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1. ABSTRACT

Lipoprotein lipase (LpL) is the primary enzyme
responsible for conversion of lipoprotein triglyceride into
free fatty acids and monoglyderides. This permits their
uptake into muscle and adipose. The roles of this enzyme in
normal and altered physiology are reviewed. In addition,
the relationship of LpL activity and genetic variations of
LpL and human disease are summarized.

2. PHYSIOLOGICAL AND PATHOPHYSIOLOGICAL
FUNCTIONS

Over fifty years ago, a short paper appeared in
the journal Science describing experiments studying fat
absorption in dogs. The investigator, Hahn, noted that
injection of heparin led to the rapid clearance of
chylomicrons from plasma (1). Heparin releases two
triglyceride hydrolyzing enzymes, lipoprotein lipase (LpL)
and hepatic triglyceride lipase (HL), into the bloodstream.
LpL is the major enzyme responsible for lipolysis of
circulating lipoproteins, thereby producing free fatty acids.
This is believed to be the major route for fatty acid
accumulation by tissues as intact triglyceride is unable to
dissolve in plasma and is thought to be incapable of
transport across the cell membrane. In contrast, fatty acids
enter cells via direct diffusion or fatty acid transporters
such as CD36 (2).

Delivery of calories in the form of triglyceride
and other lipophyllic substances such as cholesterol and
fat-soluble vitamins is accomplished through the
interactions of lipoprotein particles with cell surface
receptors and with enzymes. On the luminal endothelial
surface, lipoprotein triglyceride is hydrolyzed to free
fatty acids that are taken-up by tissues and either used as
energy or reassembled into triglyceride and stored
(Figure 1). In tissues that do not have an intact
endothelial cell barrier, or in situations in which the
endothelial barrier permeability is altered is it likely that
substantial amounts of these large lipoproteins leave the
circulation and interact with parenchymal cells. While
that is the conventional belief, studies of chylomicron
uptake by tissues indicate that muscle and bone marrow
may take up a significant amount of chylomicron core
lipid (3). Several factors may alter the endothelial
barrier function; one of these may be LpL generated free
fatty acids. Endothelial barrier function in vitro (4, 5)
and in perfused blood vessels (6) is disrupted by
lipolysis products. Much of the LpL in tissues may be
associated with the surface of LpL-expressing cells such
as adipocytes and myocytes. Therefore if a substantial
number of triglyceride-rich lipoproteins cross the
endothelial barrier these LpLs could have significant
physiological and pathophysiological effects.
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Figure 1. Lipoprotein lipase (LpL) shown as a dimer is
thought to primarily hydrolyze circulating lipoproteins
while it is associated with heparan sulfate proteoglycans
(HSPG) on the luminal side of endothelial cells. This leads
to conversion of VLDL to IDL and LDL and production of
chylomicron remnants. In the process of this surface lipid
and apoproteins dissociate from these particles and transfer
to HDL. ApoCII on the triglyceride-rich lipoprotein is
requires to fully activate LpL. ApoCIII, apoCI, and perhaps
apoE may inhibit this process. The origin of vascular LpL
is the underlying parenchymal cells, primarily myocytes
and adipocytes. Thus the enzyme must transfer from its site
of synthesis on these cells to the endothelial cells and then
must translocate from the abluminal to the luminal side of
this cell.

In several tissues unlipolyzed particles must
directly interact with parenchymal cells. These are tissues
that have portal blood supplies, such as liver, adrenal, and
bone marrow. In the bone marrow of some animals there
appears to be a mechanism for direct cellular uptake of
non-lipolyzed large triglyceride-rich lipoproteins (7). This
appears to be a non-LpL requiring process. In contrast
lipoprotein uptake into the liver is clearly increased by LpL
expression in that tissue (8).

3. CALORIC AND VITAMIN DISTRIBUTION BY
LpL

Exclusive of its actions to alter the circulating
levels of lipoproteins, LpL affects the distribution of
calories between tissues. As a marker for adipocyte
differentiation and fat stores, LpL is correlated with obesity
(9). After weight loss, LpL activity increases (10). A
number of adipose genes that are stimulated by greater
insulin sensitive are increased after weight loss (11, 12).
Although it has been postulated that genetic regulation of
adipose LpL might, in fact, modulate the propensity to
weight gain, LpL is likely to be but one of many factors
important in this respect. Humans and genetically
manipulated mice that have no adipose LpL do not have a
defect in fat development (13). Although less plasma
lipoprotein free fatty acids are internalized in LpL deficient
fat, more de novo fatty acids are produced from

carbohydrates. Mice that only excess LpL in muscles do
have a decrease in weight gain when crossed onto the ob/ob
background. Therefore, there appear to be conditions in
animals, perhaps reproduced in humans, in which LpL may
be limiting for fat accumulation.

