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1. ABSTRACT

Epilepsy is a major public health issue, not least
because of the aging population in many developed nations
and the known increase in the frequency of epilepsy and
seizures in later life. Despite the massive scale of the
problem and much research, epilepsy remains poorly
understood. Despite more than 20 approved drugs in the
developed nations and several non-pharmacological
options, up to 30% of patients are still refractory to
treatment. Despite over a century of pharmacotherapy and
neuroscience research, rational design of anti-epileptic
drugs (AEDs) is only now starting to yield results, because
of the heterogeneity of the disease and our still limited
understanding of it. Discovery and development of AEDs
has been especially difficult, because of the regulatory
issues of satisfactorily proving safety and efficacy, ethical
constraints on placebo-controlled trial designs, the fact that
seizures are typically widely spaced in time, and the fact
that the person undergoing the seizure is typically in no
state to remember, let alone assess, what happened. Several
non-pharmacological therapies have been developed: brain
surgery was first used more than a century ago; the
ketogenic diet was first developed 80 years ago; and the
vagus nerve stimulator was introduced recently.
Pharmacotherapy remains the mainstay of treatment and is
effective in most patients. AEDs can be roughly divided
according to their time on the market. The first generation
extends from the bromides and the barbiturates (the first of
which was phenobarbital), to sodium valproate and
carbamazepine. The second generation begins with
felbamate and includes drugs approved from 1993 to 2000.
“Next generation” drugs are still in clinical development
and may reach the marketplace in the near future. Intensive
research is being conducted both by pharmaceutical and
biotech companies and by academic scientists and
clinicians; our understanding of the condition is advancing
rapidly but many challenges remain in discovering and
developing better AEDs.

2. INTRODUCTION TO EPILEPSY AND RELATED
DISORDERS

2.1. Incidence and prevalence
Epilepsy is a chronic brain disorder characterized

by recurrent seizures that affects 1-3% of the U.S. and
Canadian populations (1-3). Epilepsy occurs with a
prevalence of about 0.5% and a cumulative lifetime
incidence of 3% (4-6). Consequently, as many as one
person in 20 will experience a seizure during his or her
lifetime (2, 6). Epilepsy is thus the second leading
neurological disorder, exceeded only by stroke.
Approximately 50 million people worldwide suffer from
the condition (3), and more than 5 five million experience
at least one seizure per month; almost three-quarters of
those receive no treatment for their seizures (7).

‘Seizures’ and ‘epilepsy’ are often used as if they
are synonymous, and yet they are not; seizures are a
symptom of epilepsy. While all epilepsies are characterized
by seizures, not all seizures are epileptic. Epilepsy is the
underlying neurological condition that can lead to brief
disturbances in the brain’s electrical functions.

Worldwide, there are considerable differences in
the epidemiology of epilepsies and seizures. In Latin
America, for example, two incidence studies have shown
that in Chile and Ecuador, incidence rates approach double
those of the industrialized nations (see 4, 5, 8-10). Clearly,
this raises the question as to whether epilepsies and/or
seizures could represent a marker of some endemic disease
or socioeconomic condition. A high prevalence of epilepsy
in several African countries is believed to be associated
with parasitic infections, particularly neurocysticercosis
(11-15). Other possible etiological factors include
intracranial infections, perinatal brain damage, head
injuries, toxic agents, and hereditary factors (see 16-20).

Many studies have concluded that the onset of
epilepsy occurs at the extremes of life; children under 10
and seniors over 60 years are represented
disproportionately in patients with epilepsy (see
4, 6, 21-34). This is a particularly important observation
given the aging of the post second world war “Baby
Boomers,” especially in the U.S. The boomers are a cohort
of approximately 75 million Americans born between 1946
and 1964; they will reach the age of 65 in 2010 and beyond
(35-38). As a result, a large increase in the number of
patients with epilepsy can be expected in the first few
decades of this century. Similar demographic patterns are
evident throughout the developed and even much of the
developing world.

While few people die during seizures, the large
number of people suffering them, high costs associated
with the condition, and lifestyle limitations make epilepsy a
major medical problem (39-43). Patients with epilepsy do
have a mortality rate higher than that of the general
population (see 44). This is partly due to what is referred to
as “sudden unexpected death in epilepsy” (SUDEP; 45-51).
Furthermore, patients are subject to considerable risk of
physical injury during seizures (52-61).

In addition to the medical condition itself, the
psychosocial consequences of poorly controlled seizures
can be severe (62-65). Patients with epilepsy are generally
undereducated and underemployed in relation to their level
of ability (66-70). Additionally, some people still consider
the condition to be associated with mental illness, and even
demonic possession (71-74). Thus, many epilepsy sufferers
feel stigmatized by their condition (73, 74).

2.2. Causes of epilepsy
There are believed to be over 100 underlying

causes of epilepsy; however, in as many as 70% of cases no
cause is ever found. Some of the known causes include
brain injuries, infections that lead to brain damage (e.g.
cerebral malaria, cysticercosis), tumors and abscesses,
disturbances in blood circulation to the brain (such as
stroke), certain metabolic disorders, high fevers, lead or
other poisoning, and intrauterine injury (see 16-20, 75).

2.3. Types of seizure
While there are more than 40 different types of

epilepsy-related seizures, they fall into 3 broad categories.
The distinction depends largely on the part of the brain
affected (76-78). The 3 categories are:
• generalized seizures (occurring in 46% of patients),
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• partial seizures (occurring in 32% of patients), and
• partial seizures that secondarily generalize (occurring

in 20% of patients) (76-78).

Generalized seizures cause loss or alteration of
consciousness, involve the entire brain, and affect the
whole body. They include grand mal (tonic-clonic)
seizures, where typically the person falls down unconscious
as the body stiffens (tonic) and then jerks (clonic), as the
skeletal muscles alternate between relaxation and rigidity,
and petit mal (‘absence’) seizures, where there is a
momentary alteration of consciousness without abnormal
movements. Such absence seizures are typically brief (3-30
seconds), only involve a short cessation of physical
movement and/or loss of attention, and may even go
unnoticed by others. Partial seizures occur when abnormal
electrical activity involves only one area of the brain. There
are also two kinds of partial seizure: simple seizures, where
the person remains conscious; and complex seizures, in
which consciousness is lost or altered. It is also possible for
simple or complex partial seizures to evolve into
generalized seizures. In fact, in some patients, the
progression may be so quick that the partial stage is hardly
noticeable. While the type and nature of seizures vary
widely between individuals, they are typically stereotyped
within individuals.

2.4. Types of epilepsy
Following this categorization of seizures, the

International League Against Epilepsy (ILAE) classifies
epilepsies as either local or generalized. Seizures from local
epilepsies originate from a discrete cortical site; seizures
from generalized epilepsies originate from both cerebral
hemispheres (79). The ILAE also distinguishes between
idiopathic and symptomatic epilepsies. Those associated
with a known or suspected brain disease or lesion are
referred to as symptomatic. Epilepsies that are inherited
without identifiable pathology are labeled idiopathic.
Idiopathic epilepsies often carry a better prognosis than
symptomatic disorders.

Clinically, the distinction between partial (or
secondarily generalized) seizures and primary generalized
seizures is meaningful because the two types respond
differently to anti-epileptic drugs (AEDs). For example,
partial seizures frequently respond to carbamazepine,
phenytoin, phenobarbital, primidone, or valproic acid.
Similarly, valproic acid or ethosuximide control
generalized seizures in many patients who experience
absence attacks, and valproic acid also controls seizures in
many patients with generalized seizures.

Most epileptic seizures last only a minute or two
and are not life-threatening. However, repeated seizures
(status epilepticus; 80, 81) without regaining consciousness
between attacks and prolonged seizures can lead to
permanent brain damage (82, 83). Status epilepticus is
defined as a seizure that lasts at least 30 minutes or is
repeated at sufficiently brief intervals to produce a
continued epileptic condition lasting a total of 30 minutes
without the patient fully regaining consciousness
(80, 83-86).

2.5. Related disorders
2.5.1. Severe myoclonic epilepsy of infancy

Severe myoclonic epilepsy of infancy (SMEI) is
a recently recognized epileptic syndrome. It is
characterized by multiple febrile seizures (often
prolonged), subsequent development of uncontrollable
mixed-myoclonic seizures, and, eventually, by
psychomotor retardation (87-90).

2.5.2. West syndrome
West syndrome is a rare form of infantile spasm

occurring early in neonatal development. It is associated
with hypsarrhythmias (abnormal EEG recordings) and
sometimes with mental retardation. The spasms vary from
violent ‘jackknife’ movements of the body to no more than
mild twitching of the nose or mouth. There may be more
than one underlying cause of West syndrome (91-94).

2.5.3. Lennox-Gastaut syndrome
Lennox-Gastaut syndrome is a childhood

disorder characterized by several kinds of seizures, mental
retardation, resistance to most AEDs (95), and
characteristic EEG features (96-100). Felbamate was the
first drug shown to be effective in treating Lennox-Gastaut
syndrome in controlled trials and remains the drug-
of-choice for this condition (see 101).

