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1. ABSTRACT

While quiescence is a defining characteristic of
differentiated vascular smooth muscle cells (VSMCs) residing
within the medial layer of elastic arteries in the adult
organism, mature VSMCs can undergo phenotypic
modulation and reenter the cell cycle in response to several
physiological and pathological stimuli. Abnormal VSMC
proliferation is thought to contribute to the pathogenesis of
vascular occlusive lesions, including atherosclerosis, vessel
renarrowing after successful angioplasty (restenosis), and
graft atherosclerosis after coronary transplantation. Therefore,
elucidating the molecular mechanisms limiting VSMC growth
is currently the subject of active research. This review will
focus on the role of cyclin-dependent kinase inhibitory
proteins in the regulation of VSMC proliferation and its
implication in intimal lesion formation during the
pathogenesis of vascular proliferative diseases.

2. INTRODUCTION

In the adult organism, the vessel wall in a healthy
artery is composed of an outer layer of connective tissue
(adventitia), a medial layer of VSMCs (media) and an inner
monolayer of endothelial cells (ECs) (intima). Accumulation
of cellular and extracellular substances in the space between
the EC lining and the underlying VSMCs leads to neointimal
lesion formation and the ensuing progressive reduction of
arterial patency. According to the response-to-injury
hypothesis, atherosclerosis is triggered by different risk
factors (hypercholesterolemia, aging, hypertension, smoking
and diabetes) that can somehow lead to endothelial
dysfunction (1, 2). Studies in hypercholesterolemic animals
and in human atherosclerotic specimens have identified three
processes involved in the formation of the neointimal lesion
once the normal properties of the endothelium have been
altered (1, 2): 1) the proliferation of VSMCs, macrophages

and possibly lymphocytes; 2) the formation by VSMCs of a
connective tissue matrix comprising elastic fibre proteins,
collagen and proteoglycans; and 3) the accumulation of lipid
and mostly free and esterified cholesterol in the surrounding
matrix and the associated cells. Figure 1 shows an example of
diet-induced pathological proliferation of medial VSMCs and
macrophages within the intimal lesion of
hypercholesterolemic rabbits. Numerous observations suggest
that VSMCs in atherosclerotic lesions have changed from a
contractile to a synthetic state (3), in which they can respond
to different growth factors and synthetize extracellular matrix
(4). “Activated” VSMCs can also migrate toward the arterial
lumen and express abundant levels of novel matrix
components and proteases that modify the surrounding
matrix. This “growth and synthetic” response of VSMCs
contributes to atheroma formation.

Excessive VSMC proliferation also contributes to
restenosis, the recurrence of arterial narrowing at the site of
balloon angioplasty that occurs in 20-55% of coronary artery
disease patients after successful angioplasty (1, 5, 6). Acute
disruption of the protective endothelial lining at the site of
angioplasty appears to trigger this aggressive form of
atherosclerosis, which is typically characterized by exuberant
VSMC hyperplastic response (7-9), extracellular matrix
accumulation (10, 11) and local "remodeling" (elastic recoil)
of the dilated vessel (12, 13).

Cell cycle progression and cellular proliferation in
mammals requires the activation of cyclin-dependent kinases
(CDKs) through their association with regulatory subunits
called cyclins (14, 15). Different CDK/cyclin holoenzymes
are orderly activated at specific phases of the cell cycle.
Active CDK/cyclin complexes are presumed to
hyperphosphorylate pRb and the related pocket proteins p107
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Figure 1: Hypercholesterolemia induces abnormal cell
proliferation in the aortic arch. Male New Zealand rabbits
were fed a control diet (A, B) or a cholesterol-rich diet for 2
months (C, D). Animals received 4 intraperitoneal injections
of 5-bromodeoxyuridine (BrdU) during the last 2 days prior to
sacrifice to identify proliferating cells. The aortic arch was
embedded in paraffin and cut in 5-micron sections for
immunohistochemistry using a mouse monoclonal anti-BrdU
antibody and an streptavidin-peroxidase detection system.
Dark nuclei indicate BrdU-immunoreactive cells. Specimens
were countestained with hematoxylin. Arrowheads point to
the internal elastic lamina, which marks the boundary
between the tunica media (composed of VSMCs and elastic
fibers) and the intima (composed of a monolayer of
endothelial cells in control arteries). Immunohistochemistry
using mouse monoclonal anti-RAM11 antibody (not shown)
demonstrated that the intimal lesion at these early time points
is mainly composed of macrophages. Note the presence of
BrdU-positive VSMCs in the media (C) and macrophages in
the intimal lesion (D) of hypercholesterolemic rabbits.

