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1. ABSTRACT

Mast cells are multifunctional, tissue-dwelling
cells capable of secreting awide variety of mediators. They
develop from bone marrow-derived progenitor cells,
primed with stem cell factor (SCF), which mediates its
actions by interacting with the SCF receptor or c-kit on the
cell surface. Mast cells continue their maturation and
differentiation in periphera tissue, developing into two
well described subsets of cells, MC; and MCqc cells,
varying in content of tryptase and chymase as well as in
immunobiology. Mast cells are activated by numerous
stimuli, including antigen (acting via the high affinity IgE
receptor, FceRl), superoxides, complement proteins,
neuropeptides and lipoproteins resulting in activation and
degranulation. Following activation, these cells express
mediators such as histamine, leukotrienes and prostanoids,
as well as proteases, and many cytokines and chemokines,
pivotal to the genesis of an inflammatory response. Recent
data suggests that mast cells may play an active rolein such
diverse diseases as atherosclerosis, malignancy, asthma,
pulmonary fibrosis and arthritis. Mast cells directly interact
with bacteria and appear to play avital role in host defense
against pathogens. Drugs, such as glucocorticoids,
cyclosporine and cromolyn have been demonstrated to have
inhibitory effects on mast cell degranulation or mediator
release.
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2. INTRODUCTION

Paul Ehrlich was the first to describe cels in
connective  tissue  that stained reddish-purple
(metachromasia) with aniline dyes. He used the term
“maéstzellen” to describe these cells, a German term referring
to feeding (1). Metachromasia is now known to be due to
interaction of dyes with acidic heparin, a congtituent of mast
cell granules. Ehrlich also described the association of mast
cdls with inflammation as well as with blood vessels and
neural tissue. Since then, severa developments have
occurred including the discovery of histamine, mast cell
growth factors and more recently, the role of mast cells in
inflammatory disease and host defense.

The mast cell expresses the high affinity receptor
for IgE and is involved in immediate type hypersensitivity
reactions (2-4). In such reactions, antigen cross-links two
IgE molecules occupying the FceRlI resulting in a cascade
of rapid sequence signaling events, leading to degranulation
and elaboration of mediators. These mediators include
preformed mast cell granule contents as well as newly
synthesized mediators such as histamine, proteases, lipid
products, cytokines and chemokines. Mast cells are located
perivascularly and in sentinel locations in order to respond
to noxious stimuli. This immediate response of the mast
cell accounts for a pivotal component of the host immune
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Table 1. Subtypes and heterogeneity of mast cells

Feature M C+¢ Cdll MC+ Cdll
Mediators
« Preformed Granules
Histamine +++ +++
Chymase ++ -
Tryptase ++ ++
Carboxypeptidase ++ -
Cathepsin G ++ -
* Newly Generated
LTC4 ++ ++
PGD2 ++ ++
TNF-apha ++ ++
IL-4, IL-5, IL-6, IL-13 ++ ++
Tissuedistribution
Skin ++ -
Intestinal submucosa ++ +
Intestinal mucosa + ++
Alveolar wall - ++
Bronchi + ++
Nasal mucosa ++ ++
Conjunctiva ++ +
Structural aspects
Grating/L attice granule ++ -
Scroll granules Poor Rich
Effects of HIV Infection Unchanged Decreased
On cell populations numbers

Please refer to text for explanations of abbreviations

defense response and may be responsible for leukocyte
recruitment, endothelial activation and vasodilatation.
Though much of the initial information on mast cell
biology was obtained from animal models and mast cell-
deficient mice, more recent data suggest that human
mast cells are capable of many of the functions ascribed
to the murine counterpart. Moreover, while initially
considered as crucial to the manifestation of an allergic
reaction, mast cells have now been implicated in the
pathogenesis of immune complex reactions, tissue
remodeling and in host defense. The purpose of this
review is to summarize salient features of mast cell
immunobiology and to describe their associations with
human disease.

3. IMMUNOBIOLOGY OF HUMAN MAST CELLS

3.1. Mast cell development

Mast cells develop from progenitor cells that in
turn arise from uncommitted hematopoietic stem cells in
the bone marrow (5, 6). Basophils arise like the mast cells
from bone marrow progenitor cells, however they complete
their maturation and differentiation within the bone
marrow. In contrast, mast cells, undergo terminal
differentiation in tissues. It is now becoming clear that mast
cells express the receptor for stem cell factor (SCF receptor
or c-kit) that binds to SCF, a specific growth factor for mast
cells (5-7). The interactions between SCF and c-kit are
crucial for the growth and development of mast cells (8).
Mutations of c-kit and elevated levels of the c-kit proto-
oncogene have been associated with mastocytosis (9, 10).
Kirshenbaum and colleagues have described CD34", c-kit"
and CD13 precursors that develop into mast cells in the
presence of specific growth factors (11, 12). Mast cell
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progenitors have been described in periphera blood, and
represent a distinct pool of cells separate from leukocytes or
mononuclear cells (13). As summarized later, two mast cell
subtypes have been described in tissue- the mucosal (MCy)
or connective tissue (MCrc) mast cell. The factors that
regulate the differentiation into one or other subtype of mast
cell are unknown at this time. SCF has multiple effects on
mast cells, including modulation of differentiation and
homing, prolonging viability, inducing mast cell hyperplasia
and enhancing mediator production (7). Mast cells deprived
of SCF undergo apoptosis (14) probably mediated by down
regulation of Bcl-2 and Bcl-XL (15). The effects of SCF on
rescuing mast cells from apoptosis are inhibited by
transforming growth factor betal (TGF betal). Interleukin 6
(IL-6) and nerve growth factor (NGF) appear to enhance
mast cell development from hematopoietic stem cells,
whereas glucocorticoids and |L-4 appear to have the opposite
effects (5). Fibroblasts through cell surface expression of
SCF, secretion of NGF or by contact mechanisms, contribute
to further differentiation and maturation of mast cells in
tissue (16, 17). Recent studies aso suggest that the
eosinophil chemotaxin, eotaxin, enhances mast cell
development (18). Patients with HIV infection and AIDS
have preservation of MCrc mast cells suggesting these can
continue to developinaT cell-independent manner.