2.5.4. Landau-Kleffner syndrome
Landau-Kleffner syndrome is another rare

childhood epilepsy, usually beginning between the ages of
3 and 8. It is characterized by severe language difficulties,
particularly involving comprehension. Patients may also be
unable to recognize environmental sounds, such as a
ringing telephone. Whilst all Landau-Kleffner patients have
abnormal temporal lobe EEGs, only about two-thirds suffer
seizures. The seizures are typically responsive to AEDs
(102-104).

2.5.5. Hemifacial spasm
Hemifacial spasm is characterized by chronic

involuntary twitching or spasm on one side of the face,
usually starting around the eye and progressing down the
face. The most common cause is a blood vessel pressing
against the facial nerve. The condition is sometimes treated
with a neuromuscular blocker, such as botulinum toxin, or
by surgery (105-107).

2.5.6. Trigeminal neuralgia
Patients suffering from trigeminal neuralgia

(or tic douloureux) experience sudden electric
shock-like pains on one side of the jaw or chin. These
acute pains generally last for a few seconds at a time,
and may occur for days, weeks or months, followed by a
longer period that is symptom-free. The cause involves
damage to the trigeminal nerve that innervates the jaw
and face, and may be traced to a blood vessel pressing
against the nerve or a tumor. Treatment of trigeminal
neuralgia is generally with AEDs, such as
carbamazepine or phenytoin. Baclofen, clonazepam or
valproic acid may also be used, and surgery may be an
option in some cases (108-111).
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2.6. Diagnosis
Diagnosis of the first seizure is still based largely

on the patient’s medical history (6). Many paroxysmal
events may be confused with epileptic seizures, including
syncope, movement disorders, parasomnias, and
psychogenic seizures (112-116). Syncope is one of the
conditions most commonly confused with epileptic
seizures. Studies in which volunteers were videotaped
during induced syncopal events illustrate the common
occurrence of repetitive clonic, myoclonic or dystonic
movements on fainting. Such movements rarely persist
beyond 5-10 seconds, and do not exhibit the organized
progression from tonic to clonic phase typically seen in true
convulsive seizures (see 112, 114-116).

Most authorities recommend that patients who
experience an unprovoked seizure undergo a brain imaging
study in an effort to detect underlying cerebral lesions.
Such a scan would likely uncover tumors, abscesses,
vascular malformations, stroke, or traumatic injury (see
117-119).

Electroencephalography (EEG) is often helpful in
evaluating patients presenting with a seizure (120). Uses of
EEG include detection of epileptiform activity,
strengthening the putative diagnosis, identification of focal
electrocerebral abnormalities (suggesting a focal structural
brain lesion), and documentation of specific epileptiform
patterns associated with particular epilepsy syndromes (for
example, generalized spike-and-wave discharges associated
with a generalized epilepsy, or focal discharges associated
with a localization-related epilepsy) (120).

While many physicians choose not to prescribe
anti-epileptic therapy for patients after a single seizure, the
decision to treat initial seizures with medication is
controversial and widely debated (see 6, 113, 121-125).
Factors of concern include the likelihood of recurrent
seizures, the risks of the treatment itself, and the ability of
the treatment to decrease the risk of recurrent seizures. In
addition, the potential psychological, social, and vocational
consequences of further seizures must be considered
(62-65).

2.7. Medical management of epilepsy: general principles
The goal of treating epilepsy is to control the

seizures completely without causing unacceptable side
effects. Pharmacotherapy remains the mainstay of epilepsy
treatment (126, 127). In the last decade, several new
anti-epileptic drugs have become available, and more are in
development (128). The key step is the selection of an AED
that is appropriate for the patient’s particular type of epilepsy.
A specific epilepsy syndrome diagnosis is based on the
history of the patient's seizure types, neurological status, and
EEG findings. In selecting an AED, the physician must also
consider the patient’s willingness to tolerate the adverse
effects of certain treatments.

2.8. Non-pharmacological treatment of epilepsy
While pharmacotherapy remains the mainstay of

epilepsy treatment (129), there are other options for some
patients, including brain surgery (130-132), the recently
introduced vagal nerve stimulator (133-135), and the much-

debated ketogenic diet (136-138). These treatments and the
uses of each will now be discussed.

2.8.1. Surgery
Brain surgery is an option in some epileptic

patients, though those with progressive metabolic or
neurodegenerative conditions are usually poor candidates
(see 130, 132). The most common surgical procedures
include anterior temporal lobe resection (6, 131, 139) and
hemispherectomies (132). Such surgery frequently results
in complete seizure control, though the surgery is
considered successful even if the patient requires AEDs to
remain seizure-free.

2.8.2. Vagus nerve stimulator
The vagus nerve stimulator is a novel,

non-pharmacological treatment for epileptic patients whose
seizures are uncontrolled by AEDs (140-143). The FDA
approved the device in 1997. The device is no panacea and
is not appropriate for all patients, but controlled studies
have demonstrated efficacy (140, 144).

Effects of vagal nerve stimulation on brain
activity have been known since the 1930s (see 145). In the
1950s, it was noted that vagal nerve stimulation caused
desynchronization on EEGs (see 145, 146). As seizures
represent synchronized electrical activity, it is reasonable to
suppose that vagal stimulation might inhibit seizures. Vagal
nerve stimulation was indeed shown to decrease the
frequency and duration of seizures in animal models (147).
In the currently approved product, a bipolar lead is wrapped
around the left vagus nerve and tunneled to the
infra-clavicular region, where it is connected to the signal
generator. This signal generator delivers a precise pattern
of stimulation to the vagus nerve. Typically, the device
stimulates for 30 seconds every five minutes. In addition,
the patient or a caregiver can manually activate the
stimulator at the onset of a seizure, with the goal of
terminating the seizure before it escalates (134, 140-142).

2.8.3. Ketogenic diet
A hotly debated non-pharmacological treatment

for epilepsy is the so-called ketogenic diet, a special
high-fat, low-carbohydrate diet that induces ketosis, a
condition in which abnormally large amounts of ketones
are produced, with a resulting anti-epileptic effect
(136, 148-153). Although the diet was developed in the
1920s, it remains unknown how or why ketosis affects
seizure activity, so the principles behind the therapy have
been developed from years of clinical experience and
assumptions, rather than from a mechanistic understanding
(154). It seems to work in some animal models of epilepsy
(155), but not in others (156).

3. THE CHALLENGE OF DEVELOPING
ANTI-EPILEPTIC DRUGS

3.1. Discovery and development of AEDs
Because epilepsy covers a range of disease states

and there are many underlying causes, coupled with the
difficulty in identifying the cause in many patients and the
general lack of understanding of the disease, success with
target-based strategies for drug discovery has been limited.
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This section discusses some aspects of research and
development strategy.

In addition to scientific and clinical problems,
regulatory issues have been important in the history of
AED discovery and development. In the U.S., the 1938
Food Drug & Cosmetic Act (157) (enacted following the
Elixir Sulfanilamide tragedy; 158) required proof of safety
before a drug could be approved for marketing. The
subsequent 1962 Kefauver-Harris amendments to the Act
(enacted after the thalidomide tragedy; 159, 160) required
proof of efficacy (161-164). These two pieces of legislation
effectively stopped the introduction of new AEDs in the
U.S., because of the difficulties in proving the safety and
efficacy of an AED (165, 166). The regulatory
requirements were rather less stringent in Europe,
carbamazepine and valproate being introduced as first-line
AEDs in 1963 and 1974, respectively (167). They were
subsequently introduced in the U.S. in 1974 and 1978,
respectively (128).

No new AED was introduced in the U.S. between
1978 and 1993. Despite that, a greater understanding of
pharmacokinetics lead to a more efficient use of existing
drugs and, more importantly, it was recognized that the
development of drugs on an empirical basis was no longer
sensible. As a result, more effort was devoted to
understanding the molecular and chemical bases of
epilepsy and the rational development of new AEDs (see
168).

3.2. Rational drug discovery in a perfect world
In a perfect world, four areas of knowledge are

required for the effective and efficient discovery and
development of new drugs. In this perfect world, drug
discovery scientists would:

• know the mechanism(s) of the disease
• possess reliable preclinical animal models of the

disease that are representative - or at least indicative -
of human results

• have reference compounds, even clinically unusable
compounds, after which new drugs can be modeled
and against which new drugs can be assessed

• have objective, reliable clinical outcome measures.

Armed with this knowledge, the scientist identifies
drug targets (169-171), develops in vitro screening assays
to be used prior to animal models, designs compounds,
perhaps conducts random screening using the in vitro assay
(172, 173), identifies lead compounds with activity, makes
variants and analogs of the lead compounds, and identifies
those compounds that are worth carrying forward to animal
studies. Promising compounds are then tested in animal
models of the disease.

Efficacy is, of course, only half the story. In vitro
and animal studies to assess safety (toxicity, mutagenicity),
pharmacokinetics (adsorption, distribution, metabolism,
and excretion), and pharmacodynamics (therapeutic profile)
are also required. If the drug passes all these tests and is
still considered safe and efficacious, applications are made
to the appropriate regulatory authorities to begin human
studies.