Partitioning of more fatty acids into muscle
occurs with exercise. This could increase fatty acid
oxidation in muscle and modulate the development of
obesity (14). Moreover, LpL-induced triglyceride
accumulation that occurs in muscle LpL overexpressing
mice leads to increased muscle triglyceride and fatty acids
and a myositis that is akin to those associated with
mitochondrial disorders (15). In addition, even lesser
increases in muscle LpL and fat uptake will produce insulin
resistance (16). Similarly, liver overexpression of LpL
leads to hepatic resistance to insulin [16]. These types of
animal experiments have shown that LpL modulation of the
generation of fatty acids can play a central, but not
necessarily essential, role in tissue fat and glucose
metabolism.

The major fat-soluble vitamins that circulate in
the bloodstream are vitamin A and vitamin E. Both
vitamins are absorbed on chylomicrons; some of the
chylomicron vitamin esters are delivery to peripheral
tissues. For retinyl ester, the initial circulating form of
vitamin A, that uptake is primarily into muscle and is
modulated by the amount of LpL in the tissues (17).
Retinyl ester that remains with the remnant particles arrives
in the liver and is re-secreted as retinol bound to retinol
binding protein (RBP). If RBP is knocked out in a mouse,
the newborn pups are blind but develop sight presumable
due to delivery of milk-derived vitamin A via the lipolysis
route (17). LpL on the surface of cells will increase uptake
of tocopheral (18). Moreover, mice that overexpress LpL in
muscle have an increase in vitamin E (19). Like vitamin A,
vitamin E also circulates in the bloodstream associated with
a binding protein. Thus, the LpL mediated pathways for
fat-soluble vitamin uptake may be physiologically
important only under some conditions. In this regard, it
should be noted that humans with a genetic deficiency of
LpL are not clinically deficient in fat-soluble vitamins.

4. SYNTHESIS AND PROCESSING OF LIPASES

LpL is synthesized by a number of cells and
tissues. The major sites of LpL synthesis are the skeletal
and cardiac muscle and adipose; lesser amounts of LpL are
made in the kidney, adrenal, brain, and macrophages (see
below). LpL undergoes a series of intracellular processing
events that control its activity; unglycosylated LpL is
inactive. In addition, LpL is most active as a dimer. This
dimerization process does not require the presence of
heparan sulfate proteoglycans (20). Defects in LpL
processing are the cause of severe hyperchylomicronemia
and lack of LpL enzymatic activity in the cld (combined
lipase deficiency) mouse (21).

Postheparin lipase enzymes must transfer from
their cells of origin to the luminal surface of capillary
endothelial cells that are exposed to the large triglyceride-
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rich lipoproteins contained in the blood. Regulation of LpL
appears to involve this transfer process as major changes in
LpL activity and actions occur without alterations in LpL
gene expression or translation (22). In part, this may
involve changes in LpL activity that occur as the protein is
released from the adipocyte or myocyte and moves to the
luminal side of the endothelial cell.
.

After its synthesis, LpL must undergo a series of
extracellular movements to reach its site of physiological
actions, on the luminal surface of endothelial cells. From
tissue culture studies it appears that the newly synthesized
protein is, as least in adipose, first associated with the
surface of the cells. Some of this LpL is re-internalized and
then degraded by the adipocytes (23, 24). The remainder is
dissociated from the cell surface, perhaps via the actions of
an endothelial cell heparanase (25). The newly released
LpL, either alone or in tandem with a fragment of digested
glycosaminoglycan, transfers to the endothelial cell. Aside
from proteoglycans LpL also binds to members of the
LDL-receptor superfamily. Therefore LpL transfer from the
abluminal to the luminal side of endothelial cells could
occur by moving around or non-specifically through the
endothelial cells. Alternatively, a receptor like the VLDL
receptor could be responsible for LpL movement across
cells (26).

LpL association with the luminal endothelial surface
and its release from these cells could affect its activity in
vivo. Both LpL and hepatic lipase associate with highly
negative charged molecules, heparan sulfate proteoglycans
on the cell surface. In addition to heparan sulfate
proteoglycans with specific sequences (27, 28). LpL
associates with a number of other proteins including
member of the LRP receptor family - including LRP (29-
31) the VLDL receptor (32), gp330 (33) - and regions of
apolipoprotein B (34). LpL will bind to a number of
proteoglycans that are not associated with cell surfaces
including perlecan, the major heparan sulfate in the
subendothelial cell matrix (5, 35), and dermatan sulfate
proteoglycans produced by macrophages and smooth
muscle cells (36, 37). Perturbations of endothelium with
tumor necrosis factor (38) and perhaps other cytokines, and
lipolysis products (39) will release the bound LpL into the
bloodstream. Some active LpL is found in the bloodstream
associated with lipoproteins (40-42) and even more inactive
LpL is present on lipoproteins in pre-heparin blood (41).
Most of this LpL is rapidly removed by the liver (43, 44).
Its uptake may be via LRP or proteoglycans. It is possible
that by acting as a ligand for LRP, LpL will increase
removal of associated lipoproteins (29).