3.2. Mast cell subtypes and heter ogeneity

In humans, two types of mast cells, MC; and
MCic subsets of mast cells have been described, based on
structural, biochemical and functional data. (3, 19-21).
These aspects are described in Table 1. The murine
counterparts of these subtypes have been referred to as
mucosal or connective tissue mast cells. The MC; mast
cell expresses tryptase predominantly and is usualy
localized to mucosal surfaces in close relationship to T
cells, especially of the Th2-type. The MCy isincreased in
alergic and parasitic diseases and diminished numbers
are seen in HIV-infected patients (3). Structuraly,
granules from MC; are scroll-rich. The MCrc mast cell,
on the other hand, expresses tryptase, chymase,
carboxypeptidase and cathepsin G. It predominates in the
gastrointestinal tract as well as in skin, synovium and
subcutaneous tissues. Increased numbers of MCrc mast
cells are seen in fibrotic diseases while numbers are
relatively unchanged in allergic or parasitic diseases and
in HIV infection. MCyc mast cells have lattice and grating
structures and are scroll-poor. Thus, MCyc mast cells may
be more important to tissue remodeling and angiogenesis,
for example, while MC; mast cells are central to
inflammation. Both types of mast cells and basophils
express FceRIl and are capable of mediating allergic type
responses. In contrast to these subtypes of mast cells,
however, basophils do not express much tryptase,
chymase or cathepsin G. Disease classification based on
whether MC; and/or MCqr¢c mast cells predominate is
likely to shed light into the molecular pathogenesis of
several inflammatory diseases.

3.3. Structural aspects of the human mast cell

The general ultrastructure of the human mast cell
has been well—described in numerous publications (22, 23).
The nucleus is small, and round to oval in shape. The cell
surface demonstrates dlender filiform  cytoplasmic
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Figure 1. Transmission electron microscopy of human
mast cells showing characteristic scroll granules. 1 A: A
colonic mucosal mast cell. One granule demonstrates the
complete discrete scroll formations (34,000 x). 1 B: A
colonic submucosal mast cell. The granules demonstrate
grating substructures (105,000 x)

projections or undulating folds (Figure 1). The cytoplasm
contains filaments, microtubules, rough endoplasmic
reticulum, Golgi vesicles, free ribosomes, mitochondria,
lysosomes, and lipid bodies. In addition, the cytoplasm is
dominated by the presence of numerous membrane-bound
mast cell granules. The granules, and the mast cells
containing them, can be subtyped into scroll-rich and
scroll-poor morphologies (24, 25). Both morphologies may
demonstrate granules with amorphous material, finely
granular electron-dense material, non-discrete scroll
formations that merge with one another, loosely-organized
internal lamellae, or some peripheral coiled parallel
lamellae (23, 26). However, the scroll-rich morphology is
characterized by the presence of granules containing
multiple discrete complete membranous scroll formations
(Figure 1), resembling scrolls of papyrus ( a less common
form of granule associated with the scroll-rich morphology
has a beaded, coarsely particulate, or reticulated
appearance). The scrolls can be tightly or, more often,
loosely wound. They may enclose cores of central electron-
lucent or electron-dense materia (23, 26). On the other
hand, the scroll-poor morphology is characterized by the
general absence of granules with discrete scrolls.
Additionally, some of the electron-dense granules seen in
cells with scroll-poor morphology may contain crystalloid
substructures with a grating or lattice appearance (24, 25).

The substructures can demonstrate variable
periodicities. Granules associated with the scroll-poor
morphology tend to be more numerous, larger, and more
uniform in shape (23, 24). Lipid bodies, large round non-
membrane-bound cytoplasmic structures with internal
lucencies, are less frequent in cells with scroll-poor
morphology (22). In general, the scroll-rich morphology
(discrete scrolls) indicates an MCy cell, and the scroll-poor
morphology (grating or lattice patterns) indicates an MCqc
cell (23). However, there has been controversy over the
reliability of this distinction, and controversy over whether
intermediate morphologic forms exist. Interpretation of
granule morphology can be complicated by the effects of
fixation, variable planes of sectioning, and the tendency of
various authors to use similar descriptive terms to mean
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different things. Comparison between papers is better
accomplished by close attention to photographs rather than
verbal descriptions. Also, the presence of nonspecific non-
discrete scroll formations may be misinterpreted as evidence
of the scrall-rich morphology. Problems aside, the
discrimination of mast cell subtype by granule morphology
appears to be good but not perfect. In one study, 340 mature
MCic cells were examined by electron microscopy, and only
10 of these cells were found to contain granules with (a few)
complete discrete scrolls (26). Interestingly, the discrete
scrolls were associated with focal absence of chymase, as
demonstrated by an immunogold electron microscopic
technique. In another study (24), 39 of 502 mast cells
demonstrated granules showing at least one complete
discrete scroll and granules showing grating/lattice
substructures (sometimes both occurred in a single granule).
Mast cells cultured from peripheral blood have been shown
to have minimal chymase activity in the presence of a scroll-
poor ultrastructure (27). Mast cell functional diversity is
more complex than a simple division into MC; and MCqc
phenctypes can account for. An MC. subtype has been
demonstrated (25). Also, mast cells from different body sites
show marked variability in their response to non-
immunologic stimulation by substances such as protamine,
morphine, compound 48/80, C5a, and substance P. For
example, skin MCq¢ cells respond to substance P, but cardiac
MCic cells do not (28). The morphologic correlates, if any,
of these phenotypic variations have not been well-
characterized. Additional aspects of morphologic diversity in
mast cells have been described. For example, mast cells from
breast parenchyma contain large granules and show evidence
of granule fusion or division. Differencesin mast cell granule
size and appearance can be demonstrated between black and
white skin (29). Dendritic mast cells have been identified in
lesions of cutaneous prurigo nodularis (30). Mast cell
ultrastructure can be affected by the degree of maturity and
by degranulation. Immature mast cells demonstrate a smaller
size, a higher nuclear/cytoplasmic ratio, a paucity of
granules, and the presence of granules with dense central
nucleoids embedded in granule matrix (22, 31).
Anaphylactic-type degranulation can result in swollen or
frayed lucent amorphous or filamentous granules, and the
formation of large degranulation channels or labyrinths that
communicate with the extracel lular space (31, 32).