3.3. Etiology of epilepsy
Most forms of epilepsy are associated with

synchronous firing by large numbers (hundreds of
thousands) of neurons, a phenomenon that is readily
detected by EEG in the form of a large ‘interictal’ spike
(see 174-177). Such synchronous firing is thought to result
from burst firing of pyramidal cells, which generate
synchronous activity in post-synaptic neurons by the
process of temporal summation (see 178, 179). The
large-scale firing is terminated by the opening of
voltage-dependent and calcium-dependent potassium
channels, preventing further spread of the seizure (180).

What causes this neuronal discharge in epileptic
patients? It is clear that an epileptic seizure is associated with
a shift in the balance between excitation and inhibition in the
brain, manifested as a large, prolonged depolarization of the
neurons. The generation of dendritic potentials may be an
underlying cause of this, especially the generation of calcium
spikes in the dendrites.

3.3.1. Genes implicated in epilepsy
Genetic research into epilepsy is a very active

area; the picture so far is that the inheritance of epilepsy is
complex and polygenic, like that of diabetes and cancer
(see 181-191). Given the heterogeneity of the clinical
condition, it is hardly surprising that more than one gene is
involved.

Despite this, some autosomal dominant idiopathic
epilepsies with simple inheritance patterns have been
identified and genetically characterized (24, 188, 189, 192,
193). An understanding of these epilepsies will aid in
understanding the much larger number of epilepsy
conditions with complex inheritance. These idiopathic
conditions point to single gene defects that can cause
epilepsy.

Autosomal dominant nocturnal frontal lobe
epilepsy, a rare idiopathic partial epilepsy syndrome, is
caused in some families by mutations in the gene encoding
the alpha-4-subunit of the neuronal nicotinic acetylcholine
receptor (194-204). In vitro studies suggest that the
mutations lead to impaired function of the acetylcholine
receptor, raising the possibility of cholinergic therapy for
this condition (see 188, 189, 195, 201).

Benign familial neonatal convulsions is an
idiopathic generalized epilepsy in newborns that follows
autosomal dominant inheritance. Defects in the genes
encoding two homologous voltage-gated potassium
channels appear to be the cause of the condition (186, 205).

Generalized epilepsy with febrile seizures
appears to result from mutations in a voltage-sensitive
sodium channel (206, 207). At least in the family studied,
there was a linkage to 19q13.1 and a mutation was
identified in the gene encoding the voltage-gated sodium
channel beta-1-subunit. The mutation lead to a change in a
conserved cysteine residue that disrupted a disulfide bridge,
apparently leading to loss of function (206). Other research
has suggested an additional locus on chromosome 2 (208).

In several other conditions, genetic linkages have
been established, again suggesting single gene defects,
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though the specific genes have yet to be characterized.
Familial partial epilepsy syndrome with variable foci
(FPEVF) has been linked to a 3.8cM region on
chromosome 22q11-q12, between markers D22S1144 and
D22S685. The syndrome is inherited in an autosomal
dominant manner with incomplete penetrance (209). In
juvenile myoclonic epilepsy, there is evidence that a locus
is located on chromosome 15, in addition to a previously
characterized one on chromosome 6 (see 181, 210-212).
Interestingly, the GABAB receptor gene is located near the
chromosome 6 locus (213-215), and the gene encoding the
alpha-7-subunit of the acetylcholine receptor is near the
chromosome 15 locus (210).

Thus, at least three autosomal-dominant
idiopathic epilepsies are channelopathies and result from
mutations in genes encoding ion channels. Benign familial
neonatal convulsions result from mutations affecting
voltage-sensitive potassium channels (216, 217). Nocturnal
frontal lobe epilepsy results from mutations affecting a
central nicotinic acetylcholine receptor (216). Generalized
epilepsy with febrile seizures result from mutations
affecting a voltage-sensitive sodium channel (206, 207).
Recently published research suggests that idiopathic
generalized epilepsy may result from mutations in gene
encoding the calcium channel beta-4-subunit, CACNB4
(218).

At least one idiopathic epilepsy, however, is not
a channelopathy. Unverricht-Lundborg disease - an
autosomal recessive disorder - is caused by defects in the
cystatin B gene (also known as stefin B), leading to the
absence, or greatly reduced level, of the gene product.
How the absence of this gene product leads to epilepsy is
much less clear. The cystatins are a family of cysteine
protease inhibitors (219). Unverricht-Lundborg disease is
a clinically recognizable form of progressive myoclonic
epilepsy. There was no biochemical marker for the
disease, but a positional cloning strategy lead to
characterization of the gene responsible. In a seminal
paper on the condition, two mutations in the cystatin B
gene were found in patients with Unverricht-Lundborg
disease (220). Since then, an unstable expansion of a 12-
base-pair mini-satellite repeat sequence in the promoter
region of the gene has been found to be the most common
defect (221-223). A series of other mutations has since
been characterized (224-228).

3.3.2. Therapeutic strategies suggested by these
mechanisms

The most important inhibitory neurotransmitter in
the brain is gamma-aminobutyric acid (GABA) (229, 230). It
has long been known that downgrading the brain’s
GABAergic system (for example, with the GABAA antagonist
bicuculline or with penicillin) causes epileptiform activity in
humans and animals. Many currently available AEDs interfere
with GABA neurotransmission in some way (231).

More recently, drugs have been used successful to
treat epilepsy by interfering with the excitatory amino acid
system. Agonists at all three subclasses of excitatory amino
acid receptor (N-methyl-D-glutamic acid, NMDA; alpha-
amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid,
AMPA; and kainate) cause epileptiform activity. Felbamate is

an example of an AED that appears to inhibit NMDA
transmission, although it also interacts with the GABA system
(101).

Direct or indirect actions of AEDs on ion channels
may contribute to their anti-epileptic activity. Felbamate and
zonisamide inhibit both calcium and sodium channels.
NMDA toxicity in particular is associated with influx of
calcium to reach potentially cytotoxic concentrations, and
so blocking calcium channels also appears to be a rational
approach to the therapy of epilepsy.

3.4. Animal models of epilepsy
The drug discovery scientist needs reliable

preclinical animal models of the disease that are representative-
or at least indicative - of human results. The availability of
animal models has shaped the history of AED discovery and
development.

The earliest AEDs resulted from what was hardly a
model system of rational drug design! The use of bromide salts
and phenobarbital to treat epilepsy was entirely empiric;
neither was intended to treat the condition. Bromide salts were
being used to inhibit masturbation and sexual behavior (see
128, 216, 232-234). Phenobarbital was a sedative. Both were
given to epileptic patients and happened to show some degree
of efficacy.

The development of animal models of epilepsy lead
to a rather more systematic way of evaluating potential AEDs
(235-237). It had been known since the 1880s that electrical
stimulation of animals could produce replicable seizures. Later,
it was found that certain chemicals, including picrotoxin,
bicuculline, strychnine, and pentylenetetrazol, could induce
experimental seizures.

Animal seizure models were first used successfully
by Merritt and Putnam in the late 1930s. They screened
compounds using electrically induced seizures in cats and
discovered the anti-convulsant properties of phenytoin
(diphenylhydantoin; 238-243).

Better models were to follow. Swinyard and
colleagues differentiated between threshold and spread in
seizures (see 244). Some AEDs raise the seizure threshold;
drugs that operate in this way (such as ethosuximide) are
typically effective against absence seizures. This can be
assessed using pentylenetetrazol-induced seizures in animals
(245). Other drugs limit seizure spread. Drugs that operate in
this way (such as phenytoin) are typically effective against
partial and generalized tonic-clonic seizures. This can be
assessed using the maximal electroshock (MES) animal model
(245).

The kindling model of epilepsy in animals
resembles psychomotor epilepsy in humans, in which patients
experience both illusory phenomena and complex motor
actions. The test animal is ‘kindled’ by repeated
high-frequency electrical stimulation to a part of the limbic
system (e.g. the amygdala) (246-248). Sensitivity of the
neuronal circuits increases during the kindling process, until
seizures can be produced in response to relatively small
stimulation. This phenomenon suggests that epilepsy in
humans may be caused by relatively brief electrical events that
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chronically alter the properties of the neuronal circuits.
Treatment with the non-specific central nervous system (CNS)
convulsant pentylenetetrazol (PTZ) can also be used to
produce a kindling model of epilepsy, as can treatment with
picrotoxin (249).

However, while animal models did advance AED
research and essentially lead to the all of the first
generation drugs except bromides and phenobarbital, they
also created a problem in that they were used so extensively
- in fact, almost exclusively. If your screen is the same
animal model, it is likely that you will select only closely
related drugs, or at least drugs that act in the same way
(inhibiting the same seizures in the same way in the same
animal model).

Even with the “new generation” of AEDs, despite
the benefit of 30 years of neuroscience research, most
AEDs were found by screening (i.e., chance, as opposed to
rational design), or else they were variations of existing
drugs. In fact, to date the only truly rationally designed
AEDs are the GABA analogs vigabatrin, tiagabine,
gabapentin, and pregabalin, which followed from the
“GABA hypothesis” of epilepsy (229, 230).