5. LIPOPROTEINS AND REGULATION OF THE
LIPOLYSIS REACTION

LpL controls the circulating levels of all classes
of lipoproteins and is responsible for differences in size and
composition of particles within the conventional
lipoproteins classes. Although the hydrolysis of triglyceride
within chylomicrons and VLDL is the most well known of
the LpL actions, this is a complicated process that has only
been partially reproduced by in vitro experiments.

The lipoproteins must physically come into
contact with LpL for lipolysis to begin. The diameter of the
vessel, its tortuosity, and the flow rate of the blood and any
margination of the particles that allows them to contact the
vessel wall must modulate this. Larger diameter particles
are more likely to come into contact with the vessel wall
and are also more likely to interact with multiple LpL
molecules at once

LpL has enzymatic actions to hydrolyze triglyceride
and phospholipids. Within the bloodstream, it is the essential
enzyme required for clearance of chylomicrons. In addition,
catabolism of larger VLDL and initiation of the conversion of
VLDL to LDL requires LpL. VLDL and chylomicrons appears
to compete for interaction with cell surface LpL, such that
increases of VLDL above 5 umoles/ml, an amount that is near
the saturation of the enzyme, will decrease both VLDL and
chylomicron catabolism (45). In fact, lipolysis appears to
require a number of steps that may represent the number of
LpL proteins interacting with the lipoproteins or the number of
separate associations of the lipoproteins with endothelial
associated LpL. Thus, each triglyceride-rich lipoprotein has a
competition between lipolysis and liver uptake of partially
hydrolyzed lipoproteins. In the case of VLDL, this process
determines the percent of VLDL that is converted to LDL;
larger VLDL require more lipolysis and are less likely to be
converted to LDL. A similar process is likely to occur for
chylomicrons; smaller chylomicrons may generate more
remnants that circulate in the postprandial period.

LpL will hydrolyze triglyceride and phospholipid
on other circulating lipoproteins, LDL and HDL. Therefore
it will convert triglyceride-rich LDL into smaller denser
LDL. Triglyceride in HDL is also a substrate for LpL
actions. Probably more importantly, removal of surface
lipid from chylomicrons causes their transfer to HDL. This
increases circulating HDL lipids. Moreover, larger, more
lipid rich HDL are catabolized more slowly (46). For this
reason, LpL activity is positively correlated with HDL (47-
49). Although LpL will hydrolyze most triacylglycerols, its
preferred fatty acid is oleate. Saturated fatty acids appear to
be a less preferred substrate than unsaturated. Fatty acids in
the 1 position of triglyceride and phsopholipids are
hydrolyzed in preference to those in the 2 position (50).

6. APOLIPOPROTEINS

Maximal activation of lipoprotein lipase requires
the presence of apolipoprotein CII. Both triglyceride-rich
lipoproteins and HDL contain apoCII. Since newly formed
chylomicrons that are isolated from the lymph before their
entry into the circulation contain very little apoCII,
chylomicron CII in the bloodstream must have transferred
from other lipoproteins, most likely from HDL. The apoCII
is a component of the surface of the triglyceride rich
lipoproteins and increases the Vmax of the reaction (50).

Excess of a number of apolipoproteins inhibit
LpL-mediated lipolysis either by displacing apoCII or by
direct actions on the enzyme. This was first observed in
vitro (51) and subsequently has been confirmed by studies
in transgenic mice overexpressing apoCIII (52). ApoCIII
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also decreases uptake of remnant lipoproteins by blocking their
interaction with the LDL receptor related protein (LRP). It had
been thought that apoCIII overexpression led to larger
triglyceride-rich lipoproteins by blocking the actions of apoE.
This is not the case, as the apoCIII transgene also caused
hypertriglyceridemia in apoE knockout mice (53). It may be
that excess apoproteins will block lipolysis. ApoCI (54),
apoAIV (55), and even apoCII (56), the LpL activator, when
overexpressed in mice lead to hypertriglyceridemia. ApoE if
expressed in low concentrations will increase removal of
triglyceride-rich lipoproteins, however at high concentrations it
will lead to hypertriglyceridemia (57, 58). Although in part this
effect may result from changes in lipoprotein production by the
liver (59, 60), excess apoE may affect lipolysis. Although the
reasons for this are not clear, it may be that excess apoproteins
coat the surface of the lipoprotein and prevent LpL from
having access to any triglyceride that normally is near the
surface of the particle.