3.4. Magt cdll activation and signaling mechanisms
Human mast cells and basophils express the high
affinity receptor for IgE, FcepsilonRI [FceRI] (2). The
FceRl, in contrast to FceRlIl, binds IgE with high affinity.
FceRIl has been detected on eosinophils, mononuclear
cells, lymphocytes and platelets. FceRl is a multimeric
complex composed of four chains, a, b and two disulfide-
linked g chains (33, 34). The IgE-binding domain is located
on the a chain. Multivalent antigen binds to IgE that in
turns binds by it’s Fc portion to the a-chain of FceRI. This
leads to receptor aggregation and internalization, followed
by signaling. The b and g chains of FceRl have immune
receptor tyrosine-based activation motifs (ITAMs) that are
essential to signal transduction. Bridging of two IgE
molecules by multivalent antigen or by univalent antigen in
presence of a carrier molecule results in activation of Lyn
kinase, which then phosphorylates the b and g chains. Syk
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Table 2. Selected preformed and newly synthesized mast cell mediators

M ediator Biological Functions
PREFORMED
Histamine Vasodilation, endothelial activation, pulmonary fibrosis, eosinophil chemotaxis
Heparin Anti-coagulant, inhibition of platelet aggregation and lymphocyte activation
Chondraitin sulfate E Lipoprotein binding
Tryptase Endothelia activation, fibrinogen cleavage, mitogenic for smooth muscle cells, activate pro-
stromelysin
Chymase Converts angiotensin | to |1, remodeling, lipoprotein degradation
Carboxypeptidase Metalloproteinase, remodeling
Cathepsin G Protein degradation, tissue/vascular remodeling, converts angiotensin | to |1

Tissue plasminogen activator ~ Dissolution of blood clot

NEWLY SYNTHESIZED

Leukocyte chemokinesis, vasodilation, inhibition of platelet aggregation

LTC,, LTB, Leukocyte chemotaxis, smooth muscle contraction
PGD,, PGE,

Platelet activating factor Platel et activation, vasoconstriction
Thromboxanes Platel et activation, coagulation

kinase then becomes activated sequentially, followed by
involvement of phospholipase C g (PLC g and mitogen
activated protein kinases (MAPK) and phosphoinositol-3
kinase. Generation of inositol trisphosphate and of
diacylglycerol and other second messengers leads to release
of calcium intracellularly as well as protein kinase C
activation, events culminating in FceRI-mediated secretion.
Degranulation appears to be associated with activation of G
proteins that cause actin polymerization and relocalization.
Thisis aso accompanied by transcription of cytokine genes
leading to an evolution of an inflammatory cascade.

4. ROLE OF MAST CELLS
PATHOPHYSIOLOGY

IN HUMAN

4.1. Mast cellsin inflammation

Mast cells have been incriminated in such diverse
discases as alergy, asthma, rheumatoid arthritis,
atherosclerosis, interstitial cydtitis, inflammatory bowel
disease, progressive systemic sclerosis, chronic graft-
versus-host disease, fibrotic diseases, sarcoidoss,
ashestosis, ischemic heart disease, keloid scars and
malighancy (3). In the instance of the airway pathology of
allergy and bronchia asthma, a complex inflammatory
cascade has been recognized to be associated with the
development of disease. In these diseases, typica
pathological findings include epithelial loss, sub-epithelia
collagen deposition, edema and infiltration of the mucus
membrane by inflammatory cells, including mast cells,
macrophages, T cells and eosinophils. This is accompanied
by the elaboration of lipid mediators and various cytokines
(35, 36). In addition, mast cells reside in peripheral tissues,
all vascularized tissue, and the submucosa of the
respiratory and gastrointestinal tract (37, 38). At these
locations mast cells are in a key position to act as effector
cells in the inflammatory cascade. As mentioned in the
previous section, mast cells are activated through
aggregation of IgE, antigen, and the high affinity FceRlI
receptor on the mast cell surface membrane, or by various
stimuli (39). Once activated, mast cell effector functions
are initiated. These can be divided into acute phase, late-
phase, and chronic inflammatory states. Acute phase
anaphylaxis is characterized by the appearance of signs and
symptoms such as vascular collapse, respiratory distress,

1112

pruritus, and urticaria with or without angioedema within
seconds or minutes after administration of the allergen to a
previously sensitized individual. This is an IgE- mediated
phenomenon in which FceRl aggregation with alergen
bound IgE activates and degranulates mast cells resulting in
secretion of the contents of preformed granules, synthesis
of lipid mediators derived from stored precursors, and
expression and secretion of cytokines. All these mediators
and cytokines further provoke a profound immunological
and inflammatory process.

4.1.1. Mediator and protease expression by mast cells
Allergen binding to or cross-linking of mast cell
surface IgE which is bound to the high affinity IgE-
receptor, FceRl, leads to the rapid release of inflammatory
mediators (40). Mast cells can also be activated to
degranulate by a variety of stimuli including; opiates,
components of the complement cascade (41-43),
neuropeptides (vasoactive intestina peptide, calcitonin
gene-related peptide and substance P), superoxide anion,
radio-contrast media, oxidized low density lipoproteins
(Ox-LDL), histamine releasing factors, chemokines
(monocyte chemotactic proteins-1, -2 and -3 [MCP-1, -2, -
3], and monocyte inflammatory peptide 1 alpha [MIP-1
a]), regulated upon activation normal T-cell expressed and
secreted (RANTES), connective tissue activating peptide,
pathogenic bacteria (44, 45), parasites (46, 47), enterotoxin
B (48), cholera toxin (49), or changes in osmolality (50,
51). This indicates the occurrence of multiple pathways of
mast cell activation, and suggests a role for mast cells in
many physiopathological processes that go beyond the
traditional role of these cells in causing alergy. Mediators
secreted by mast cells are usually subdivided into those that
are preformed and secretory granule-associated, and those
that are newly synthesized following activation (3, 52).
Preformed mediators (Table 2) include histamine,
proteoglycans (heparin, chondroitin sulfate E), serotonin,
proteases (such as tryptase, chymase, $-Hexosaminidase,
$-Glucuronidase, $-D-galactosidase, cathepsin G and
carboxypeptidase), some cytokines, and growth factors
(basic fibroblast growth factor, bFGF) and tumor necrosis
factor alpha (TNF-a). The mast cell also elaborates several
newly generated mediators after activation (Table 2). These
include the lipid mediators (prostaglandin D, and
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Table 3. Selected cytokines expressed from human mast cells