and p130 from mid G1 to mitosis. The interaction among
members of the E2F family of transcription factors and
individual pocket proteins is a complex regulatory event that
determines whether E2F proteins function as transcriptional
activators or repressors (16-20). VSMC proliferation in the
balloon-injured rat carotid artery is associated with a
temporally and spatially coordinated expression of CDK2 and
its regulatory subunits, cyclin E and cyclin A (21). Induction
of these factors correlated with increased CDK2-, cyclin E-
and cyclin A-dependent kinase activity, indicating the
assembly of functional CDK2/cyclin E and CDK2/cyclin A
holoenzymes in the injured arterial wall. Expression of CDK2
and cyclin E was also detected in human VSMCs within
atherosclerotic and restenotic tissue (21-23), suggesting that
induction of positive cell-cycle control genes is a hallmark of
vascular proliferative diseases.

CDK activity is negatively regulated by specific cell
cycle regulators, termed CDK inhibitors (CKIs), which
associate with and inhibit the activity of CDKs (15, 24-26).
CKIs of the CIP/KIP family (p21, p27 and p57) bind to and
inactivate CDK2-containing holoenzymes, while members of
the INK4 family (p15, p16, p18, p19) are specific for CDK4-
and CDK6-containing holoenzymes. In addition to its
inhibitory effect on CDKs, p21 can also inhibit DNA
replication through direct interaction with proliferating cell

nuclear antigen (PCNA) (27, 28). Separate domains of p21
are involved in the inhibition of CDK and PCNA (29, 30),
and reversible phosphorylation at the C-terminal regulatory
domain of p21 modulates PCNA binding (31). In the next
sections, we will discuss the role of CKIs in the pathogenesis
of atherosclerotic cardiovascular diseases.

3. DISCUSSION

3.1. Inhibition of VSMC proliferation by CKIs
While proliferating cells are present at all stages of

development of atherosclerotic lesions (1, 2), studies with
Watanabe heritable hyperlipidemic and hypercholesterolemic
fat-fed rabbits have demonstrated an inverse relationship
between lesion size (and severity) and the proliferative index
in the arterial wall (32-35). These findings suggest that cell
proliferation may be a relatively early event in the atherogenic
process. Likewise, balloon angioplasty leads to a rapid
proliferative response of VSMCs within the media, followed
by a second peak of proliferation in neointimal VSMCs which
then resume a quiescent phenotype within 2-6 weeks after
angioplasty (36-40). Thus, both atherosclerosis and restenosis
are characterized by the reestablishment of the quiescent
phenotype after the initial burst of proliferation.

Recent studies suggest that p27 and p21 are
physiological regulators of VSMC proliferation that
contribute to limiting neointimal hyperplasia during arterial
repair. Balloon angioplasty in rat and porcine arteries resulted
in the induction of p21 and p27 in VSMCs at time points that
correlated with reduced CDK2 activity and the decline in
VSMC proliferation (41-43). Moreover, overexpression of
p27 efficiently blocked mitogen- and c-fos-dependent
induction of cyclin A promoter activity in cultured VSMCs
(41, 44). Thus, upregulation of p21 and p27 may limit VSMC
growth at late time points after angioplasty (Figure 2). In
agreement with this hypothesis, Chang et al. (45) and Yang et
al. (43) first demonstrated that adenovirus-mediated
overexpression of p21 attenuated neointimal thickening in
balloon-injured rat and porcine arteries. Likewise, Chen et al.
reported that local delivery of adenovirus encoding for p27 at
the time of angioplasty reduced neointimal hyperplasia in the
rat carotid artery (41). Additional studies by other
investigators have corroborated the ability of p21 and p27 to
inhibit the development of injury-induced vascular occlusive
lesions (46, 47). These studies also showed that
overexpression of p16 failed to inhibit neointimal VSMC
proliferation (47). Of note is that induction of p27, but not
p21, is associated with inhibition of VSMC proliferation in
cells stably transfected with PKC delta (48). Whether PKC
delta is involved in the upregulation of p27 after angioplasty
in vivo remains to be explored.