7. NON-ENZYMATIC ACTIONS OF LIPOPROTEIN
LIPASE

LpL interacts with both lipoproteins and cell and
matrix proteoglycans; therefore it can form a molecular
bridge between these molecules. When circulating
triglyceride-rich lipoproteins are hydrolyzed by LpL, the
enzyme must interact with lipoproteins while it also is
associated with the endothelial surface. Thus, it must
provide a molecular bridge between triglyceride-rich
lipoproteins and the cell surface. However, lipoproteins that
are not its usual substrates will also be anchored to
proteoglycans by LpL. LpL associated with matrix
proteoglycans will increase LDL and oxidized LDL
association with subendothelial matrix (5, 36, 61, 62). This
does not require the LpL to be enzymatically active.
Moreover, the interaction appears to involve an association
between LpL and a region in the amino-terminal 20% of
apoB (34). The physiologic and pathophysiological
importance of the non-enzymatic effects of the lipases is
currently an area of active investigation.

Non-enzymatic, actions of LpL can increase cellular
lipoprotein uptake. LpL mediated increased lipoprotein uptake
by cells may occur via a number of mechanisms. 1) LpL
increases the effective concentrations of lipoproteins on the
surface of cells by serving as a bridge between the lipoproteins
and cell surface proteoglycans. 2) Lipoproteins are internalized
along with recycling of the proteoglycans, or because the LpL
serves as a ligand for the LRP family of cell surface receptors.
3) By increasing the proximity of the lipoprotein and cell
membrane lipids, a transfer of lipids could occur.
Overexpression of enzymatically inactive LpL leads to uptake
of lipids into muscle (63), thus inactive LpL can function in
vivo. In part, this may have occurred because the inactive LpL
binds circulating lipoproteins and approximates them near
active LpL (64).

8. STRUCTURE-FUNCTION ANALYSIS OF
LIPOPROTEIN LIPASE

LpL belongs to a gene family that includes hepatic
lipase, pancreatic lipase, and a newly described endothelial

lipase. All members of this family have a similar active
serine catalytic site. This site has been identified, mutated,
and the inactive LpL has been used to create transgenic
mice (see above). Difference in their substrates utilization
is due to differences in the lipid binding regions of the
proteins, e.g. substituting the hepatic lipase lid will cause
the remaining LpL to function like hepatic lipase (65). This
is a simplistic analysis and does not explain all the data.
Monoclonal antibodies that are directly to the carboxyl
terminal region of LpL also inhibit lipolysis (66). Therefore
several regions may be required for full LpL activity or
distant mutations or antibody interactions might alter the
tertiary structure of the LpL sufficiently to affect its
actions. In support of a role of the carboxyl-terminal region
in LpL activity is the observation that a truncated form of
LpL (serine 447 changed to a stop codon) is more active
than the native lipase (see section 2).

LpL interaction with heparin plays a critical role
in the metabolism and physiological actions of this enzyme.
For this reason, the heparin-binding regions of LpL have
been studied in some detail. There are a number of basic
amino acid rich regions of LpL in both the amino and
carboxyl terminal regions of the enzymes. Mutations in
either site will decrease LpL interaction with heparin (67,
68). In an elegant study to determine why LpL has greater
affinity for heparin than hepatic lipase, portions of LpL and
hepatic lipase were interchanged. This study suggested that
the carboxyl-terminal domains of the proteins modulate
LpL high affinity interaction with heparin (69). The
carboxyl terminal heparin-binding region of LpL appears to
overlap with the region of LpL that binds to apoB (70).
Recently a defective heparin-binding LpL has been
produced in transgenic mice; the LpL was mutated in the
carboxyl terminal heparin-binding region. This LpL lead to
a greater amount of circulating LpL protein in the plasma
and increased postprandial free fatty acids, presumably due
to intravascular triglyceride lipolysis (71). Moreover, LpL
that is defective in heparin binding is unstable. This
confirms the previous observations that heparin association
stabilizes LpL activity (20).

LpL is widely believed to be most active as a
dimeric molecule that is composed of two identical
subunits that are arranged in a head to tail configuration
(72). When the molecule is allowed to monomerize, this
leads to a decrease in heparin affinity and enzyme activity
(73). The sites on the LpL protein that are involved in
dimerization have not been identified. Moreover, the
importance of monomerization per se versus the
accompanying loss of heparin affinity has not been
ascertained.