FAMILY FACTOR ACTIONS REFERENCE
CYTOKINE TNF-alpha  Loca inflammation, endothelial activation, cytotoxic (59),(60),(61),(62),(64),(63)
toward cancerous cells
IL-1 beta Fever, T cell activation, macrophage activation (65)
IL-3 Synergistic action in hematopoiesis (66),(67),(68),(69),(70)
IL-4 B cell activation, IgE switch (71),(72),(48),(73),(68),(74),(79),(80), (81)
IL-5 Eosinophil growth, differentiation (73),(68),(74),(75),(76),(79),(80)
IL-6 T and B cell growth and differentiation, acute phasereaction (77),(61),(78)
IL-10 Suppression of macrophage functions (cytokine (91)
synthesis inhibition factor)
IL-13 B cedl growth and differentiation, inhibits macrophage (92),(93),(94),(95),(96),(97)
inflammation, cytokine production
IL-16 Chemoattractant for T cells (99),(100)
CHEMOKINE IL-8 Chemoattractant for neutrophils and T cells, activates T  (82),(83),(66),(71),(84),(85),(86),(87),
cells and basophils (88),(89)
MCP-1,23  Chemoattractant for monocytes, lymphocytes, basophils, (104)
and NK cells
MIP-1apha Chemoattractant for monocytes, T cells and eosinophils ~ (101),(85)
RANTES Chemoattractant for monocytes, T cells, eosinophils, (85)
basophils, NK cells and dendritic cells
EOTAXIN Chemoattractant for Eosinophils (203)
GROWTH FACTOR  TGF-betal Inhibitscell growth, anti inflammatory (106),(207)
basic FGF Promotes growth of fibroblasts, endothelia cells, (105)
chondrocytes, smooth muscle cells, melanocytes and
others, promotes adipocyte differentiation
NGF Nerve growth (109)
VEGF Promotes vascular endothelial cell growth (110
PDGF-A Chemoattractant and mitogenic for fibroblasts (106)
HEMATOPOIETIC GM-CSF Promotes growth and differentiation of myelomonocytic (108),(62)
FACTOR lineage cells
leukotrienes, generated from  arachidonic  acid), In vitro and in vivo evidences of mast cell
thromboxanes (TXAB,), 5,12-hydroxyeicosatetraenoic production of cytokines comes from the work of various

acid, nitrogen radicals, oxygen radicals, inflammatory
cytokines and chemokines.

412 Mast cells as sources of immunoregulatory
cytokines

Human mast cells are capable of secreting a wide
variety of cytokines, chemokines and growth factors (53-
55). The initial demonstration that mast cells possess the
capacity to secrete cytokines was demonstrated in the
seminal paper of Plaut et al., who described induction of
transcripts for IL-4, IL-5 and IL-6, a classic Th2 profile, in
murine mast cells activated by calcium ionophores or by
crosslinkage of FceRI (56). Since then, the work of many
laboratories has shown that both murine and human mast
cells are capable of expressing a wide repertoire of
cytokines in response to many stimuli. Both in vivo and in
vitro data have suggested that human mast cells are capable
of expressing tumor necrosis factor alpha (TNF-a), IL-3,
IL-4, IL-5, IL-6, IL-8, IL-13, IL-16, granulocyte
macrophage colony stimulating factor (GM-CSF), SCF,
basic fibroblast growth factor (bFGF), transforming growth
factor beta (TGF b), chemokines such as macrophage
inflammatory protein 1 apha (MIP-1 apha), monocyte
chemotactic  protein 1 (MCP-1) and severa
metalloproteinases. These cytokines allow the mast cells to
potentially orchestrate a wide variety of inflammatory
responses and also simultaneously modulate host defense,
angiogenesis and tissue remodeling. The following sections
describe in vitro and in vivo evidence of human mast cell
cytokine expression. Table 3 lists the cytokines known to
be expressed by human mast cells and their putative
function in an inflammatory cascade.
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laboratories. Autocrine production of SCF by mast cells is
of great interest as it allows their own differentiation and
maturation (57). Zhang and coworkers showed that human
skin and lung mast cells express stem cell factor (57).

Human cardiac mast cells aso express SCF, as
demonstrated in mast cells purified from hearts of patients
undergoing cardiac transplantation by protein A/gold
staining (58). Mast cells express TNF-a. The initial data
that this TNF-a is functional came from Walsh et al., who
showed that TNF-a made by human dermal mast cells
induced adhesion molecules on endothelial cells (59). The
work of Bradding and coworkers suggests that airway mast
cells in the nose and lung express TNF-a (60, 61). TNF-a
expression by lung mast cells may also account for
eosinophil activation seen in asthma, as the release of
eosinophil mediators by mast cell supernatants was blocked
up to 68% by anti-TNF-a antibody (62). TNF-a is aso
released from skin mast cells in response to Substance P-
mediated activation (63). TNF-a is also detectable in mast
cells infiltrating atheromatous plaques (64), where they
may assist in activating metalloproteinases in macrophages.
IL-1 b may be a product of human mast cells (65). Thereis
evidence that IL-3, a pleuripotentia growth factor, is
expressed by human mast cells. The human mast cell
leukemia cell line, HMC-1, expresses IL-3 transcripts (66,
67). Naive human mast cells developed from bone marrow
mononuclear cells and lung-derived mast cells express IL-3
(68, 69). Wallaert et al., showed that mast cells express IL-
3invivo, in the lungs of patients with asthma (70). There is
quite a hit of data confirming the production of IL-4 and
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IL-5 in mast cells, both in vitro and in vivo. The mast cell
line, HMC-1, expresses IL-4, shown by us and others (48,
71, 72). FceRI-mediated mast cell activation induces IL-4
and IL-5 production (68, 73, 74). Jaffe et al., showed
expression of IL-5 mRNA transcripts temporally in human
lung mast cells following IgE-mediated activation (75). IL-
5 production is aso a feature of intestina mast cells (76).
Co-expression of I1L-4, IL-5 and IL-6 in mast cells has been
shown in biopsies of lung (61, 77) and nose (78) of patients
with asthma and rhinitis, respectively. 53% and 29% of
mast cells in the late phase skin reaction stained for IL-4
and IL-5 respectively (79). Ying et al., showed that while
the majority (>70%) of mRNA signals for IL-4 and IL-5
localized to the T cellsin the lungs of patients with asthma,
both mast cells and eosinophils aso demonstrated
expression of these transcripts (80). Other investigators
have suggested the mast cell may be a major source of IL-4
in atopic asthma (81). Human mast cells aso express the a-
(CXC) chemokine, 1L-8, a major neutrophil chemoattractant
(66, 71, 82, 83). Both HMC-1 cells as well as skin mast cells
produce IL-8 (84, 85). Induction of IL-8 in HMC-1 cellswas
shown in response to adenosine A2b receptors, mediated by
mitogen activated protein kinases (86, 87).

Adhesion to extracellular matrix or activation by
stromal cell-derived factor la may provide additiona
stimuli for IL-8 expression in mast cells (88, 89). Since the
IL-8 receptors, CXCR1 and CXCR2 are expressed on
human mast cells, an autocrine effect of this chemokine on
mast cell chemotaxis may be possible in vivo (90). Human
mast cells have also been shown to express IL-10, a
negative regulator of inflammation and cytokine expression
(91). Human lung mast cells (92, 93), HMC-1 cells (94)
and cord blood-derived mast cells (95, 96) express IL-13, a
cytokine that shares functions with IL-4. Stem cell factor
may be essential to IL-13 production from human mast
cells (97). Both IL-4 and 1L-13 are capable of switching B
cellsto IgE production in the presence of costimuli (98).