Tanner et al (42) analyzed CKI expression in
human coronary arteries ranging from normal to advanced
atherosclerosis. Expression of p27 was abundant within
normal and atherosclerotic arteries. While p21 was
undetectable in normal arteries, its expression was elevated in
atherosclerotic tissue. In this same study, p16 could not be
detected in normal or atherosclerotic specimens,
demonstrating that the CIP/KIP and INK4 families of CKIs
have different temporal patterns of expression in VSMCs in
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Figure 2: Role of p21 and p27 in the regulation of VSMC
growth after angioplasty. Using several animal models of
balloon angioplasty, it has been shown that injury-induced
vascular remodeling is characterized by a rapid proliferative
response of VSMCs within the media, which migrate towards
the arterial lumen and initiate a second wave of proliferation
within the intimal lesion. Two to four weeks after angioplasty,
VSMC proliferation returns to basal levels. Medial and
intimal VSMC proliferation correlates with low level of
expression of p21 and p27 and high CDK2 activity. Reduced
CDK2 activity and low proliferation at later time points
coincides with upregulation of p21 and p27, suggesting that
induction of these CKIs may contribute to the reestablishment
of the quiescent phenotype. Consistent with this notion,
adenovirus-mediated overexpression of p21 and p27
following angioplasty limited intimal thickening (See text for
details).

balloon-injured arteries and atherosclerotic lesions. More
recently, Ihling et al (23) have demonstrated coexpression of
type I and II transforming growth factor-beta (TGF-beta)
receptors in virtually all cells positive for p27 within human
atherosclerotic tissue. In the atherosclerotic specimens,
approximately 13% of the nuclei were positive for cyclin E,
whereas in the control tissue cyclin E staining was restricted
to 0.19% of the cells. Importantly, about 5% of p27-positive
cells disclosed cyclin E immunoreactivity. These results
suggest that TGF-beta present in human atherosclerotic tissue
may mediate its growth suppressive activity through p27-
dependent blockade of cyclin E-CDK2 activity.

Internal mammary artery (IMA) bypass grafts have
a higher patency than saphenous vein (SV) grafts. Yang et al.
(49) examined the growth properties of human VSMCs
isolated from IMAs and SVs. Cell outgrowth from explants
over a 20-day period and serum-induced increase in cell
number over an 8-day period were more pronounced in SV
than in IMA of the same patient. These differences in the
response to growth stimuli were observed despite functional
growth factor receptor expression and MAPK activation in
VSMCs isolated from both SVs and IMAs. Platelet-derived
growth factor-BB (PDGF-BB) markedly downregulated p27
protein level in SV, but this was much less pronounced in
IMA. Thus, sustained p27 expression in spite of growth
stimuli may contribute to the resistance to growth of VSMCs
from IMA and to the longer patency of arterial versus venous
grafts.

Fibroblast growth factor 2 (FGF2 or basic FGF)
plays a critical role in the induction of medial VSMC
proliferation in balloon-injured arteries (50-52). In marked
contrast, neutralizing antibodies to FGF2 failed to inhibit
intimal VSMC proliferation after balloon angioplasty (53),
and only a small increase in proliferation was seen when
FGF2 was added to arteries with existing intimal lesions (50,
52). Attenuated FGF2-dependent proliferation of intimal
VSMCs occurred despite a robust activation of the MAPK
pathway and induction of positive cell cycle regulators (i. e.,
cyclin D, cyclin E, CDK2 and CDK4) (52). Interestingly,
intimal VSMCs expressed high levels of p15 and p27
compared with medial VSMCs, and FGF2 infusion did not
reduce the level of these inhibitors in arteries with established
intimal lesion. Collectively, the studies by Yang et al. (49)
and Olson et al (52) using different sources of VSMCs
suggest that high level of expression of p15 and p27 can
attenuate VSMC proliferation in spite of the activation of the
MAPK pathway and expression of cell cycle activators.

3.2. Role of p21 and p27 in the control of VSMC growth
by extracellular matrix components

Accumulating evidence indicates that specific
components of the extracellular matrix (ECM) and integrins
are physiological cell-cycle control elements in
atherosclerosis and restenosis (54). Neointimal VSMCs within
atherosclerotic lesions synthesize novel ECM components and
induce the expression of matrix-degrading proteases that
remodel the surrounding ECM. For example, matrix-
degrading metalloproteinase (MMP) expression is induced
within atherosclerotic plaques and after balloon angioplasty
(55-58). Moreover, MMP inhibitors repressed VSMC
proliferation in vitro and after angioplasty in vivo (59-61).
Accordingly, these ECM enzymes have been implicated in the
induction of neointimal VSMC hyperplasia during
atherosclerosis and restenosis.