 A final domain on LpL is that which interacts
with apoCII. ApoCII activation is unique to LpL; hepatic
lipase activity is not increased by apoproteins. In an in vitro
assay, the addition of the detergent Triton will also increase
LpL activity and negates the requirement for apoCII. It
appears that apoCII may directly affect the interaction of
the LpL and its substrates (50). The site on LpL that
interacts with apoCII has not been defined.
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Table 1. Mutations in the LpL gene possible with clinical relevance in found in humans
Ex Amino Acid Nucleotide Clinical importance References
2 Asp9Asn GAC->AAC HTG, low HDL (81, 116-118, 122, 143, 144)
3 Val69Leu GTG->CTG Chylomicronemia (81, 92, 145)
3 Arg75Ser AGA->AGT Chylomicronemia* (146)
3 Trp86Arg TGG->CGG Chylomicronemia* (81, 147, 148)
3 Trp86Gly TGG->GGG Chylomicronemia (102)
4 His136Arg CAT->CGT Chylomicronemia* (81, 147)
4 Gly139Ser GGC->AGC Chylomicronemia (81, 92, 149)
4 Gly142Glu GGA->GAA Chylomicronemia (81, 150, 151)
5 Gly154Ser GGC->AGC Chylomicronemia (81, 92)
5 Asp156Asn GAT->AAT Chylomicronemia * (81, 152)
5 Asp156Gly GAT->GGT Chylomicronemia (81, 152, 153)
5 Pro157Arg CCA->CGA Chylomicronemia (81, 154)
5 Ala158Thr GCT->ACT Chylomicronemia (102)
5 Ser172Cys TCT->TGT Chylomicronemia only in pregnancy (81, 92, 155)
5 Ala176Thr GCA->ACA Chylomicronemia (81, 156)
5 Asp180Glu GAC->GAG Chylomicronemia (157)
5 His183Gln CAC->CA? Chylomicronemia*, unknown

second Allele
(102)

5 His183Asp CAC->GAC Chylomicronemia (158)
5 Gly188Glu GGG->GAG Chylomicronemia (81, 102, 145, 147, 159-165)
5 Ser193Arg AGC->?G? Chylomicronemia* (102)
5 Ile194Thr ATT->ACT Chylomicronemia (81, 147, 166-169)
5 Asp204Glu GAC->GAG Chylomicronemia (81, 171)
5 Gly195Glu GGA->GAA Chylomicronemia (170)
5 Ile205Ser ATT->AGT Chylomicronemia (81, 147)
5 Pro207Leu CCG->CTG Chylomicronemia* (81, 102, 168, 172)
5 Cys216Ser TGT->AGT Chylomicronemia* (81, 152)
5 Ile225Thr ATT->ACT Chylomicronemia* (81, 173, 174)
6 Glu242Lys GAG->AAG Chylomicronemia*, unknown

second Allele
(175)

6 Arg243His CGC->CAC Chylomicronemia (81, 169, 171)
6 Arg243Cys CGC->TGC Chylomicronemia (81, 170)
6 Ser244Thr TCC->ACC Chylomicronemia* (81, 176)
6 Asp250Asn GAC->AAC Chylomicronemia* (81, 172, 177, 178)
6 Ser251Cys TCT->TGT Chylomicronemia* (81, 92, 172)
6 Leu252Val CTG->GTG Chylomicronemia (179, 180)
6 Leu252Arg CTG->CGG Chylomicronemia (179)
6 Ser259Gly AGT->GGT Chylomicronemia* (160)
6 Ser259Arg AGT->AGA Chylomicronemia (181)
6 Ala261Thr GCC->ACC Chylomicronemia (81, 92)
6 Tyr262His TAC->CAC Chylomicronemia,

combined with Asp9Asn
(81, 121, 143)

6 Asn291Ser AAT->AGT Heterozygous, FCHL, CAD (88, 89, 103-112, 167, 182)
6 Met301Thr ATG->ACG Chylomicronemia*,

unknown second Allele
(102)

6 Leu303Pro CTG->CCG Chylomicronemia (102)
7 Ser323Cys TCT->TGT only heterozygous, HTG (183)
7 Ala334Thr GCC->ACC Chylomicronemia (184)
8 Leu365Val CTA->GTA Chylomicronemia (185)
9 Cys418Tyr TGT->TAT Chylomicronemia* (186)
9 Glu421Lys GAG->AAG only heterozygous, HTG in

pregnancy
(99)