Rumsaeng et al., showed expression of the
lymphocyte chemoattractant, IL-16, from human mast cells
(99). More recently, in vivo evidence of 1L-16 expression
by mast cells in asthma has been presented (100). Human
mast cells express the chemokines, macrophage
inflammatory protein 1 alpha (MIP-1 a), Regulated on
Activation, Normal T cell Expressed and Secreted
(RANTES), eotaxin and monocyte chemoattractant protein-
1 (MCP-1). Human mast cells express MIP-1 a in response
to chemoattractant receptor ligation (101), phorbol esters
(85) or FceRI-mediated signaling (102). Both RANTES
(85) and eotaxin (103) may be expressed by human mast
cells. Recent data suggests that human lung mast cells
express the b (CC)-chemokine, MCP-1 in response to
FceRI-mediated signaling and SCF-mediated activation
(104). Human mast cells may aso be additional sources of
pivotal growth factors essentiad to remodeling and
reparative processes. For example, basic fibroblast growth
factor is amast cell product and has been localized to mast
cell secretory granules (105). TGF bl and platelet-derived
growth factor-A (PDGF-A) have been reported to be
produced by human mast cells (106). This may have
implications for wound healing and fibrotic diseases (107).
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The hematopoietic factor, GM-CSF, can be produced by
mast cells and is capable of activating eosinophils, in
conjunction with TNF-a and IL-5 (62, 108). Nerve growth
factor (NGF) (109) and vascular endothelial growth factor
(VEGF) (110), a cytokine that regulates angiogenesis, have
aso been localized to mast cells. We demonstrated
expression of multiple transcripts for inflammatory
cytokines in HMC-1 cultured cells, including IL-1, IL-2,
IL-4, IL-5, IL-6, IL-8, IL-13, GM-CSF and TNF-a in
response to phorbol esters and calcium ionophore. HMC-1
cells also expressed proteins for IL-4, IL-6, IL-13, GM-
CSF and IL-8, suggesting they are able to both transcribe
and trandate genes for many pro-inflammatory cytokines
(71). There is also some data to suggest that heterogeneity
of human mast cells exist in regards to cytokine expression
in vivo. In their study, Bradding et al., demonstrated the
existence of this heterogeneity in mast cells from bronchial
biopsies of patients with asthma. By immunocytochemistry,
it was noted that the MCqc cells expressed predominantly
IL-4, while the MCy cells expressed both IL-5 and IL-6
(77). In our studies, cord blood-derived mast cells
expressed the eosinophil-active growth factors, IL-5 and
GM-CSF, and the eosinophil chemotactic C-X-C
chemokine, IL-8, following activation. The production of
these cytokines in cord blood-derived mast cells was
further enhanced by the addition of the monokines, IL-1b,
in a dose-dependent manner, suggesting a role for
macrophage-mast cell cross-talk in allergic inflammation.
On the other hand, dexamethasone inhibited production of
these cytokines from these cells, suggesting a differential
regulation. These data indicate a mast cell-eosinophil axis
may exist in vivo that may be susceptible to
pharmacological manipulation.

4.1.3. Role of mast cell mediators and cytokines in the
inflammatory response

The mediators released by mast cells can
independently, and in synergy with macrophage- and T-
cell-derived cytokines, induce much of the inflammatory
pathology seen in inflammation and serve to orchestrate
a complex immune response (Figure 2). The functions of
mast cell mediators released upon degranulation are
shown in Table 1. Histamine binds cells expressing
histamine receptors and produces effects that are tissue
specific. Other contents of mast cell granules have
effects on the coagulation cascade (see below) or are
involved in local tissue destruction. Lipid mediators,
which include LTB,, LTC,, PAF, and PGD,, have direct
effects on peripheral tissues. Direct tissue effects caused
by activated mast cells help other inflammatory cells in
the circulation reach the appropriate site. Tryptase,
chymase and TNF-a from mast cells may be capable of
activating fibroblasts leading to collagen deposition and
fibrosis. Mast cell-derived TNF-a is essential for NF-
kB-dependent induction of endothelial adhesion molecule
expression in vivo (59). The mast cell granules potentiate
endotoxin-induced IL-6 production by endothelial cells. All
point to the process of an acute phase of inflammation.

Mast cell-derived cytokines and chemokines
further regulate IgE synthesis and cell migration, basophil
hissamine release, smooth muscle proliferation and
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VASCULAR INFLAMMATION
*Atherogenesis
*Endothelial activation
*Foam cell generation
*Vascular remodeling
*Plaque Rupture
*Protease, metalloproteinase
*Modulation of coagulation

CHRONIC INFLAMMATION

Products/Mediators
Cytokines
Chemokines
Tryptase, histamine
Lipid mediators

*Endothelial activation

*Cell recruitinent

*IgE class switching

*Th2 polarization (IL-4 pulse)

PRIMARY INIMUNE DEFENSE
*Leukocyte recruitiment

*TNF-alpha secretion

*Phagocytosis and killing of bacteria

MAST CELL

REMODELING

*Fibroblast activation
Fibroblast growth factor
Transforming growth factor
Tryptase

*Wound repair

*‘Remodeling responses

sFibrotic diseases, asthina

o

EOSINOPHILS
Activation and chemotaxis
*GNM-CSF

*TNF-alpha

JL-5

sLeunkofirienes

Figure 2. Biological functions of human mast cells: Mediator and cytokine synthesis and regulation of human physiological and

pathological processes

endothelial chemotaxis and proliferation. IL-4 and 1L-13 can
also class switch B-cells to induce IgE synthesis (111, 112).
IL-5, another product of Th2 cells and of mast cells, can dso
serve to activate eosinophils and accentuates IgA production
from B cells. Eosinophils further accentuate chronic alergic
inflammatory responses by themselves secreting IL-5 and
other toxic mediators such as mgor basic protein (113).
Chemokines (such as IL-8) and leukotrienes (specificaly
LTC,) released by mast cells can recruit neutrophils and
eosinophils to inflamed airways which can further
potentiate damage (3). Mast cells have been postulated
to provide the IL-4 pulse that allows the development of
Th2 cells that selectively secrete IL-4 and IL-5 on
activation (114). Exciting recent data also suggest that
certain mast cell-derived chemokines, especially MIP-1
a, can potentiate a shift of T cells towards a Thil-
phenotype, while others, such as MCP-1, can shift these
cells functionally to a Th2-phenotype (115). There is a
close association between mucosal mast cells and T
cells (116) and several T cell-, mesenchymal- and/or
macrophage-derived cytokines, such as IL-3, IL-4, GM-
CSF and SCF are required forproliferation of mast cells.
Thus, T cells and mast cells can complement the
functions of each other and contribute to the "cytokine
pool" that leads subsequently to chronic inflammation.
In addition, cell-derived mediators and cytokines can
modulate airway smooth muscle tone, vascular
permeability, stimulate mucus production, activate
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neuronal function and induce many of the pathological
changes observed as part of the inflammatory response
(35, 36).