Integrins are transmembrane heterodimers that bind
to a number of ligands, primarily ECM molecules, and
stimulate a variety of transduction pathways (62). One
integrin in particular, alphavbeta3, is thought to interact with
osteopontin and play a critical role in regulating cellular
functions deemed essential for restenosis including migration,
ECM invasion and proliferation of VSMCs (63). Alphavbeta3
has been found to be expressed by VSMCs in the intima of
diseased human coronary arteries (64) and is upregulated
following balloon injury of baboon brachial arteries (65).
Further evidence of the importance of this integrin in the
pathogenesis of restenosis has been provided by showing that
selective alphavbeta3 blockade could potently limit neointimal
hyperplasia in animal models of arterial injury (66, 67).
Interestingly, it has been suggested that inhibition of
alphavbeta3 could constitute a potential mechanism for the
beneficial effects on clinical restenosis of abciximab (an
inhibitor of platelet glycoprotein IIb/IIIa) in patients
undergoing high-risk percutaneous coronary interventions
(68).

Changes in collagen content have been well
documented in different animal models of atherosclerosis and
angioplasty (11, 69, 70). To investigate whether changes in
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Figure 3: Thrombospondin 1 expression is induced in
atherosclerotic plaques and restenotic lesions. Schematic
showing the deleterious effects of TSP1 accumulation within
injured arteries. TSP1 is secreted at the sites of arterial injury
by macrophages and T-lymphocytes. In the left part is show
the inhibitory effect of TSP1 on endothelial cell (EC)
migration and proliferation, which delays reendothelialization
after balloon angioplasty. On the other hand, TSP1 stimulates
VSMC proliferation and migration, therefore contributing to
intimal thickening. Consistent with these harmful effects of
TSP1, antibody blockade of TSP1 promotes
reendothelialization and reduces intimal lesion development
after angioplasty in the rat carotid artery. In vitro experiments
have shown that p21 is essential for TSP1-dependent
regulation of cellular proliferation (See text for details).

collagen may regulate VSMC proliferation, Koyama et al.
studied the growth properties of VSMCs cultured on
monomer collagen fibers and on polymerized collagen (71).
The rationale for these studies is that polymerized collagen
may resemble the scenario of a normal artery composed of
quiescent VSMCs, and monomer collagen might mimic the
ECM surrounding proliferating VSMCs within atherosclerotic
and restenotic plaques. Consistent with this interpretation,
mitogen-stimulated VSMCs proliferated in culture dishes
coated with monomer collagen, but were arrested in G1 when
grown on polymerized collagen. The inhibitory effect of
polymerized collagen on VSMC growth appeared to be
mediated by alpha2 integrins, and was associated with
suppression of p70 S6 kinase and upregulation of p21 and
p27. These findings indicate that the ability of VSMCs to
respond to growth signals in vitro is highly dependent on
changes in specific ECM components through regulation of
CKIs. Of note is that lack of proliferation in nonadherent
NRK fibroblasts can be linked to an increased association of
p21 and p27 to cyclin E-containing holoenzymes (72). Further
studies are required to determine whether cell cycle control in
the arterial wall is linked in vivo to integrins and ECM
components through changes in CKI expression.

The glycoprotein thrombospondin 1 (TSP1) is a
component of the ECM synthesized and secreted by activated
platelets (73) and a variety of cell types including ECs (74,
75), macrophages (76), fibroblasts (77) and VSMCs (78).
TSP1 is a 450 kD homotrimer that interacts with multiple
extracellular macromolecules and cell surface receptors, thus
exerting a wide range of functions (79, 80). TSP1 can induce
EC growth arrest in vitro (81, 82), and inhibits the
spontaneous development of angiogenic tube-like structures
both in vitro and in vivo (83-85). In marked contrast, TSP1
promotes VSMC proliferation and migration (86, 87), and

plays a stimulatory role in platelet activation and aggregation
(88, 89). TSP1 expression has been associated with
atherosclerotic lesions, acute vascular injury,
hypercholesterolemia and hypertension (75, 90-95). Thus,
TSP1 may have detrimental effects of the vessel wall (Figure
3). Consistent with this notion, antibody blockade of TSP1
accelerated reendothelialization and reduced neointima
formation in balloon-injured rat carotid artery (96).
Neutralizing A4.1 anti-TSP1 antibody inhibited CDK2
activity and blocked the induction of S-phase entry which
normally occurs in serum-stimulated VSMCs (97). This
growth inhibitory effect was associated with a marked
induction of total cellular p21 expression and increased level
of CDK2-bound p21 in A4.1-treated VSMCs. A4.1 antibody
inhibited [3H]-thymidine incorporation in wild-type, but not in
p21-deficient mouse embryonic fibroblasts, suggesting that
p21 plays an essential role in TSP1-mediated control of
cellular proliferation.