Nonsense mutations
Exon Amino Acid Nucleotide Clinical importance References
1 Trp-14stop TGG->Stop mild Chylomicronemia (187)
3 Tyr61stop TAT->TAA Chylomicronemia (81, 171, 188)
3 Tyr73stop TAC->TAA Chylomicronemia* (146)
3 Trp64stop TCG->TAG Chylomicronemia* (81, 168)
3 Glu106stop CAG->TAG Chylomicronemia (81, 189)
6 Cys239stop TGA->TGA heterozygous HTG (190)
6 Tyr262stop TAC->TAA/G Chylomicronemia (81)
6 Tyr302stop TAC->TAA Chylomicronemia (191)
8 Trp382stop TGG->TGA Chylomicronemia (81, 159, 171, 192)
9 Ser447stop TCA->TGA only heterozygous, lower TG,

increased HDL
(81, 93, 153, 193, 194)
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Table 1. continued
Frameshift mutations and small insertions/deletions
Exon Amino Acid Nucleotide Clinical importance References
2 Thr18del ACC CCT GAA Gadel Chylomicronemia* (147)
2 Glu35ins GAG->A+GAG Chylomicronemia. (Uniparental

disomy)
(195)

3 Thr101ins ACC->ACT+GGGCT Chylomicronemia (81, 196)
5 Ala221del GCT->CT Chylomicronemia (81, 188, 197, 198)
5 Gly229ins GGA->GG+TAAATATT Chylomicronemia (81, 92)
6 Asn 291del AAT->AT Chylomicronemia* (167)
6 Leu252del CTG->2bp del Chylomicronemia* (102)
8 Ser396-

Pro397 del
AGT CCCdel linked to another mutation (102)

Other mutations
Location Mutation Clinical importance References
6 2kb dupl Chylomicronemia (81, 102, 199, 200)
3-5 6kb del Chylomicronemia (81, 199)
9 3kb deletion Chylomicronemia (81)
intr. 1 –2 to –4 del, (skipping of exon 2) Chylomicronemia (158)
intr. 2 G->A (acceptor splice site) Chylomicronemia* (81, 176)
intr. 2 G->A (donor splice site) Chylomicronemia (81)
intr. 3 C->T (6bp 5’ from acceptor) Heterozygous, Hypertriglyceridemia (81, 183, 187)
intr. 8 HIII Polymorphism  (Linkage to Ser447Stop) see Ser447Stop (123, 201, 202)
Promoter
Location Clinical importance References
-93T->G Heterozygous FCHL and increased CAD; linkage to

Asp9Asn
(118, 122, 131-133)

-53G->C Decreased promoter activity, possible FCHL (133, 203)
-39T->C Decreased promoter activity, possibly FCHL (133)
+13-+19
CC

Insertion in 5’ untranslated region: decreased
promoter activity

(133)

HTG: Hypertriglyceridemia. *Found as compound heterozygote Genotype.Missense mutations

9.GENETIC VARIATION IN LIPOPROTEIN LIPASE

               The LpL gene spans about 30 kb on
chromosome 8p22 and is divided into 10 exons (74, 75).
The cDNA for human LpL codes for a mature protein of
448 amino acids resulting in a calculated molecular
weight of 50,394 Daltons (76), an additional 8 percent of
carbohydrates is assumed (77). The catalytic center
consists of three amino acids, Ser132, Asp156, and
His241 (5-7).

About 80 naturally occurring mutations in the
LpL gene have been described in humans, the majority of
which are missense (Table 1). LpL mutations are spread
over most exons; the most frequent sites of these
mutations are in exons 5 and 6. Most of these mutations
are rare and lead to LpL deficiency if they are present as
homozygote or compound heterozygotes. However, for
some mutations a linkage to increased triglycerides,
decreased HDL-cholesterol, familiar combined
hyperlipidemia (FCHL) and premature coronary artery
disease (CAD) has been found in the heterozygous state.

10. HOMOZYGOTE LpL DEFICIENCY: THE
FAMILIAR CHYLOMICRONEMIA SYNDROME

Homozygote or compound heterozygote mutations
in the LpL gene leading to a complete loss of LpL activity
result in the familiar chylomicronemia syndrome. Due to lack
of plasma triglyceride hydrolysis, a dramatic increase of
chylomicrons is found resulting in triglyceride levels far over

1000 mg/dl and extremely low HDL-cholesterol. Patients
usually suffer from recurrent abdominal pain, pancreatitis,
memory loss, xanthomas and/or dyspnea (81). Case reports
with a wide range of severity of symptoms have been
described, and occasionally patients present for the first time
during pregnancy or following dietary excess (81). It has been
suggested, that LpL deficiency can lead to premature
atherosclerosis (82). The prevalence of this disease has been
estimated to be 1:1,000,000 (83), however, considering the
frequency of heterozygote LpL mutations (see below), many
cases may have been missed due to inapparent symptoms.

