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1. ABSTRACT

Injury to the cardiovascular system causes  an
elevated expression of endothelin-1 (ET-1) and activation
of several important signaling pathways including the
mitogen-activated kinase (MAPK) cascade. The activation
of these pathways has been implicated in the pathogenesis
of  cardiovascular disease caused by hypoxia, infections,
and ischemia /reperfusion injury, cardiomyopathy and
restenosis after balloon angioplasty. Important  downstream
targets of the MAPK and ET-1 pathways are the cell cycle
regulatory molecules (cyclins, cyclin-dependent kinases,
and cyclin-dependent kinase inhibitors). Regulation of
these molecules contributes to remodeling throughout the
cardiovascular system. In addition, cell cycle molecules are
important in the regulation of angiogenesis. These new data
have led to the development of potential therapeutic
modalities targeting these regulatory molecules in order to
ameliorate various cardiovascular disease states.

2. INTRODUCTION

Coronary arteriosclerosis and subsequent
ischemia and infarction are common causes of myocardial
injury. Cardiomyopathy and congestive heart failure (CHF)
may result from a variety of etiologies including infarction
and infection. The molecular basis of the pathogenesis of
cardiovascular diseases has become the focus of intense
investigation in many laboratories. In that regard,
dysregulation of cell cycle regulatory molecules (cyclins,
cyclin-dependent kinases and cyclin-dependent kinase

inhibitors) has been demonstrated to be associated with
disorders of the cardiovascular system. The alterations in
the expression of the cell cycle regulatory molecules result
in remodeling of the myocardium and its vasculature. In the
cardiovascular system, the cell cycle regulatory molecules
are targets of interrelated pathways including the mitogen
activated protein kinase (MAPK) cascade, endothelin-1
(ET-1) and angiotensin II.

The role of cell cycle regulatory molecules in
arteriosclerosis, restenosis, angiogenesis, cardiac
hypertrophy and myocarditis has been examined. The
MAPK-ET-1-cyclin pathways are involved in modulating
the cell cycle machinery in cardiac myocytes and the
endothelium and may thus serve as potential targets for
therapeutic modalities that include the repair of myocardial
tissue following ischemia or infarction and reversal of
restenosis following angioplasty.

3. ENDOTHELIN

Endothelial cells and cardiac myocytes are major
sources of ET-1, a potent vasoconstrictor and mitogen (1).
The synthesis of ET-1, the result of the action of endothelin
converting enzyme (ECE), has several pharmacological
actions in the cardiovascular system which are mediated by
the ET-1 receptors (ETA or ETB) (2,3). The discovery of
these receptors stimulated the development of receptor
antagonists and significantly increased the research into the
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molecular biology, physiology and pharmacology of ET-1
(4,5). The primary effects of ET-1 are mediated by the ETA
receptor including vasoconstriction and smooth muscle cell
proliferation (6). ET-1 activates the MAPK cascade and the
transcription factor activator protein-1 (AP-1), thus
promoting smooth muscle cell proliferation (7). In addition,
the presence of an AP-1/Jun-binding site in the 5’-flanking
region of the ET-1 gene leads to the rapid induction of ET-
1 mRNA (4).

Plasma ET-1 levels are elevated in humans and
experimental animals with CHF, myocardial infarction,
septic shock and infectious agents including murine viral
and Trypanosoma cruzi -induced myocarditis (Chagas’
disease)  (4, 5, 8-13). Locally produced ET-1 acts on
cardiac myocytes in both an autocrine and/or paracrine
manner, increasing the contraction of smooth muscle cells
and induces chronic myocardial hypertrophy and cardiac
myocyte injury. ET-1 improves contraction in the failing
heart and up-regulation of ET-1 provides short-term
inotropic support for the failing myocardium despite
vasoconstriction (4). Treatment with an ETA receptor
antagonist improves the survival of animals with CHF (4,
14,15) and is accompanied by improvement in left ventricle
(LV) dysfunction and in ventricular remodeling. Recently,
an endothelin receptor antagonist was demonstrated to
ameliorate murine viral myocarditis (14). This suggests that
upregulation of ET-1 may also be a potential target for
therapeutic intervention. ET-1 production is increased in
the myocardium of rats with CHF. The increased
expression of myocardial ET-1 correlates positively with
LV diastolic pressure. Plasma ET-1 levels also correlate
with infarct size and severity of CHF in humans. In many
pathological states elevated ET-1 levels reflect the degree
as well as a mechanism of endothelial cell and cardiac
myocyte damage.