Today, several animal models of epilepsy are used
in drug discovery (247, 250-257). However, these animal
models do not necessarily correlate with epilepsy in humans.
More than 25 genes have now been identified in mice that
lead to epileptic seizures when mutated (258, 259). Many
of these genes have been characterized, and they encode
voltage- and ligand-gated ion channels. For example, the
“tottering” mouse has mutations in the gene encoding the
high voltage-activated alpha-1a-calcium channel subunit,
and the lethargic mouse has mutations in the beta-4-
calcium channel subunit gene (218, 258, 260, 261).
Together with results from the human idiopathic epilepsies
discussed above, these animal models and the ability to
make transgenic animals bearing the human mutations
(262) should enable better models to be developed in the
near future.

3.5. Known reference compounds
The drug discovery scientist also needs known

reference compounds, even those that are clinically
unusable, after which new drugs can be modeled and
against which new drugs can be tested. As outlined in this
review, this is no longer a problem; there is a long history
of AEDs, going back to the bromides. There are, of course,
many more molecules that have failed at some stage in
development. Successes and failures can provide the
scientist with insights.

3.6. Objective, reliable clinical outcomes
The drug discovery scientist also needs objective,

reliable clinical outcomes to assess drugs. This is a
particular problem with epilepsy. What is needed - ideally -
is a clinical measure that does not depend on the seizure
patient (or their caregiver) remembering or recording what
happened.

There is currently no such measure in epilepsy; to
assess efficacy, typically careful documentation of changes
in ictal activity is used, determined by seizure counts based
on patient recall, ideally direct clinical observation, and (at

least for absence seizures) EEG monitoring. Assessment of
seizure severity is another measure. The choice depends on
the design of the trial. In short-term trials, parameters such
as time to the nth seizure after randomization have been
used as an index of anti-epileptic efficacy, but the clinical
relevance of such measures is debatable. In add-on trials,
changes in seizure counts and the proportion of patients
achieving 50%, 75%, and 100% reduction in seizure
frequency can be used. For long-term monotherapy trials in
newly diagnosed patients, the proportion of patients
achieving prolonged remission (1 year or longer) usually
represents the most clinically meaningful efficacy outcome
(263). Retention of patients on a treatment can also be a
useful measure, although it is a composite endpoint,
dependent on both efficacy and tolerability.

3.7. Other challenges in clinical development
Ethical considerations are a challenge in any clinical

trial of a putative AED, especially because of the placebo
control (264, 265). The use of placebo-only treatment in
epileptic patients is discouraged, not just because of the
distress associated with seizures, but because severe seizures
can result in injury, permanent brain damage, and, in the case
of status epilepticus, even death (266-270). There is a further
problem in that seizures and status epilepticus can be induced
by withdrawing or altering the dose of an existing AED
(271-275), making it difficult to wean a patient from his or her
existing AED regimen in order to test a new drug. Quite
separately, the placebo effect is well known in epilepsy studies,
especially where parents or guardians monitor and report on
the patients’ seizures, as is typically the case (they are well-
meaning, but not very objective) (276).

The now conventional approach to clinical trials of
new AEDs is to use concomitant treatment with an established
drug and the experimental drug, compared with established
drug plus placebo (264, 269, 277-279). While this solves the
ethical problem, it creates inevitable difficulties in interpreting
results, because of possible drug interactions. Plasma levels of
all drugs need to be closely monitored, as different classes of
AED can alter each other’s metabolism and drastically affect
plasma levels (280-282). Despite these obvious problems,
most of the current AEDs were tested in this way, beginning
with the pioneering work of Rodin and colleagues on
carbamazepine (283).

Testing a new drug in this way is not necessarily a
bad thing. Polytherapy, the concomitant use of two or more
drugs to treat one disease, is indeed common practice in
epilepsy (284-288). Many AEDs are developed with the
intention of being used in conjunction with existing drugs, and
thus clinical trials taking this into account are quite appropriate.

The idea of ethically acceptable monotherapy trial
design has not been forgotten (279, 289-294). In recent years,
some monotherapy trials have been conducted, in restricted
circumstances (264). For example, felbamate was studied in
placebo-controlled monotherapy trials in patients following
pre-surgical electroencephalographic and video monitoring
(295-297). In these trials, the patients underwent intensive
neurodiagnostic monitoring after partial or complete
withdrawal from their prior AEDs. In the hospital setting, a
true placebo-controlled study is possible; seizures are closely
monitored and not allowed to continue or progress to a
potentially brain-damaging situation. Additionally, the
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monitoring of seizures is likely to be more objective than it
typically is when parents, guardians, or others are involved
(266).

AED trials are associated with relatively high
drop-out rates (264). One reason for this is the rarity of
seizures; dosing has to continue for several weeks, which
then leads to poor compliance and inaccurate reporting of
events by patients and caregivers. Additionally, the disturbance
of a patient's established drug regime may result in seizures
serious enough to force discontinuation of the test drug (or
placebo) (271, 298). In the treatment of most epileptics, care
must be taken to achieve a suitable dose (balancing toxic
effects against seizure prevention), and this individual
approach to treatment further complicates a clinical trial.

One final problem is that a large proportion of
patients entering a clinical trial represent ‘atypical' epileptics
who have responded poorly to existing drugs. In some cases
then, a clinical trial may underestimate the true efficacy of a
new AED.

3.8. Toxicity issues
Toxicity data for AEDs are often difficult to

interpret, because many patients will be taking more than one
drug. Plasma levels of one drug may be affected by the
presence of another (280-282), and so toxicity should be
correlated with plasma level and not dose. Some investigators
have queried whether even that is valuable (299).

Neurological adverse effects of AEDs present a
particular problem. Not surprisingly with CNS-acting drugs,
serious neurological problems may occur. In many of the
patients, however, the underlying epilepsy is itself a very
serious neurological condition, and ascribing a particular
neurological adverse effect to the AED may be unwise or
impossible.

Several studies have shown that different classes of
AED seem to be associated with teratological effects when
taken during pregnancy (300-303). The individual drugs with
the highest incidences were primidone, valproate, phenytoin,
carbamazepine, and phenobarbital. Why these distinct classes
of drug should all be associated with teratological effects is
both intriguing and worrying. The incidence of malformations
increased in polytherapy, and certain combinations (e.g.
valproate plus carbamazepine, or primidone plus phenytoin
plus phenobarbital) were associated with significantly greater
susceptibility.

Another problem is that some AEDs may
exacerbate seizures in certain patients (304-307). This
phenomenon is poorly understood (305).

3.9. Conclusion
Discovery and development of new AEDs presents

special challenges to the pharmaceutical industry; the
researcher does not live in the perfect world outlined above.
Rational, target-based research is hampered by our still limited
understanding and the heterogeneity of epilepsy. While animal
models are now available and have been important in the
development of AEDs, they are only models and may not
correlate well with the many forms of human epilepsy.
Additionally, clinical trials are inevitably more complex than
with most drugs, and have to be conducted with extreme care.

Again, because of the heterogeneity of the condition, patient
selection criteria add another variable into any clinical trial.

4. PHARMACOTHERAPY OF EPILEPSY

Epilepsy has been recognized for at least 3000
years; the earliest recorded account is in an Akkadian
(Babylonian) text known as the Sakikku, dating from
around 1050 BC (71, 308, 309). Since then, there have been
many attempts to control epilepsy. The evolution of
effective drug treatment for epilepsy has been a gradual and
erratic process. There have been both scientific and
regulatory reasons for this over the last decades.

Modern pharmacotherapy of epilepsy goes back as
far as the introduction of phenobarbital in 1912 in the U.S.
(see 310), and back to the 1860s if the use of bromide salts is
included (128, 216, 234). Phenytoin (Dilantin) was introduced
in 1938, and is still widely used (240). Despite this long
history, successful pharmacotherapy remains a major
challenge to this day, the disease being chronic and often
life-long.

There are now more than 20 different drugs
approved for the treatment of epilepsy in the developed
nations, but the currently available drugs are far from perfect.
Up to 30% of patients with epilepsy remain refractory to
medical management with current AEDs (6, 311-316).
Seizure control in many of these patients is achieved by
polytherapy, and at the expense of serious side effects,
complications from drug interactions (317), and a resulting
decrease in quality of life.

The AED market can be crudely categorized
according to the length of time drugs have been on the
market: first-generation AEDs, new-generation AEDs, and
what we will term the “next generation” (i.e. those drugs in
development but not yet approved or marketed). We will now
discuss the currently marketed AEDs and those likely to be
approved soon.