If the disease is suspected, the diagnosis is made by
measuring LpL activity in post heparin plasma (84); however,
no standardized assay for LpL activity is available to date. LpL
mass measured by ELISA (77) may be low, normal, or even
increased, depending on whether the mutation alters LpL
structure and production. Defects have been demonstrated or
are proposed to affect catalytic activity, protein transport or
translocation, heparin binding, or dimerization. The structure-
function relationship of LpL has been extensively studied in
vitro.

A disease to differentiate from primary LpL
deficiency is a deficiency of apoCII, the apoprotein
necessary for full LpL activity. Since the clinical features
for this syndrome are less severe but the same as in LpL
deficiency, the diagnosis can be made by using the
patient’s serum as an activator from a standard source of
LpL (81), only if apoCII is present will full activity be
found.
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11. HETEROZYGOTE MUTATIONS IN THE LpL
GENE AND ATHEROSCLEROSIS

Homozygous LpL deficiency can lead to a
dramatic disease, chylomicronemia, however, the relation
of mutations in the LpL gene and premature atherosclerosis
may be of great importance for a broad range of
populations in all cultures. Although it seems clear that a
reduction of LpL activity should lead to increased
triglycerides, decreased HDL and therefore possibly
premature atherosclerosis (85), only a part of the clinical
studies were able to show this connection, and sometimes
the findings were contradictory. Generally, it seems to be
accepted, that the presence or absence of LpL mutations is
able to modulate the development of familiar combined
hyperlipidemia and premature atherosclerosis, but LpL
mutations fail to be a major defect directly leading to these
diseases. Other factors - which are likely to be partially
unknown genes, or factors like hyperinsulinemia, adiposity
(86) or apo E2/E2 (87) - may modify the effects of LpL
mutations.

The frequency of individual mutations differs
widely between populations. It is expected, that the
frequency of heterozygous LpL deficiency may be as high
as 3-7% (82), with Asn291Ser most common, in some
Caucasian populations (88, 89). In the French Canadian
population, an especially high rate of LpL mutation carriers
up to 17% of the population was found, with Pro207Leu,
Gly188Glu, and Asp250Asn being the most abundant (90.
91). In other Caucasian groups, Gly188Glu is also widely
present (92), however, Pro207Leu and Asp250Asn has
rarely been found. Based on a recent meta-analysis, at least
one mutation, Ser447Stop (93) seems to be beneficial in
terms of lipid metabolism and CAD (94).

Mutations in the LpL gene have also been linked to
other diseases: A recent population study shows a relation of
LpL mutations to Alzheimer’s disease [Ser447-Stop may
prevent and Asn291Ser may contribute to its development
(95)]. Although clinical studies found a linkage between
hypertension and the LpL gene locus (96-98), the importance
of this relationship is still unclear. Occasionally, severe
hyperlipidemia due to heterozygote LpL mutations may
develop during pregnancy [e.g. Glu421Lys (99), Gly188Glu
(100)]. Furthermore, carriers of Asn291Ser or combined
Asp9Asn/T-93G mutations in the LpL gene may have an
increased risk of pre-eclampsia (101).

11.1. Asn291Ser
Asn291Ser is a common mutation in the

LpL gene. Heterozgote frequency in the normal population has
been estimated to be about 2-5% in Caucasian population
(88, 89). This mutation was reported to be heterozygous in
a patient with chylomicronemia and an unknown second
allele (102). However, it is quite unlikely that the reduced
LpL activity found in Asn291Ser-LpL (103) causes
chylomicronemia alone; the high frequency of this mutation
would lead to much more disease than is commonly found.

Heterozygosity for Asn291Ser was found widely
in patients with FCHL and premature CAD (104-108).

Based on a meta-analysis, triglycerides were increased
31%, HDL-cholesterol was decreased 0.12 mmol/l (4.8
mg/dl), and a 1.2 fold increased risk in ischemic heart
disease was found (94). Some data suggested that the
Asn291Ser mutation affects especially postprandial lipemia
(89, 105). An association with other genetic factors such as
apoE-3 deficiency or familial hypercholesterolemia (FH)
may increase the effect of this mutation on plasma lipids
and coronary artery disease (88, 109, 110) and worsen the
FCHL phenotype (107, 110-112).