Studies on the putative role for ET-1 in the
modulation of cardiovascular structure has focused on the
role of ET-1 in the induction of smooth muscle cell
proliferation. ET-1 stimulates smooth muscle cell
hypertrophy, protein synthesis and the incorporation of 3[H]
thymidine. These effects of ET-1 are mediated, in part, by
activation of the smooth muscle cell ETA receptor.
Activation of this receptor results in the synthesis of Types
I and III collagen and reduction in collagenase activity
(5,16).

Vasospasm and abnormal vascular smooth
muscle proliferation are important complications of both
arteriosclerosis and vascular wall trauma such as seen
following balloon angioplasty. Arteriosclerosis and
angioplasty are associated with enhanced ET-1/ECE
immunoreactivity. Elevated levels of ET-1 promote acute
vasospasm and chronic vascular remodelling. Following
experimental balloon injury there is neointima formation
(17,18) associated with an induction of ET-1, ECE and
endothelin receptor mRNA and protein expression.
Administration of endothelin receptor antagonists and ECE
inhibitors results in a reduction in neointima formation
suggesting a role for ET-1 in the pathogenesis of restenosis
(19). The relationship between ET-1 and induction of cell

cycle regulatory molecules has only recently been explored
(20). It appears that extracellular signal-regulated kinase
(ERK) and protein kinase C are involved in this process.
Another vasoactive peptide, angiotensin II, activates cyclin
D1 expression, DNA synthesis and cellular proliferation
(21).

4.  MITOGEN ACTIVATED PROTEIN KINASE
(MAPK) CASCADE

Myocardial ischemia and hypoxia activate the
MAPKs and the transcription factor, AP-1(85).  AP-1 is an
important factor in the activation of ET-1 and the Ras-
MAPK signaling pathway is critical to the activation of
AP-1(Figure 1). There are 3 major MAPKs in mammalian
cells, ERK, SAPK/JNK and p38. However, only ERK and
JNK, contribute to the activation of AP-1. Each MAPK
affects AP-1 activity through specific phosphorylation of
different substrates (TCF/ELK-1, c-Jun and ATF-2). The
two MAPKs that affect AP-1 activity differ in their
responses to extracellular stimuli. For example, growth
factors and phorbol esters stimulate ERK, while (JNK)
activity is induced by UV irradiation (22-24). Although
both kinases are stimulated in response to Ras activation
(25), JNK also responds to Ras-independent signals (26).
Ras is a GDP/GTP-regulated binary switch that resides at
the inner surface of the plasma membrane. It functions
downstream of receptor tyrosine kinases and acts to relay
extracellular signals to cytoplasmic signaling cascades. The
major pathway leading from Ras to ERK are through the
Raf cascades (Raf→MEK→ERK) providing a complete
link between the cell surface and the nucleus (25). Ras and
the other small GTP-binding proteins, Rac1, Rho and
Cdc42 function upstream to activate JNK cascades (27).
Smooth muscle cell proliferation is important aspects of
vascular damage and repair. Activation of phosphorylated
ERK (ERK1/2) contributes to smooth muscle cell
proliferation and contraction. In that regard, PD98059, an
inhibitor of MEK1, prevents the growth of smooth muscle
cells in response to a variety of stimuli. Activation of
ERK1/2 and medial  smooth muscle cell proliferation
occurs as a result of balloon injury to carotid and coronary
artery in animal models that is markedly reduced by the
administration of PD98059 (28).

5. CELL-CYCLE REGULATORY MOLECULES

5.1. Cardiac cell cycle
Cyclins are proteins that are synthesized and

destroyed during each mammalian cell cycle (29). Eight
cyclins have been described: A, B1,2 3, C, D1,2,3 E, F, G,
H. They all share a 150 amino acid region of homology, the
“cyclin box.” They bind to the N-terminal end of specific
cyclin-dependent kinases (CDKs) (30). G1 cyclins (D1-3, E
and A) are short-lived proteins that function during the G1
phase and the G1-S transition before their destruction via
the ubiquitin pathway. Cyclins A and B remain stable
during interphase and are rapidly destroyed by proteolysis
during mitosis. Different cyclins specifically bind to
different CDKs to form complexes at specific phases of the
cell cycle thereby driving cells from one stage to another.
The CDKs are protein kinases, which bind to and are
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Figure 1.  The relationship between the MAPK cascade,
ET-1 and the cyclins. Note also that  that ET-1 may activate
ERK and that angiotensin II may activate  the MAPK
cascade, ET-1 and the cyclins.