4.1. First generation drugs
4.1.1. Bromide salts

The introduction of bromide in 1857 by Sir
Charles Locock for the treatment of seizures can be
considered the start of modern anti-epileptic
pharmacotherapy (see 128, 216, 234). Despite its use for
well over a century, the mechanism of action is still poorly
understood, but presumably involves blockade of chloride
transport. Bromide is also an inhibitor of carbonic
anhydrase, a key enzyme in active chloride transport. The
main problem with bromide therapy was always the very
narrow therapeutic index (232-234). CNS side effects are
the most common and most severe, including dizziness,
emotional changes, and frequently psychosis. The very
long half-life of elimination (approximately 12 days)
contributes to the danger of chronic toxicity. Bromides also
cause dermatological side effects (232-234).

4.1.2. Barbiturates
4.1.2.1. Phenobarbital

Several barbiturates are effective in treating
epileptic disorders (318, 319). Phenobarbital
(5-ethyl-5-phenyl barbituric acid; Figure 1) was the first
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Figure 1. AEDs structurally related to phenobarbital.

AED of real clinical value. It was introduced in 1911 as a
sedative and hypnotic, but was soon found to be useful as
an anti-convulsant, though it was - at the time - erroneously
believed that the anti-epileptic effect was simply a
consequence of sedation. It has been in continuous use as a
sedative and anticonvulsant ever since; it remains one of
the best available drugs for the treatment of certain seizure
types, especially grand mal and focal seizures (310).
Following its development, more than 50 other barbituric
acid analogs and derivatives have been and are still being
developed and tested (see 318-324; Figure 1).

4.1.2.2. Mephobarbital
Mephobarbital (methylphenobarbital; Figure 1)

was introduced in the U.S. in 1935; it is less sedating than
phenobarbital. Its anticonvulsant action is due to its slow
conversion in the liver to phenobarbital; it remains unclear
whether mephobarbital itself contributes to the
pharmacological effect. Some neurologists suggested that

mephobarbital caused fewer behavioral side effects than
phenobarbital in children, although this has been disputed
(see 325).

4.1.2.3. Eterobarb
Eterobarb (N,N' dimethoxymethyl phenobarbital

(DMMP); 5-ethyl-1,3-bis(methoxymethyl)-5-phenyl-
barbituric acid; Zipnotic; Figure 1) is also structurally
related to phenobarbital; it is an alkoxymethyl derivative.
Eterobarb is reportedly equipotent with phenobarbital in
preventing seizures, and causes less sedation. It shows
efficacy in treating grand mal, psychomotor, or focal
epilepsy (326-330), and is approved in some countries, but
other clinical trials were abandoned and development was
stopped.

4.1.3. Primidone
Primidone (5-ethyldihydro-5-phenyl-4,6(1H,5H)-

pyrimidinedione; 2-deoxyphenobarbital; Figure 1) is also a
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Figure 2. Structure of acetazolamide.

Figure 3. Structure of A: valproic acid and B: sodium
valproate.

structural analog of phenobarbital, in which the carbonyl
group at the 2 position is replaced with a methylene group.
This drug seems better tolerated in some patients than
phenobarbital. Primidone is slowly metabolized in the liver
and is excreted in urine as phenylethylmalonamide
(PEMA), phenobarbital, and p-hydroxyphenobarbital (331).
Primidone’s pattern of activity is similar to that of
phenytoin, though its action is at least partly due to its
metabolic conversion to phenobarbital and PEMA, both of
which have anticonvulsant activity (332-334).

4.1.4. Phenytoin
Phenytoin (5,5-diphenylhydantoin; Figure 1) is

also structurally related to phenobarbital (243, 335, 336).
Phenytoin was one of the first AEDs to be tested in animal
models of epilepsy (238, 240-243). It was first introduced
for the treatment of epilepsy in the U.S. in 1938
(128, 239, 337), and remains one of the most commonly
prescribed anti-epileptics in the U.S. It is believed to act by
blocking voltage-sensitive sodium channels (336). Its anti-
convulsant effect is approximately equal to that of
phenobarbital, but it does not cause sedation. It is effective
in treating grand mal, focal sensory and motor, and
psychomotor seizures. In parenteral form, the drug is also
used to treat status epilepticus.

4.1.5. Fosphenytoin
Fosphenytoin (Cerebyx) is a water-soluble

parenteral phenytoin prodrug (a disodium phosphate ester;
Figure 1), and has several advantages over phenytoin. It is
better tolerated, and can be administered intravenously or
intramuscularly (338-345). Uses for fosphenytoin include
intravenous administration for the treatment of status
epilepticus (341), and treatment of patients who are unable
to take oral medication or in whom a more rapid attainment
of a therapeutic drug level is required. Fosphenytoin has a

short half-life (8-15 minutes) and is converted to phenytoin.
Being water-soluble, it does not require a propylene glycol
solvent and, as a result, causes less hypotension,
bradycardia, thrombophlebitis, and fewer local skin
reactions than does intravenous phenytoin (340, 341, 343).
Fosphenytoin has been used for some years in the U.S. and
has recently been licensed in the U.K. (341).

4.1.6. Ethosuximide
Subsequently, further derivatives and analogs of

phenytoin and phenobarbital were synthesized by
manipulating the cyclic ureide moiety from which both are
derived. These include the hydantoins and diones, as well
as the succinimides methsuximide (346; Figure 1) and
phensuximide (Figure 1). Ethosuximide (2-ethyl-2-
methylsuccinimide; Figure 1) is a T-type calcium channel
blocker, used in treating absence seizures. It was introduced
in 1958. It is absorbed from the gastrointestinal tract and
extensively hydroxylated in the liver to an inactive
metabolite (347). Ethosuximide is generally free of serious
adverse effects, and continues to be used to this day.

4.1.7. Acetazolamide
Acetazolamide (Diamox; Figure 2) is an

unsubstituted sulfonamide that inhibits carbonic anhydrase.
It was approved for the treatment of epilepsy in 1953 (348).
It non-competitively inhibits brain carbonic anhydrase,
leading to accumulation of carbon dioxide that seems to
decrease the spread of seizure activity and increase the
seizure threshold (348). In recent years it has fallen from
favor somewhat, but does have a broad spectrum of anti-
epileptic activity and a long track record of generally safe
and successful use, especially in patients with refractory
seizures.

4.1.8. Sodium valproate / valproic acid
Although valproic acid (dipropyl acetic acid or 2-

propylvaleric acid; VPA; Figure 3) was first prepared by
Burton in 1882 (349), its anti-epileptic properties were not
appreciated until 80 years later by Meunier (see 350).
Valproic acid is chemically distinct from other AEDs. It
was developed as an anti-epileptic drug in Europe during
the 1960s and was subsequently introduced in the U.S.
Valproate is a major broad-spectrum anti-epileptic drug
effective against many different types of epileptic seizures,
especially in simple and complex absence seizures.

The incidence of toxicity associated with the
clinical use of valproate is generally low, but two rare side
effects, idiosyncratic fatal hepatotoxicity and teratogenicity
(351, 352), necessitate caution. Pancreatitis is also a rare
though serious adverse effect (353). Animal studies
indicate that the mechanisms leading to hepatotoxicity and
teratogenicity are distinct and differ from the mechanisms
of the anticonvulsant action of valproate.

As a result of its wide spectrum of anticonvulsant
activity against different seizure types, it is believed that
valproate acts through several mechanisms. There is
evidence that valproate up-regulates GABA synthesis and
release, potentiating GABAergic function in some brain
regions. Valproate also appears to alter dopaminergic and
serotonergic function. One disadvantage of valproate is its
short half-life, making steady plasma levels of the drug
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Figure 4. Benzodiazepines used as AEDs.

Figure 5. Structures of carbamazepine and oxcarbazepine.

difficult to achieve, although the recent introduction of
sustained release formulations has reduced this problem.
More recently, divalproex sodium, a stable coordination
compound of valproic acid and sodium valproate in a 1:1
molar ratio, has been developed. It is believed to act
essentially as a prodrug, dissociating into valproate in the
GI tract.

4.1.9. Benzodiazepines
Benzodiazepines have long been used to treat

convulsive seizures, though some are not suitable for
routine use because tolerance develops rapidly; they are
also typically sedatives (354, 355). They are very useful in
emergencies: diazepam (Figure 4) and lorazepam
(Figure 4) remain first-line drugs for the control of status
epilepticus (85, 356, 357). Other benzodiazepines in use as
AEDs include clonazepam (358; Figure 4), clobazam (359;
Figure 4), nitrazepam (360; Figure 4), and midazolam
(361-364; Figure 4). It is believed that the benzodiazepines
act as enhancers of GABA receptor binding, which causes
increased stability of the cell membrane and a reduction in
the synaptic response to excitatory stimulation (354). Thus,
benzodiazepines facilitate the actions of GABA in the
brain.

4.1.10. Carbamazepine
Carbamazepine (5H-dibenz[b,f]azepine carboxamide)

is an iminostilbene derivative (Figure 5), structurally related to
the tricyclic antidepressants, such as amitriptyline and
imipramine. The anticonvulsant activity of carbamazepine
appears to involve limitation of seizure propagation, by reducing
post-tetanic potentiation of synaptic transmission.
Carbamazepine was first synthesized in 1960 by Schindler,
who had a decade earlier patented the structurally closely
related imipramine. Carbamazepine was later found to have
anti-epileptic properties (365). It was introduced in 1962
for the treatment of trigeminal neuralgia. It has some
structural similarity to phenytoin; its anticonvulsant activity
has been associated with the carbamoyl group.