3.3. Role of CKIs in nitric oxide-dependent suppression of
VSMC proliferation

Nitric oxide (NO) has critical roles in the
maintenance of vascular homeostasis. In addition to its role as
a vasodilator, NO inhibits platelet function, leukocyte
adhesion to ECs, and VSMC growth (98, 99). Teleologically,
the lack of endothelium-derived NO production due to
disruption of the protective endothelial lining after balloon
angioplasty might be expected to contribute to VSMC
hyperplasia. Consistent with this notion, arterial delivery of
EC mitogens that accelerated reendothelization also
attenuated neointimal hyperplasia after vascular injury (100-
102). Studies with endothelial NO sinthase (eNOS)-deficient
mice have provided direct evidence for the importance of
endothelium-derived NO in vascular response to injury (103,
104). Moreover, high production of NO by intimal VSMCs
via inducible NOS (iNOS) may contribute to the restoration of
the quiescent phenotype after balloon angioplasty (105, 106).
Of note is that NO from VSMCs can reduce eNOS protein
expression by ECs via a tumor necrosis factor (TNF) alpha-
dependent mechanism (107).

Administration of the NO precursor L-arginine
(108-111), or in vivo transfer of NO synthase gene (112-116)
inhibited neointimal lesion development in several animal
models, including balloon angioplasty, cholesterol-induced
atherosclerosis and allograft atherosclerosis. Conversely,
inhibition of NO production by treatment with NG-nitro-L-
arginine methyl ester (L-NAME) accelerated neointima
formation in hypercholesterolemic rabbits (117) and
apolipoprotein E-deficient mice (118). These findings are
consistent with the observation that resistance of VSMCs to
NO contributes to abnormal endothelium-dependent
vasodilation during hypercholesterolemia (119), and suggest
that NO plays a critical role during the pathogenesis of
vascular proliferative diseases.

Recent studies have shed significant insight into the
mechanisms involved in the antiproliferative effect of NO.
When starvation-synchronized human VSMCs were serum-
restimulated, the mRNA and protein levels of p21 were high
in early G1 and then rapidly decreased prior to the induction
of CDK2 activity (120). Addition of the NO donor S-nitroso-
N-acetylpenicillamine (SNAP) to serum-restimulated VSMCs
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inhibited DNA synthesis assessed by [3H]thymidine
incorporation. The antiproliferative effect of SNAP was
associated with enhanced and sustained p21 expression,
increased amount of CDK2-associated p21 and inhibition of
CDK2 activity (120). Moreover, evidence has been presented
suggesting that NO-dependent VSMC growth arrest results, at
least in part, from the repression of cyclin A gene
transcription (121).

The involvement of cGMP in NO-dependent
regulation of CKI expression is controversial. Loss of NO
responsiveness in aged rats due to the lack of the beta subunit
of soluble guanylyl cyclase may contribute to the enhanced
intimal thickening in response to injury in old animals (122).
Gu et al suggested that NO increases p21 expression by a
cGMP-dependent mechanism that includes activation of
extracellular signal-regulated kinase (Erk) and p70 S6 kinase
(123). In contrast, Sarkar et al. reported that NO inhibition of
VSMC proliferation is associated with two distinct and
reversible cell cyle arrests, an immediate cGMP-independent
S-phase block followed by a shift back in the cell cycle from
the G1-S boundary to a quiescent G0-like state (124).
Likewise, Tanner et al. suggested that upregulation of p21 in
VSMCs treated with the NO donor
diethylenetriamineNONOate may occur independent of
cGMP (125). It is important to note that
diethylenetriamineNONOate did not change p27 expression,
whereas a transient increase in p27 in CDK2
immunoprecipitates, without changes in total cellular p27,
correlated with the delay in CDK2 activation caused by
cGMP in human VSMCs (126). cGMP-elevating agents
inhibited EGF-induced VSMC proliferation by a mechanism
that appears to involve the repression of Ras-dependent
activation of Raf-1 (127). While the above studies clearly
suggest a role of p21 and p27 in NO-dependent VSMC
growth arrest, additional studies are required to clarify the
role of cGMP in this pathway.