Figure 2.  Hypothesis of Brooks et al (32) for the
involvement of cell cycle regulatory molecules in the
development of hypertrophic growth of cardiac myocytes.
They have hypothesized that normal adult cardiac
myocytes are arrested in the G0/G1 phases of the cell cycle.
This is associated with an increase in the expression of
CDKIs and a decrease in cyclins and CDKs. Hypertrophic
growth is associated with the cells proceeding through the
G1 , S and arresting in the G2  phase. This is associated with
an increase in the expression of cyclins and CDKs with an
accompanying decrease in CDKI expression. The
hypertrophied cardiac myocyte is unable to undergo
mitosis. (Reprinted from Cardiovascular Research, 39,
Brooks G, Poolman RA, Li J-M, Arresting developments in
the cardiac myocyte cell cycle: Role of cyclin-dependent
kinase inhibitors, 301-311 (1998), with permission from
Elsevier Science).

activated by specific cyclins. Thus the cell cycle
progression is regulated by CDKs which are positively
regulated by association with cyclins and negatively
regulated by CDK inhibitors (CDKIs).  Cdk 4, cdk5 and
cdk6 complex mainly with the cyclin D family and function
during the G0/G1 phases. Cdk2 can also bind to members of
the cyclin D family but more commonly associates with
cyclins A and E and function during G1 and G1-S transition.
CDKIs comprise two major families, Ink4 and Cip/Kip.
The Cip/Kip family is composed of p21Cip1, p27Kip1 and
p57Kip2 and inhibits many CDKs including Cdk2, Cdk4 and
Cdk6. Ink4 includes p14, p15, p16, p18 and p19 and
inhibits mainly G1 cyclins (29).

During early cardiac development cardiac
myocytes differentiate from mesoderm into striated muscle.
They contract and despite this, retain their capability of
dividing. During fetal development the increase in cardiac
mass is the result of increased cardiac cell proliferation.
Cardiac myocyte division ceases asynchronously over fetal
life, so that by early neonatal life any subsequent increase
in cardiac mass is the result of an increase in myocyte size
(31,32). The reasons for the irreversible withdrawal of the
cardiac myocyte from the cell cycle are not entirely
understood (33). However, it appears that the adult heart
retains the ability to undergo DNA synthesis following
hemodynamic overload or injury. Cardiac myocytes are
capable of re-entering the cell cycle although there is little
evidence that these cells undergo mitosis. A hypothesis to
explain the involvement of cell cycle regulatory molecules
and the development of cardiac myocyte hypertrophic
growth is illustrated in Figure 2 and reviewed by Brooks et
al (32).

The inability of mature cardiac myocytes to
undergo cell division leads to major consequences
following severe injury such as myocardial infarction, since
the heart is unable to regenerate new cardiac myocytes to
replace damaged tissue. Therefore, understanding the
mechanisms by which cell cycle molecules participate in
cardiac myocyte proliferation and hypertrophy may lead to
new therapeutic strategies targeted at the regeneration of
new cardiac myocytes from healthy cells that surround
infarcted areas. Controlling the growth of cardiac myocytes
in the myocardium may result in the re-initiating DNA
synthesis and cell division thus controlling the repair of
damaged myocardium.

5.2. Myocardial infarction
Injury to the myocardium results in alterations in

cardiac cell cycle molecules. Several studies have
examined DNA synthesis of adult cardiac myocytes under
normal and pathological conditions. It has been reported
that in injured or hypertrophied rat cardiac myocytes, there
are mitotic cells most of which are in the S and G2/M
phases (34-36) (Figure 2). However, other studies have
failed to confirm this increase in DNA synthesis (37,38). It
has been suggested that these differences may be due to
differences in animal species as well as methodology.
Anversa and his colleagues (39,40) have suggested that
cardiac myocytes undergo mitosis but these conclusions
have been questioned (41).
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Myocardial infarction is associated with an
upregulation in the expression of cyclins E, A and B, Cdk2
and Cdc2 in the remaining viable LV cardiac myocytes
(42). It is of interest that cyclins A, B, E and Cdc2 are also
detected in neonatal cardiac myocytes. There is a minority
opinion that cardiac myocytes may not be terminally
differentiated and that their regeneration significantly
contributes to the pathophysiology of the failing heart. The
transition from hyperplastic to hypertrophic growth in heart
involves the key regulators of the cell cycle including
CDKIs (Figure 2). In acute and end-stage heart failure there
is a significant change in CDKI expression. Levels of
p21Cip1 and p27Kip1 are reduced while the p57Kip2 levels,
expressed in fetal cardiac myocytes, are increased. These
observations are consistent with the notion that injury to the
myocardium may result in the reversion to a fetal pattern of
expression. Cardiac myocytes stimulated to divide may be
driven towards apoptosis. Evidence for this is derived from
studies in which DNA synthesis induced myocytes
transfected with E1A gene triggered apoptosis rather than
division (43).  However, the link between altered CDKI
expression and apoptosis requires further investigation.
Observations in animal models of myocardial infarction
suggest that apoptosis may contribute substantially to cell
death in the central infarct area with 5% to 33% of cardiac
myocytes staining positive for DNA fragmentation.  In
addition, myocytes in the periinfarct region are shown to
activate the apoptotic regulatory proteins bax and bcl-2.
However, at present, the relative importance of apoptotic
and nonapoptotic cell death in both acute and chronic
phases of myocardial infarction is not known(86).