In recent years, extended release carbamazepine
formulations have been developed, allowing twice daily
dosing. These formulations provide increased convenience,
better patient compliance, and more constant serum levels
of the drug, reducing peak level toxicity problems and
trough level seizures.

The most frequently observed adverse reactions
are CNS-related and dose-dependent, including dizziness,
drowsiness, ataxia, nystagmus, blurred vision, slurred
speech, confusion, headache, and nausea and vomiting.
Carbamazepine can also produce more serious adverse
effects, including bone marrow suppression (leading to
aplastic anemia), granulocytopenia and/or
thrombocytopenia, and liver damage (366-372).
Carbamazepine is metabolized in the liver to form
carbamazepine-10,11-epoxide, which also has anti-
convulsant properties. However, the epoxide is reactive and
is believed to be responsible for the blood dyscrasias.

Unlike phenytoin, there is a linear relationship
between the dose of the drug and its plasma
concentration, so carbamazepine has a wider margin of
safety, and measurement of the plasma levels is a useful
guide to optimum dosage. The anticonvulsant action of
the drug appears to be mediated by a selective binding to
voltage-dependent sodium channels. After such binding
the sodium channels become stabilized and inactive, so
further sodium movement is inhibited. However, how
such modulation of sodium channels affects epileptic
seizures remains unclear.
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4.1.11. Oxcarbazepine
Oxcarbazepine (10,11-dihydro-10-oxo-5H-

dibenz(b,f)azepine-5-carboxamide; Figure 5) reportedly
has equivalent efficacy to its structural analog
carbamazepine, its tolerability is at least equal to that of
other AEDs (373, 374), and it is less toxic than
carbamazepine (375). It can be considered a prodrug, being
rapidly metabolized to a hydroxyl derivative. Although it
may cause fewer interactions with other AEDs, it may
induce metabolism of oral contraceptives and hence reduce
their effectiveness (376, 377). It is thought to act as a
sodium channel antagonist (373). Oxcarbazepine has been
marketed in many countries since 1990, and has more than
125,000 patient years of experience. A new formulation
(Trileptal) has recently been approved by the FDA for
monotherapy or for use in conjunctive therapy of partial
seizures (with or without secondary generalization).

4.2. New generation drugs
Until the introduction of felbamate in 1993, no

new AED had been launched in the U.S. for 15 years. The
“new generation” includes felbamate (Felbatol) and
gabapentin (Neurontin), both approved in 1993, lamotrigine
(Lamictal), approved in 1994, topiramate (Topamax),
approved in 1996, and tiagabine (Gabitril), approved in
1997 (378).

4.2.1. Felbamate
Felbamate (2-phenyl-1,3-propanediol dicarbamate;

Felbatol; Figure 6) was first synthesized in 1954 (379),
although it did not enter serious clinical development until
1982 (380). Felbamate is chemically related to meprobamate
(381, 382), an anxiolytic drug (383), both being propanediol
dicarbamates (Figure 6). Meprobamate also has anti-epileptic
properties in animal models, and in light of the drug's long
history of safe use it has been suggested that it be
reconsidered as a potential AED (384). The exact details of
felbamate’s mechanisms of action remain unclear. The drug
appears to have two actions in that it enhances the
GABAergic system and inhibits excitatory amino acid
responses.

Rho and coworkers studied the effect of
meprobamate and felbamate at the GABAA receptor using
whole-cell voltage-clamp recordings from cultured rat
hippocampal neurons (383). Meprobamate increased
GABA-evoked responses and, at higher concentrations, had an
independent channel-blocking effect. In fact, meprobamate
caused greater potentiation than felbamate at the same
concentration. Both drugs prolonged the mean burst duration
of GABA-activated currents in excised outside-out membrane
patches. Rho and coworkers concluded that both drugs had
barbiturate-like actions at GABAA receptors, and that
meprobamate had greater activity and could directly activate
the receptor, whereas felbamate could not (383).

In animal models, felbamate blocks PTZ-, MES-,
and picrotoxin-induced seizures, but has little effect on
strychnine- or bicuculline-induced seizures (383, 385, 386).
This spectrum of action is consistent with felbamate acting
in a barbiturate-like manner to potentiate GABAA receptor
responses (383, 385, 386).

Felbamate was widely proclaimed as the first
new AED in many years when it received FDA approval in
1993 for monotherapy in adults with partial seizures and as
an adjunctive therapy in children suffering from
Lennox-Gastaut syndrome (383, 385, 387, 388). Within the
first year on the U.S. market, as many as 120,000 patients
took the drug, and it was judged efficacious in many
patients whose epilepsy had been refractory to other AEDs
(383, 387, 389). Felbamate has also been used to treat
infantile spasms or West syndrome (390-392), hemifacial
spasm (393), acquired epileptic aphasia (394), and
trigeminal neuralgia (395).

However, because of potentially fatal adverse
effects of hepatic failure (396), aplastic anemia (397-401), and
other blood dyscrasias (402) associated with the use of
felbamate during early 1994, a “black-box” warning was
added to the drug’s package insert. As a result, use of
felbamate is now restricted to patients with severe epilepsy
refractory to other therapies (403, 404). Felbamate continues
to be used in many patients, though not as a first-line
treatment.

Felbamate was the first drug shown to be
effective in controlled studies in Lennox-Gastaut
syndrome. The Felbamate Study Group reported a
double-blind, placebo-controlled add-on trial of felbamate
in 73 patients suffering from Lennox-Gastaut syndrome
(278). Patients receiving felbamate experienced a 34%
decrease in the frequency of atonic seizures and a 19%
decrease in total seizure frequency. Additionally, a trial by
Avanzini and coworkers included 80 patients suffering
from Lennox-Gastaut syndrome, of whom 60%
experienced a >50% reduction in seizure frequency. Of
these, 6% were seizure-free during treatment (405).

4.2.2. Gabapentin
Gabapentin (Neurontin) was approved in the U.S.

in 1993, as an adjunctive therapy in patients 12 years of age or
older with localization-related epilepsy. Gabapentin is a 3-
alkylated (lipophilic) GABA analog (Figure 7). Although
structurally related to GABA (Figure 7), gabapentin does not
seem to interact with any known GABA recognition site, nor
with a variety of other ligand-binding sites (including
excitatory amino acid receptors) (406, 407). In vivo
autoradiographical studies suggest that there is a binding site
for gabapentin in the brain, although its function is unclear.

The efficacy and safety of gabapentin as a
monotherapy for treatment of partial onset seizures was
evaluated in three large multicenter, double-blind, parallel-
group, dose-controlled trials (408, 409). These three trials
provided good evidence for the efficacy and safety of
gabapentin monotherapy for the treatment of partial-onset
seizures. In one trial, outpatients with refractory partial
epilepsy (n=275) maintained on stable doses of AEDs were
switched to gabapentin monotherapy. Patients exited the
study if their seizure frequency increased; only 3% of
patients did withdraw because of this (see 408). In another
trial, hospitalized patients (n=82) were weaned off their
prior AEDs and were assigned to gabapentin monotherapy
at 300 mg/day or 3600 mg/day. Patients remained in the
trial for a maximum of 8 days, unless they satisfied various
exit criteria. Time to exit was significantly longer in
patients receiving 3600mg than those receiving 300mg
gabapentin (see 408). In a further study, patients with
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Figure 7. Structures of GABA and of AEDs intended to
affect GABA neurotransmission.

Figure 8. Structure of lamotrigine.

recently diagnosed partial seizures (n=292) received
gabapentin (300, 900, or 1800 mg/day) or carbamazepine
(600 mg/day). Patients remained in the trial for up to 6
months or until they experienced an exit event. Mean time
to exit was significantly longer for patients who received
gabapentin at 900 mg/day or 1800 mg/day than those who
received 300 mg/day (see 408).

4.2.3. Lamotrigine
Lamotrigine (Lamictal) is a phenyltriazine

anticonvulsant agent (Figure 8); the drug is structurally
unrelated to any currently available AED. Lamotrigine was
approved in 1994 as an adjunctive treatment for
localization-related epilepsy in adults. It exhibits a broad
spectrum of anti-epileptic activity (410, 411); in animal
models, its spectrum is similar to those of phenytoin and
carbamazepine. The agent is useful in treating patients with
localization-related or generalized epilepsies (412). Its
mechanism of action remains unclear, but it appears that
the drug may stabilize neuronal membranes by blocking
voltage-sensitive sodium channels, thereby inhibiting
release of excitatory amino acid neurotransmitters (412).