11.2. Asp9Asn
Asp9Asn has been frequently linked to

hypertriglyceridemia, low HDL, small dense LDL, FCHL and
increased risk of CAD, especially if combined with other risk
factors (113-119). Its heterozygous frequency has been
estimated as being up to 4.5% (114, 117, 120). Homozygotes
with Asn291Ser, Asp9Asn do not have chylomicronemia.
However, a patient who was a compound heterozygote for
Tyr262His and Asp9Asn had this disease and a 20% decrease
in specific LpL activity (117, 121). According to a meta-
analysis by Wittrup, triglycerides were increased 20%, HDL-
cholesterol was decreased 0.8 mmol/l (3.2 mg/dl), and the risk
of ischemic heart disease was 1.4 fold increased (94).
However, in Caucasian populations Asp9Asn is strongly
linked to the promoter mutation T-93G, which also leads to
decreased LpL activity (118, 122). Unlike T–93G, the
frequency of Asp9Asn did not differ between American
Blacks and Hispanics (122). In the Copenhagen city heart
study, double-heterozygous carrier status of both mutations
was associated with elevated plasma triglycerides and an
increased risk of CAD in men (120). However, the effect of the
mutation Asp9Asn without additional promoter mutation has
not been estimated at this time.

11.3. Gly188Glu
Although the Gly188Glu mutation is most frequent

among French Canadians in Quebec, it is widely spread among
populations (92). Heterozygote carriers have 78% increased
triglycerides, 0.25 mmol (10 mg/dl) decreased HDL-
cholesterol, and a 4.9 fold increased risk of coronary heart
disease (94). A preliminary report also found higher systolic
blood pressure in heterozygote carriers of Gly188Glu and
Pro207Leu (97), however, these data have not yet been
confirmed.

11.4. Ser447Stop
The Ser447Stop mutation is a common gene

defect (up to 20% heterozygous carriers), resulting in a
truncation of the LpL protein by two amino acids (EARS
study, 123). The HindIII polymorphism of intron 8 in the
LpL gene is associated with this mutation (123). Based on
clinical data from the Framingham Offspring study, that
this mutation in heterozygous carriers results in decreased
plasma triglycerides and higher HDL, combined with a
decreased risk of CAD (124). Other studies have supported
these findings (93, 125-129). In a meta-study of 9 studies
an 8% reduction of triglycerides, a slight (0.04 mmol/l =
1.6 mg/dl) increase in HDL cholesterol, and a 0.8 fold
reduced risk in ischemic heart disease was found (94).
Interestingly, the beneficial effect of the mutation seems to
be most abundant in patients using beta-blockers (126).
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In vitro and in vivo studies found that the
Ser447Stop-LpL leads a higher LpL activity due to higher LpL
expression (126, 130). In addition, LpL bridging, dimer
conformation or LpL lipid binding could be affected.

11.5. T-93G
The variant T-93G is a promoter variant. The

highest frequency was found in South African Blacks
(76.4%); it was less present in Caucasian population (1.7%,
131). Near complete linkage disequilibrium between the –
93G and the Asp9Asn mutation was observed in the
Caucasian population, but not in South African Blacks
(118, 122, 131). Individuals homozygous for the G allele
showed mildly decreased triglycerides compared with
individuals homozygous for the T allele (131). It is
suggested, that the –93T variant has a lower promoter
activity than the –93G (132, 133).

12. ANIMAL MODELS OF GENETIC VARIANTS OF
LpL

Several animal models of muted LpL have been
established. The naturally combined lipase deficiency
(cld/cld) mutation mouse line (134-136) as well as
homozygote LpL deficiency in two independent mouse
lines developed by homologous recombination (137, 138)
result in a dramatic chylomicronemia, decreased HDL
cholesterol and neonatal death after 1-2 days of life. LpL
deficient cats also develop chylomicronemia; they have
reduced body mass and lower growth rates. However, they
survive until adulthood as do humans (139). Originally it
was thought that chylomicronemia and obstruction of lung
capillaries caused the neonatal demise of the LpL deficient
mice (137). However, data from liver LpL expressing mice
show that LpL deficient mice have an energy substrate
deficiency and appear to die from hypoglycemia (140).
Heterozygote LpL deficient mice suffered from mild
hypertriglyceridemia and have impaired VLDL clearance
(137). Based on data from these mice it has been suggested,
that a reduction in endothelial LpL may be protective
against atherosclerosis (141). Experiments in mice
overexpressing mutated, inactive LpL (Asp156Asn-LpL) in
the muscle revealed, that mutated LpL might still increase
lipoprotein and cholesterol ester uptake into organs (142).
Therefore, LpL mutations causing a complete destruction
of one LpL gene may have different clinical implications
than mutations causing complete LpL deficiency for
instance by changing the catalytic center.
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