory cells.

The ultimate goa of understanding the basis for
age-related changes in immune reactivity is of course to
intervene in such a way as to preserve vigorous immune
reactivity into late life.  Our increasingly detailed
understanding of the mechanisms responsible for thymic
involution, coupled with the knowledge that T cell
lymphopoeisis occurs to a limited extent in the aged,
suggests that one avenue for immunoreconstitution may be
augmentation of T cell differentiation in the aged by means
of hormona and/or cytokine supplementation. Likewise,
the understanding of how cytokine production profiles are
atered with age leads to the possibility that reversal to
"young-like" levels of cytokine synthesis might have a
beneficial effect on immune function in the elderly.
Enthusiasm for such approaches must be tempered by the
knowledge that not only the T lymphocytes, but also other
cells integral to the initiation and promotion of immune
responses may express aging-related alterations affecting
their function.
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