4.2.4. Topiramate
Topiramate (Topamax), a sulfamate-substituted

derivative of D-fructose (Figure 9), is structurally unrelated
to any other currently available anticonvulsant. It was
approved in the U.S. in 1997, and is indicated for use as an
adjunctive therapy in adults with localization-related
epilepsy. It also has efficacy in some generalized
epilepsies. Topiramate is quickly absorbed, has linear
pharmacokinetics, minimal protein binding, and a long

half-life (413-415). Some analyses of data from
randomized controlled studies suggest topiramate may be
the most potent of the new generation of AEDs (416). Its
mechanism of action remains unclear, but seems to involve
blockade of voltage-sensitive sodium channels, increased
GABA activity, and glutamate blockade via non-NMDA
receptors. Preliminary clinical research has suggested that
topiramate may also be useful in treating mania in patients
with bipolar disorder, post-traumatic stress disorder, and
frequent migraine and chronic daily headaches.

4.2.5. Tiagabine
Tiagabine is one of few rationally designed

AEDs in that it was designed based on the GABAergic
theory of epilepsy (Figure 7). Tiagabine is a potent and
selective inhibitor of the synaptosomal uptake of GABA,
and it appears to lack benzodiazepine-like sedative effects.
The drug is structurally related to nipecotic acid, but
crosses the blood-brain barrier to a greater degree, being
much more lipophilic. Tiagabine was approved in the U.S. in
1997 as an adjunctive therapy for patients 12 years of age or
older with localization-related epilepsy. The inhibition of
GABA reuptake allows increased binding of GABA to
post-synaptic receptors, and the enhanced GABA activity
may prevent propagation of seizure impulses (417). However,
it is unclear whether inhibiting GABA reuptake is the drug’s
only effect (418, 419).

4.2.6. Vigabatrin
Vigabatrin (gamma-vinyl-GABA; Figure 7) is a

close structural analog of GABA and operates as an
enzyme-activated, irreversible inhibitor of GABA
transaminase, an enzyme that degrades GABA (420).
Vigabatrin crosses the blood-brain barrier. Once bound to
GABA transaminase, the drug is converted into a reactive
intermediate that irreversibly inhibits the enzyme, resulting
in dose-dependently increased levels of GABA in the brain
(420, 421). The product is a racemate, but only the S(+)-
enantiomer is pharmacologically active (422). Nuclear
magnetic resonance spectroscopy has demonstrated 2-3
fold increases in GABA concentration in the brains of adult
epileptic patients treated with standard doses of vigabatrin
(423). Increased GABA concentrations are not only
neuroprotective in theory, but extensive experimental
evidence has shown that they do protect the brain against
chemically and electrically induced convulsions (421).

The clinical development of vigabatrin was delayed in the
U.S. by findings of microvacuolation in the white matter of
brains in rodents and dogs. However, extensive monitoring
in humans through autopsy, MRI, and cognitive function
tests has confirmed that this does not occur in humans
(424). The FDA's external advisory committee has
recommended vigabatrin (Sabril) for approval as an
adjunctive therapy, but final action is still pending. The drug
has been extensively used in more than 45 countries.

4.2.7. Zonisamide
Zonisamide (1-(1,2-benzoxazol-3-yl) methane-

sulfonamide; Zonegran; Excegran; Figure 10) is a 1,2-
benzisoxazole derivative and the first agent of this class to
be developed as an AED. Zonisamide was launched in
Japan as early as 1989. In various animal models,
zonisamide has considerable activity. It appears to block
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Figure 9. Structure of topiramate.

Figure 10. Structure of zonisamide.

Figure 11. Structure of levetiracetam.

Figure 12. Structure of flunarizine.

the propagation/spread of seizure discharges and to
suppress the epileptogenic focus (425).

The marketing of zonisamide in the U.S. was
delayed by reports of nephrolithiasis by European and
American investigators (426). However, the drug has been
used successfully in Japan for a range of epilepsy types,
including infantile spasms (427) and myoclonic seizures
(428). Efficacy as a neuroprotectant and in the treatment of
mania has also been suggested. Zonisamide is active in a
wide range of animal models of epilepsy (429), and is
efficacious in the treatment of simple and complex partial
seizures and (to a lesser extent) generalized seizures. The
FDA approved zonisamide in 1999.

The mechanism of action of zonisamide has not
been elucidated, but it is known to block sodium channels
(429) and T-type calcium channels (430). Block of T-type
channels would be expected to shift the channel population
toward the inactivation state, thus allowing fewer channels

to open upon depolarization. This in turn would inhibit the
spread of epileptiform activity.

Zonisamide is generally well-tolerated. The most
common side effects are drowsiness, loss of appetite,
gastrointestinal problems and CNS toxicity, although the rare
occurrence of nephrolithiasis suggests patients should be
monitored carefully (426). Interestingly, the incidence of
nephrolithiasis in Japanese patients appears to be much lower
in than in the U.S. or Europe, and the causative link with the
drug has been disputed. The drug was teratogenic in animal
models (425).

4.2.8. Levetiracetam
Levetiracetam (Figure 11) is structurally related

to piracetam (Nootropil; a cognitive enhancer and
anti-myoclonic drug), but unrelated to other AEDs.
Levetiracetam was approved in the U.S. in late 1999 for the
adjunctive treatment of partial onset seizures with and
without secondary generalization in adults. It was also
assessed for the treatment of Alzheimer's disease, but
development for this indication was discontinued.

Levetiracetam has been evaluated in double-
blind, placebo-controlled, phase III clinical studies in the
U.S. and in Europe. More patients receiving levetiracetam
experienced a reduction in weekly seizure frequency when
compared to placebo, and levetiracetam-treated patient
groups had significantly more responders (incidence with at
least a 50% reduction from baseline in partial onset seizure
frequency). More than 900 patients participated in these
studies, and over 3000 people received levetiracetam in
various clinical studies. Levetiracetam was well tolerated,
and most adverse experiences were mild or moderate (431).

4.2.9. Flunarizine
Flunarizine (Figure 12) is a calcium channel

blocker with neuronal protective properties. It is effective
against migraine, vertebrobasilar insufficiency, epilepsy
(432-438), and alternating hemiplegia. Somewhat
contradictory results have been obtained as to its efficacy in
epilepsy; Durrheim et al. reported that as add-on therapy to
sodium valproate it was effective in treating reading
epilepsy (439), while Alving et al. concluded that it showed
no statistical advantage over the placebo in reducing total
seizure frequency in patients with complex partial seizures
(440). Other studies have questioned its value in treating
epilepsy (441-443).

4.3. The “next generation”
Other new AEDs in clinical development are

summarized below.

4.3.1. Remacemide
Remacemide (Figure 13) acts by blocking

NMDA receptors and by prolonging inactivation of sodium
channels. The desglycinated metabolite, ARL 12495AA, is
approximately twice as potent as the parent drug (444-447). It
has been suggested that modulation of the metabolism of
remacemide could be of therapeutic use (448).

In binding studies in cerebral cortical membranes
(444), ARL 12495AA was shown to have 150 times the
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Figure 13. Structure of remacemide hydrochloride.

Figure 14. Structure of ganaxalone.

affinity of remacemide for the NMDA receptor (displacement
of [3H]MK801). ARL 12495AA reduces NMDA-induced
depolarizations in various in vitro preparations, and the
mechanism of NMDA block probably involves an action at the
channel site on the NMDA receptor complex. Unlike MK801
and many other NMDA blockers however, remacemide
exhibits low toxicity.

The anti-convulsant effect of remacemide has been
demonstrated in the WAG/Rij rat, a genetic model for
generalized absence epilepsy (449). Remacemide and its
metabolite both decreased the number of spike-wave
discharges, without causing major effects on behavior or the
EEG spectral content. In the case of the metabolite, the mean
duration of spike-wave discharges was prolonged, a unique
combination of effects in an AED.

In vitro electrophysiological studies have
demonstrated that remacemide and ARL 12495AA increase
spike duration and decrease or eliminate spike after-
hyperpolarization, in rat CA1 hippocampal neurons (448).
Thus, the drugs appear to modulate sodium and/or potassium
channel activity. Such multiple mechanisms may contribute to
remacemide's anti-epileptic activity.

Clinical trials have shown remacemide to be well
tolerated and efficacious in patients with partial and secondary
generalized seizures. Remacemide is currently undergoing
phase III trials in Europe and the U.S. (450, 451).

4.3.2. Ganaxolone
Ganaxolone (CCD 1042; 3-alpha-hydroxy-3-beta-

methyl-5-alpha-pregnan-20-one; Figure 14) is a member of a
class of neuroactive steroids that have been termed “epalons”
(452, 453). Epalons modulate the GABAA receptor / chloride
ionophore complex in the CNS via a specific steroid-
sensitive site, and as a result have anti-epileptic, anxiolytic,
sedative, and hypnotic properties. Epalons are structurally
related to progesterone but have no hormonal activity;
ganaxolone is a 3-beta-methyl-substituted analog of the
endogenous neuroactive steroid 3-alpha-hydroxy-5-alpha-
pregnan-20-one. It is under development as an AED for

treating generalized absence seizures and simple or complex
partial seizures.

Ganaxolone has been shown to inhibit binding to
the GABAA receptor / chloride channel complex and also
to enhance binding at the benzodiazepine and muscimol
binding sites (454). These actions suggest that ganaxolone
is a positive allosteric modulator of the GABAA receptor.