4.2. Role of mast cells in the coagulation cascade and
atherosclerosis

Mast cells are uniquely positioned around
capillary vessels to effect coagulation via the release of
mediators, such as heparin and proteases, and the potential
roles of these mediators are just beginning to be elucidated
with regard to their impact on the coagulation cascade.
They may thus play crucia roles in vascular injury and
atherosclerosis (4). There are indications that mast cell
granule components, released upon activation, could have
both anti-coagulant and thrombogenic functions. Szczeklik
et al., reported delayed generation of thrombin in atopic
patients, and protection from cardiac death after myocardial
infarction, associated with elevated serum IgE, increased
bleeding time and depressed platelet aggregation, similar to
the effects of aspirin (117, 118). Additionally, Kauhanen et
al., found that individuals with urticaria pigmentosa had
reduced clotting times (119). However, increased numbers
of mast cells have been found in atherosclerotic plagues
where they appear to be associated with plague rupture
which initiates thrombosis (120). Subsequently, Johnson et
al. showed a correlation between extracellular tryptase
activity in atherosclerotic plaques and active matrix
metalloproteinase levels (121). Kovanen et al., 1995 found
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increased numbers of mast cells at the site of atheromatous
rupture in patients that had died of acute myocardial
infarction and that mast cell degranulation was 200-fold
higher at the site of rupture than in adjacent, unaffected
intima (122). Therefore, it appears that genera mast cell
activation, as in alergies, may provide some measure of
protection from thrombosis, whereas mast cell activation in
atherosclerotic plagues may contribute to atheroma
formation and/or plague rupture. Some of the effects of
mast cells on the coagulation cascade may be effected by
mediators expressed by these cells.

Although purified heparin is a useful clinica
anti-coagulant, which functions via the activation of
inhibitors of coagulation pathway proteases, there is little
evidence that heparin released from mast cells functions as
an anticoagulant in vivo. Mast cell heparin is complexed
with granules components, including proteases and
histamine. Histamine apparently dissociates from heparin
when the acidic mast cell granules enter the neutra
extracellular fluid. Heparin stabilizes the active, tetrameric
structure of tryptase (123) and excess heparin seems needed
to maintain the tryptase-heparin complex (124).
Conseguently, the amount of mast cell heparin available to
function as an anti-coagulant is unknown and mast cell
heparin may have more to do with protease storage than
with anti-coagul ation.

Tryptase, which is present in al human mast cells
(125), has been reported to activate pro-stromelysin (matrix
metalloproteinase-2) (126) and the activation of matrix
metalloproteinases in atherosclerotic plaque was correlated
with tryptase activity, but not with chymase activity (121).
Matrix metalloproteinases 1 & 3 were found to be the
principal MMPs present in atherosclerotic plague (121) and
caseinolytic and gelatinolytic activities measured by in situ
zymography were increased when atherosclerotic plaque
tissue was treated with compound 48/80, a mast cell
degranulation agent. Mast cells were predominantly in the
shoulder regions and fibrous caps of the plaques and
degranulation was observed in 78% of these mast cells.
There has long been an association between mast cells and
fibrosis. Tryptase causes fibroblast proliferation and
increased collagen synthesis (127), which could contribute
to formation of fibrin caps over atherosclerotic plagues.
The fibroblast response apparently occurs via tryptase
activation of protease-activated receptor-2 [PAR2] (128).

Chymase has been found in atherosclerotic
plaques. Cathepsin G, which is the primary chymotrypsin-
like protease of neutrophils, has also been found in mast
cells (129). But mast cell cathepsin G has not been studied
with regard to atherosclerosis and coagulation. Chymase
and cathepsin G have been shown to convert angiotensin |
to angiotensin 1I, which is a potent vasoconstrictor (130).
Uehara et al. found that chymase was the only angiotensin
Il forming activity in human atherosclerotic internal
thoracic arteries (131). Human mast cells have also been
reported to express gelatinase B (MMP-9) (132). Human
chymase presumably activates these matrix metall oproteinases,
produced by mast cels themsdalves or by other cdls in the
vicinity of degranulating mast cells. Kovanen and coworkers
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found that mast cell chymase cleaves apolipoprotein B-100
of LDL, which facilitated lipoprotein aggregation,and uptake
by macrophages (133). Additionaly, this group has shown
that chymase degrades apolipoprotein A of HDL, which
would reduce cholesterol efflux and increase lipid deposition
(134).

Thus, an alternative mechanism for LDL
macrophage uptake (and foam cell formation) that does not
require prior formation of oxLDL is provided by mast cells.
Mast cell degranulation produces neutral proteases, such as
chymase, and granules. The released granules bind LDL
and this LDL is aso degraded and fused by the released
proteases. In vivo evidence suggests that these non-
oxidative modifications of LDL promote its phagocytosis
by macrophages leading to foam cell formation in the
human arterial intima (135). Moreover, mast cell chymase
may act on high density lipoprotein (HDL) and reduce its
ability to remove cholesterol from foam cells (136). These
finding suggest that mast cell proteases contribute to
atherosclerosis by various means.

4.3. Mast cell proteases and fibrinolysis

Mast cells have been reported to produce tissue
plasminogen activator (tPA) (137). Although tPA which
initiates the dissolution of blood clots is produced as a
precursor like other serine proteases, tPA is inherently
active and its activity increases upon hbinding to fibrin.
While this finding suggests an anti-coagulant function,
stimulated mast cells have aso been found to synthesize
plasminogen activator inhibitor-1 (138). Pro-urinary
plasminogen activator (pro-uPA) must be proteolytically
converted to a two chain active form (uPA) and mast cell
tryptase has been shown to activate pro-uPA (139). Severa
cells, including cardiac mast cells (140), have urinary
plasminogen activator receptors (UPAR) that bind both pro-
UPA and uPA, and this binding alows uPA to function as a
cellular plasminogen activator. Fibrinogen cleavage by
tryptase and the resulting slowed coagulation, was first
reported by Schwartz et al., (141). It is therefore conceivable
that tryptase decreases the risk for atherosclerotic disease by
lowering the level of “functional” fibrinogen, because
increased fibrinogen concentrations are associated with
increased risk for atherosclerotic disease. Mast cdll tryptase
also was shown to cleave high molecular weight kininogen,
resulting in a reduction of this protein’s ability to stimulate
coagulation via activation of factor XII. Subsequently, the
cleavage dite in high molecular weight kininogen was
identified as Arg431 in the higtidine-rich region of the heavy
chain (142).