Several studies have suggested the contribution of
adventitial myofibroblasts to vascular remodeling and intimal
lesion formation after experimental angioplasty (128). In this
regard, it is noteworthy to point out that NO has been
implicated as a potential regulator of the cell cycle in aortic
adventitial myofibroblasts through a cGMP-mediated
transcriptional mechanism involving the induction of p21
(129).

3.4. p27 as a regulator of the phenotypic response of
VSMCs to mitogenic and hypertrophic stimuli

VSMC hypertrophy is associated with
cardiovascular disease in elderly and hypertensive
individuals. Therefore, a better understanding of the
molecular mechanisms underlying the onset of VSMC
hypertrophy may have implications for the design of novel
therapeutic interventions in cardiovascular disease.
Angiotensin II (Ang II) has been shown to stimulate
hypertrophy but not hyperplasia of quiescent VSMCs in
serum-free media, in spite of increased expression of several
protooncogenes and autocrine growth factors (130-133).
While both serum and Ang II treatment of quiescent VSMCs
led to upregulation of positive cell-cycle regulators, including
proliferating cell nuclear antigen, cyclin D1, CDK2 and

CDK1, only serum-treated VSMCs induced CDK2 and CDK1
activity (134). Braun-Dullaeus et al. provided compelling
evidence implicating p27 as a molecular switch that regulates
the phenotypic response of VSMCs to mitogenic and
hypertrophic stimuli (134). Their experiments show that Ang
II-induced hypertrophy of quiescent VSMCs correlated with
sustained expression of p27, unlike serum-dependent cell-
cycle reentry of starvation-synchronized cells, which
correlated with a marked downregulation of p27 protein level.
Importantly, forced overexpression of p27 inhibited serum-
stimulated proliferation and induced VSMC hypertrophy.
Moreover, inhibition of p27 expression in VSMCs treated
with antisense oligodeoxynucleotides increased [3H]-
thymidine incorporation and the percentage of S-phase cells
in Ang II-treated cultures. These results demonstrate that Ang
II treatment of quiescent VSMCs is associated with cell-cycle
entry, but hypertrophic rather than hyperplastic growth may
prevail by the failure of cells to downregulate p27. In another
study, Servant et al. (135) compared the effects of Ang II and
the mitogenic factor PDGF-BB on cultured VSMCs. While
both factors stimulated the accumulation of G1 cyclins and
CDKs, only PDGF-BB activated CDK2 in late G1. Lack of
CDK2 activity in Ang II-treated cells correlated with
sustained p27 protein level. In contrast, PDGF-BB
downregulated p27 expression, and this effect correlated with
a reduced rate of synthesis and an increased rate of
degradation of p27. Moreover, the reduction in p27 synthesis
by PDGF-BB was associated with diminished p27 gene
transcription and decreased mRNA accumulation.
Collectively, these studies identify p27 as an important
regulator of the phenotypic response of VSMCs to mitogenic
and hypertrophic stimuli.

4. PERSPECTIVES

Abnormal VSMC hyperplastic and hypertrophic
growth play an important role in the pathogenesis of
cardiovascular diseases, including atherosclerosis and
restenosis. Because of the public health importance and
economic impact of these pathological processes, elucidating
the regulatory factors and molecular mechanisms that control
VSMC growth is currently the subject of active research. In
this review, we have discussed the role of CKIs in the
regulation of VSMC proliferation. In vitro studies have
implicated p27 as a molecular switch that regulates the
phenotypic response of VSMCs to mitogenic and
hypertrophic stimuli. Moreover, induction of endogenous p21
and p27 at late time points after balloon-angioplasty may
contribute to the restoration of the quiescent phenotype during
vascular remodeling. Consistent with this notion, adenovirus-
mediated overexpression of p21 and p27 inhibited VSMC
hyperplasia and prevented arterial narrowing in balloon-
injured rat and porcine arteries. In a recent study (136), cDNA
array hybridization techniques showed that p21 induces the
expression of genes implicated in atherosclerosis, including
serum amyloid A (137), connective tissue growth factor
(138), and galectin-3 (139). It is therefore essential to
continue our efforts to elucidate the molecular mechanisms
governing the control of CKI expression in the vessel wall.
Ultimately, a thorough understanding of these regulatory
networks may lead to the development of novel therapies for
the treatment of vascular proliferative diseases in human
patients.
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