Ganaxolone is an efficacious anticonvulsant agent
in a variety of acute seizure models, as well as in electrical
and chemical kindling models (455). The drug attenuates
seizures in animals resulting from PTZ, bicuculline or
aminophylline treatment in rodents, and in the kindling
model of epilepsy. Electroshock-induced seizures are
attenuated only at doses that produce ataxia (454). In contrast
to these results however, Snead (1998) found that PTZ- or
gamma-hydroxybutyric acid-induced absence seizures in rats
were exacerbated by ganaxolone (456).

In healthy volunteers, ganaxolone was well
tolerated after single (up to 1500 mg) and multiple doses (up
to 300 mg bid for 10 days). The drug was rapidly absorbed
from the gastrointestinal tract after oral administration.
Pharmacokinetics were linear and dose-proportional (457).
Ganaxolone was in phase II trials in France and the U.S. in
1998, and early results suggest promising activity in patients
with infantile spasms.

The difficulty in reaching bioactive concentrations
of neurosteroids has caused problems in the pharmacological
development of such drugs however. It may be possible to
combine therapy with a drug to modify the metabolism of the
neurosteroid.

4.3.3. Losigamone
Losigamone (5-(2-chlorophenylhydroxymethyl)-

4-methoxy-2(5H)-furanone; Figure 15) is a tetronic acid
derivative in clinical trials as an AED (458). The drug is
being developed as a racemate (459), though its
enantiomers have somewhat different properties (56, 460).
Although the mechanism of action is unclear, losigamone
probably acts via the NMDA system; it also affects the
GABAA receptor-linked chloride channel. Currently,
losigamone is in phase III clinical trials in Europe and the
U.S. It is being promoted as an adjunct therapy for patients
with refractory partial epilepsy, and as an alternative
monotherapy for patients with partial epilepsy.

Losigamone significantly reduced NMDA-induced
depolarizations in the mouse cortical wedge preparation,
without affecting AMPA-induced depolarizations.
Furthermore, release of glutamate stimulated by veratridine
or potassium was reduced by losigamone in the same
preparation (461). Gasior et al. (1999) demonstrated
losigamone’s efficacy at treating cocaine-induced seizures
in the mouse (462).

The pharmacokinetics of losigamone were
investigated in healthy volunteers, and were found to be
linear (463). Losigamone was rapidly absorbed after oral
administration, and is extensively metabolized,
predominantly by hydroxylation and conjugation (464).
The drug was well tolerated and no serious adverse effects
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Figure 15. Structure of losigamone.

Figure 16. Structure of stiripentol.

Figure 17. Structure of harkoseride.

Figure 18. Structure of rufinamide.

occurred, although in some subjects there was a reversible
increase in transaminases (463).

4.3.4. Stiripentol
Stiripentol (4,4-dimethyl-1-[3,4-(methylenedioxy)-

phenyl]-1-penten-3-ol; Figure 16) is an alpha-ethylene alcohol
with multiple effects on GABAergic neurotransmission (465).
The drug does not appear to be a GABA agonist, but inhibits
GABA uptake (as demonstrated in a synaptosomal preparation)
and also inhibits GABA transaminase (466, 467). Stiripentol is
an effective anti-convulsant in animal models, including
electroshock, PTZ, bicuculline, and strychnine. Stiripentol has a
chiral center; when the S-enantiomer was given orally to rats,
only the S-enantiomer was found in blood, whereas following
administration of the R-enantiomer, both the R and S forms were
detected in the systemic circulation (468, 469). Other studies
have shown differences in potency and pharmacokinetics
between the enantiomers (470, 471).

Stiripentol has shown promise as an adjunctive
therapy in uncontrolled atypical absence seizures in
children (472). Only one patient out of 10 reported an
adverse effect (vomiting) that warranted withdrawal of the
drug. Stiripentol has also shown efficacy in patients with
partial seizures and refractory epilepsy (438), and in the
treatment of cocaine-induced seizures (462).

The inhibition of cytochrome P-450 by stiripentol is
worth noting; it results in marked drug interactions with other
AEDs, such as phenytoin, carbamazepine, and phenobarbital
(438). Finnell et al. (1994) demonstrated a significant
reduction of the teratogenic effect of phenytoin in mice by the
co-administration of stiripentol, an effect that could be
explained in terms of reduced production of a teratogenic
metabolite of phenytoin (473).

4.3.5. Pregabalin
Pregabalin (4-amino-3-isobutylbutyric acid;

isobutyl GABA; Figure 7) is an AED under development; it
is currently in phase III trials. Its mechanism of action is
unclear. It is chemically related to gabapentin and
apparently interacts with the same binding site and has a
similar pharmacological profile to gabapentin (474).
Pregabalin is claimed to be more potent than gabapentin in
preclinical trials of anticonvulsant activity (474, 475).
Results from early clinical trials have shown efficacy in
treating patients with refractory complex partial seizures
(with or without secondary generalization); pregabalin
compared favorably to gabapentin. Pregabalin was well
tolerated in healthy volunteers and is readily absorbed after
oral administration (474, 476).

4.3.6. Harkoseride
In early 1999, a new anti-convulsant agent,

harkoseride (ADD 234037; Figure 17), entered phase II
clinical trials. Initial safety studies of intravenous
harkoseride showed no serious adverse effects in healthy
volunteers, and demonstrated a pharmacokinetic profile
ideal for an AED following oral dosing. Animal studies of
harkoseride have also suggested a wide margin of safety.
The drug reduces seizures in mice and rats at oral doses
from 0.5 to 5 mg/kg.

4.3.7. Rufinamide
Rufinamide (CGP 331010; Figure 18) is a GABA

uptake inhibitor in development. It is in phase III trials in
Switzerland and the U.S. and shows promise as a therapy
for patients with partial epilepsy and generalized tonic-
clonic epilepsy. Rufinamide is orally absorbed and is
generally well tolerated (477, 478), although tremor and
tiredness have been reported as adverse effects. In a
double-blind trial of 50 patients with refractive epilepsy,
rufinamide as an adjunct therapy reduced seizure frequency
by 42%, compared with an increase of 52% in placebo
recipients.

5. CONCLUSIONS

The goal of treating epilepsy is to control seizures
completely without causing unacceptable side effects. None
of the currently available treatments accomplishes that;
many of the drugs reviewed here have unwelcome side
effects and complete seizure control is rare under any
regimen. Given the heterogeneity of the disease, it is
extremely unlikely that there will ever be a single ideal
AED. However, as we understand more and more about the
condition, patients will be classified into rational groups
and will be treated accordingly.

Ideally, the drug discovery scientist knows the
mechanism(s) of the disease, possesses reliable preclinical
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animal models of the disease that are representative or
indicative of human results, has reference compounds after
which new drugs can be modeled and against which new
drugs can be tested, and has objective, reliable clinical
outcome measures. Even after more than a century of
pharmacotherapy and research, the scientist really only has
one of these, a set of existing AEDs, with varying qualities
and properties.

Our understanding of the etiology of epilepsy is
advancing rapidly and has entered the genetic age; single
gene defects with simple inheritance patterns have been
characterized and are providing some insight. Additionally,
better animal models can be generated, using transgenic
technology and our improving knowledge of these gene
defects.

Animal models have lead to significant advances
in AED discovery twice before: the work of Merritt &
Putnam and then of Swinyard and colleagues. There is
every reason to believe that better models, better screening
technologies, and the advent of techniques such as
combinatorial chemistry for generating lead compounds
will similarly advance AED research again.

Even if the drug discovery scientist had all four
ideal elements, there remain special problems unique to
epilepsy. The use of placebo control in epileptic patients is
generally considered unethical, not only because of the
distress associated with seizures, but because severe
seizures can lead to injury, brain damage, or even death. A
further problem is that seizures and status epilepticus can
be induced by withdrawing or altering the dose of an
existing AED, making it difficult to wean a patient from his
or her existing AED regimen in order to test a new drug.
Even changes in the law have conspired against AED
researchers, because of difficulties in satisfactorily proving
safety and efficacy!

However, creative scientists and physicians have
found ways around these problems. New drugs can be
tested without placebo controls using a technique pioneered
by Rodin and colleagues on carbamazepine: the new AED
is used concomitantly with an established AED and the
combination is compared with the established AED plus
placebo. It is hardly the perfect solution, given drug-drug
interactions, but most AEDs have been tested in this way.
True monotherapy placebo-controlled studies have been
conducted in special circumstances, specifically in patients
undergoing intensive neurodiagnostic monitoring after
partial or complete withdrawal from their prior AEDs. In
the hospital setting, a true placebo-controlled study may be
possible because seizures can be monitored and not allowed
to progress to a potentially brain-damaging situation.

The recent introduction of new AEDs with new
novel mechanisms of action has opened up the field of
epilepsy research. With many new compounds currently in
development and the vast amount of ongoing epilepsy and
more general neuroscience research, the pharmacotherapy
of epilepsy looks set to undergo radical changes in the next
decade.
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