Mast cells seem capable of slowing clotting via
the secretion of heparin and via tryptase mediated
inactivation of fibrinogen and high molecular weight
kininogen. Additionally, secretion of tPA, and activation of
pro-uPA, could result in plasmin mediated fibrinolysis.
However, mast cells may aso contribute to atherosclerotic
plague formation via chymase cleavage of LDL and
tryptase may stimulate fibrin cap formation via activation
of PAR2 on fibroblasts. Additionally tryptase, chymase and
cathepsin G may activate matrix metalloproteinases,
resulting in plague rupture and thrombus formation.
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Obviously, the resulting outcome depends on the balance
between anti-coagulant and thrombotic functions.

4.4. Role of mast cellsin host defense

Mast cells lie at key positions in the body to play
acritical role in immune surveillance and contribute to host
defense. Mast cells are a heterogeneous group of cells
whose characteristics are governed by growth factors
present in a particular microenvironment (52). Mast cells
obtained from different sites have different responses to
stimulation and different morphology (41). Mast cells
migrate to body sites as uncharacterized precursors and
then undergo differentiation once they take up residence in
a particular tissue (47). Mature mast cells are further
regulated by such factors as SCF and IL-4 (143). Once in
there final location, mast cells serve as highly refined
defenders at key positions. At their various positions mast
cells can be activated by a number of host and foreign
gtimuli. Mast cells can then initiate both innate and
acquired immune reactions (50, 144). They can
phagocytose foreign particles and also express receptors
such as intercellular adhesion molecule-1 (ICAM-1) and
ICAM-3, CD 43, CD 80, CD 86, and CD 40L dlowing
interaction with T and B lymphocytes. Mast cells enhance
the development of Th2 cells and allow B cells to class
switch to IgE. By influencing both humoral and cell
mediated immune mechanisms, mast cells regulate host
defense. Moreover, it should be recognized that
complement products as well as neuropeptides can induce
mast cell degranulation, thereby alowing interaction with
the innate immune system and neuroimmune mechanisms.
Mast cells can secrete cytokines and chemokines that
activate lymphocytes such as IL-1, IL-5, IL-8, and
paticularly TNF-? (44, 145). They produce lipid
mediators and histamine that can have profound effects on
vascular endothelium alowing other circulating immune
cells to migrate into the tissues. Most of these roles are
tissue independent but clearly there are some site-specific
roles for macrophages. Mast cells play a very important
role in host defense at the site of the lung. Here, mast cells
reside in an intragpithelial location or near blood vessels,
bronchioles, and mucous secreting glands (44). It has been
shown that in mast cell-deficient mice, pathogenic bacteria
survived ten-fold more than in mice with mast cells (146).
There is good evidence that mast cells are capable of
phagocytosis of a large range of bacteria (145). In
addition, mast cells release prestored TNF-? which
serves as a powerful neutrophil chemoattractant (147,
148). A role as antigen presenting cells has also been
proposed for mast cells (149). These antibacterial
properties of mast cells are present independent of the
tissue they reside in. In addition to functions in the lung,
mast cells play important roles in the Gl tract. Here, the
immune system must protect the host from pathogens
while being tolerant to the normal flora and a wide array
of dietary antigens (150) Overall, mast cells are key
players in host defense with roles in immune
surveillance, phagocytosis, and immune activation. They
are critical at sites such as the lung and Gl tract for
prevention of bacterial infection. They may have other
effects such as antitumor effects that have yet to be fully
appreciated.
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4.5. Roles of mast cellsin tissue remodeling and fibrosis

Mast cells are increased in numbers in many
fibrotic diseases and may play a crucid role in
development of fibrosis (151). Liebler et al., found mast
cell hyperplasia during the later reparative stages of the
lungs of patients with the adult respiratory distress
syndrome but not in the early stage (152). The percentages
of mast cells in bronchoalveolar lavage fluid from patients
with sarcoidosis or intergtitial fibrosis are greater than from
control individuals (153). Patients with idiopathic
interstitial pulmonary fibrosis show evidence of mast cell
degranulation and elevated mast cell numbers (154). In
patients with IgA nephropathy, mast cell numbers correlate
with the degree of interstitial fibrosis and with creatinine
clearance and express tryptase and basic fibroblast growth
factor (bFGF) (155). In this study, mast cells were shown to
be in close association with fibroblasts. Inoue and
coworkers also demonstrated that the mast cell was the
dominant source of bFGF in patients with fibrotic lung
disease (156). Patients with pulmonary fibrosis associated
with scleroderma show higher numbers of mast cells and
quantities of histamine and tryptase in bronchoalveolar
lavage fluid than patients with norma chest
roentgenograms (157). Thus it appears that mast cells play
apivotal role in fibrotic disorders (158, 159). The dominant
mechanisms behind the regulation of fibroblast function
and proliferation by human mast cells are uncertain. It is
clear that mast cell products such as tryptase and cytokines
(TNF-a, bFGF) induce fibroblast proliferation (156, 160,
161). On the other hand, fibroblasts appear to enhance mast
cell survival (162). Thus a bidirectional relationship
between mast cells and fibroblasts has been proposed (3).
Fibroblasts are closely opposed to mast cells in fibrotic
diseases, suggesting the additional possibility of cognate,
cell-cell interaction (163). Whether this is mediated by cell
surface molecules such as CD40-CD40 ligand interactions,
blockade of which could modulate fibrosis, are unclear at
this point (164). To further complicate the story, mast cells
are themselves capable of laying down some forms of
collagen and mast cell tryptase can activate collagenases
capable of matrix degradation. Thus mast cells play
important roles in tissue remodeling and the development
of fibrosis (37).

5.ROLE OF MAST CELLSIN HUMAN DISEASES

Human mast cell hyperplasia and dysfunction
have been documented in various pathological states.
Allergic  inflammation including rhinitis, asthma,
anaphylaxis and urticaria are all classical disorders
associated with mast cell activation and these disorders
have reached epidemic proportions (165-167). In alergic
disease, polarization of T cell responses leads to an
increased Th2-type cytokine burden, with IgE production,
mast cell activation, eosinophil recruitment and chronic
inflammation (35, 168-172). In systemic anaphylaxis, mast
cell activation is associated with the elaboration of b-
tryptase that is detectable in the circulation as a diagnostic
marker (173, 174). Another disorder associated with mast
cel hyperplasa and excessve activation is systemic
mastocytosis. In this disease, mutations of c-kit (Asp 816 Val
mutation) have been shown to exist (8, 175-177). Systemic
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mastocytosis is characterized by a pathological increase in
mast cell numbers in affected tissue (178). In this disease,
skin lesions (urticaria pigmentosa) and infiltration of the
liver, spleen, lymph nodes and bone marrow may occur
(178, 179). Some patients have indolent disease, while
others have systemic disease with hematological
complications or aggressive disease culminating in mast
cell leukemia, especially those patients with the c-kit
mutation (10, 180, 181). Hematological disorders noted in
patients with mastocytosis include myeloproliferative
syndromes or myelodysplasia and lymphoreticular
malignancy (182). Cutaneous manifestations include
urticaria  pigmentosa, diffuse  and  erythematous
mastocytosis, mastocytoma and telangiectasia macularis
eruptiva perstans (183). ? -tryptase is elevated in the serum
of patients and provides an excellent diagnostic marker
(184). Mast cells have also been found to infiltrate unstable
plagues in patients with coronary artery disease (64). An
evolving role for mast cells and IgE-mediated pathology
has been reported in HIV infection (185). The chemokine
receptor, CCRS3, is expressed on mast cells and may
provide one explanation for the chemotactic effects of tat
protein on mast cells (185). In one study, increased
adventitial mast cell numbers were noted in the arteries of
patients dying of cocaine toxicity (186, 187). However, the
role of mast cells in HIV and cocaine-induced vascular
pathology is unclear (187).

Mast cells may play a role in rheumatological
diseases and anaphylactic release of mast cell mediators
such as alpha- and beta-tryptase and histamine has been
demonstrated in various forms of arthritis (188, 189). In
osteoarthritis, mast cells counts and tryptase and
histamine levels are elevated in synovial fluid (190, 191).
Mast cells are seen in rheumatoid lesions and may be
activated and responsible for the inflammatory response
(192-194). Mast cell chemotactic activity and mast cell
expression of vascular endothelial growth factor (VEGF)
have been demonstrated from rheumatoid synovium (195,
196). In early rheumatoid arthritis, MCT mast cells are
expanded while in later disease, the dominant subtype is
the MCTC mast cell (197). It also appears that antibodies
to IgE and to Fc? Rl occur in several autoimmune
diseases suggesting one additional mechanism of mast
cell activation in these disorders (198). Skopouli et al.,
reported on mast cell infiltration in the minor salivary
glands of patients with Sjogren’s syndrome and showed
their association with fibrosis and c-kit expression (199).
Patients with fibromyalgia demonstrate higher dermal
deposits of 1gG and increased dermal mast cell numbers,
but the significance of these findings is unclear (200). By
inducing angiogenesis, secretion of VEGF and bFGF,
elaboration of collagenases, mast cells can contribute to
tumor pathology and invasiveness (201-203).
Osteoporosis is often a feature of mastocytosis and mast
cells may contribute to bone resorption (204). Mast cells
are found in intimate contact with myofibroblasts in
keloid scars suggesting they may play arole in fibroblast
activation and scar formation (205). Thus, besides allergic
disease, mast cells may play an important role in a variety
of other inflammatory, rheumatolgical and neoplastic
diseases.
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6. PHARMACOLOGICAL MODULATION OF MAST
CELL FUNCTION

Since mast cells play such crucia roles in
inflammation, host defense and tissue remodeling,
modulation of mast cell function alows a therapeutic
approach to human disease. A variety of pharmacological
agents have been demonstrated to inhibit mast cell growth,
activation and production of histamine and/or cytokines.
Glucocorticoids are commonly used for the therapy of
human inflammatory and allergic diseased. Studies in
various laboratories have shown inhibitory effects of
glucocorticoids on mast cell function (71, 206-210).
Inhibition of cytokine production (IL-4, IL-5, IL-6 and IL-
8) have been shown in human mast cells by glucocorticoids
(71, 206). Glucocorticoids aso inhibit mast cell-dependent
wheal and flare responses and SCF-dependent mast cell
survival (211-213). Cyclosporine and tacrolimus have been
shown to have inhibitory effects on mast cells (214). For
example, cyclosporine inhibits PA-I gene expression in
mast cells (138). Accordingly, cyclosporine and
glucocorticoids have therapeutic effects in aggressive,
systemic mastocytosis (215). In one study, cyclosporine
was shown to inhibit mast cell activation in atopic
dermatitis (216). Cyclosporine A and FK-506 inhibit SCF-
mediated histamine secretion from mast cells (217). In
another study, cyclosporine A inhibited histamine release
from human synovia mast cells (218). Warbrick et al.,
reported that cyclosporine A and dexamethasone inhibited
cytokine gene expression by the human mast cell line,
HMC-1 (67). Human skin mast cells treated with
cyclosporine A produce less PGD, when challenged with
anti-lIgE (219). In contrast, human synovial mast cells and
HMC-1 cells appear to be resistant to the effects of
methotrexate (67, 218). Drugs referred to as “mast cell
stabilizers’ inhibit 1gE-mediated mast cell degranulation.
These include amlexanox, sodium cromoglycate and
tranilast, which appear to bind to calcium-binding proteins
(220). Yanni et al., showed that nedocromil sodium and
olapatidine but not cromolyn inhibit histamine release from
conjunctival mast cells activated with IgE and anti-IgE
(221). Antihistamines such as azelastine, cetirizine,
loratidine and ranitidine aso inhibit cytokine release from
activated HMC-1 cells (222). Certain cytokines have
inhibitory effects on mast cells and have been used
therapeutically for this reason. Interferons inhibit mast cell
growth and differentiation (223). Interferon alpha-2b has
been used to treat patients with mastocytosis (224).

7. CONCLUSIONS

Mast cells are fascinating, multifunctional, bone
marrow-derived, tissue dwelling cells. They can be
activated to degranulate in minutes, not only by IgE and
antigen signaling via the high affinity receptor for IgE, but
also by adiverse group of stimuli. These cells can release a
wide variety of immune mediators, including an expanding
list of cytokines, chemokines and growth factors. Mast cells
have been shown to play rolesin allergic inflammation, and
more recently, they have been shown to modulate
coagulation cascades, host defense and tissue remodeling.
Several drugs with anti-inflammatory function mediate
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their effects by altering mast cell degranulation and
mediator release. The role of mast cells in asthma,
atherosclerosis, HIV, cocaine abuse, fibrotic disorders and
rheumatological disease is being actively studied. The
availability of novel molecular tools such as the chip array
technology should shed more light on the true biological
roles of these ubiquitous cells.
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