Despite the controversy regarding the cardiac cell
cycle and injury, it is clear that the reactivation of the cell
cycle is important during the acute phase following
myocardial infarction and ischemia. Cardiac hypertrophy is
the physiological response to myocardial infarction, but
becomes pathological when it exceeds normal limits,
resulting in loss of contractile performance and in heart
failure. In recent years, strategies have been attempted to
improve cardiac function, in the heart following infarction.
One such approach utilized the transplantation of myocytes
that have proliferative capacity into infarcted myocardium.
The results from the initial experiments were promising and
suggested that cell transplantation had the potential to be
used as an alternative therapy for regenerating damaged
myocardial tissue. Another approach was to increase the
number of viable cardiac myocytes by manipulating the
expression of cell cycle regulatory molecules by gene
transfer strategies that include oligonucleotide therapy,
adenoviral and adeno-associated viral vectors and
hemagglutinating virus of Japan-liposome-mediated
transfer. Although these approaches are still in their
preliminary stages of development preliminary data are
encouraging (30,44). More recently p27Kip1 knockout mice
have been studied. These mice have multi-organ
enlargement that includes the heart where there is
prolonged proliferation of cardiac myocytes and a
perturbation of cardiac myocyte hypertrophy (45). These
data again underscore the possibility that specific targeting
of certain cell regulatory molecules will enable the
initiation of cell division in healthy cardiac myocyte that

surround an injured area.

5.3. Cardiac hypertrophy and congestive heart failure
Adult cardiac myocytes respond to stimuli such

as pressure overload by hypertrophy. This is a process
associated with protein synthesis and expression of early
genes (c-fos, c-jun, and hsp70) as well as those genes
normally associated with cardiac development. Cardiac
hypertrophy is a normal physiological response that
becomes pathological when normal limits are exceeded.
This results in decreased myocardial contractility and heart
failure (30). The cardiac myocyte responds to pressure
overload with a hypertrophic growth response (46) and if
the response persists it may lead to CHF. In rats, pressure
overload-induced LV hypertrophy is associated with
upregulation in the expression and elevated activities of
cyclin D2, cyclin D3, Cdk2, Cdk4 and Cdk6 whereas
p21Cip1 and p27Kip1 mRNA and protein levels are
downregulated (Figure 2). (30). Therefore, it appears that
certain cell cycle regulatory molecules are associated with
the development of cardiac myocyte hypertrophy. Recent
data indicate that the Cip/Kip family of inhibitors is altered
in heart failure.  In human end-stage CHF, Burton et al (47)
observed a reduction in the levels of p21Cip1 and p27Kip1

and an increase in p57Kip2. This is of interest since p57Kip2

is found only in fetal cardiac myocytes.

6. THE ENDOTHELIUM

6.1. Role of Cell cycle regulatory molecules in
endothelial cell (EC) biology and angiogenesis.

Endothelial cells form a monolayer, which line
the vascular network and are responsible for maintenance
of laminar flow and hemostasis. They are quiescent with a
doubling time of several years (48). This quiescent state is
maintained through the contact inhibition of endothelial
cell growth. The levels of cyclin A mRNA decreased in
confluent bovine aortic endothelin cells (49). This was due
to transcriptional regulation of the activating transcription
factor (ATF)-1 protein that was required for cyclin A
promoter activity.  Contact inhibition also results in
decreased p42/p44 MAPK activation with consequent
inhibition of c-fos and cyclin D1 (50).  Quiescent
endothelial cells also express low levels of Cdk2 and cyclin
E compared to proliferating cells.

Angiogenesis is the process by which new
vessels are derived from the pre-existing mature
vasculature in the adult. This complex process requires
dissolution of the surrounding matrix, migration of cells
along a chemotactic gradient and re-differentiation into
new vessels (48).  As a part of this process endothelial cell
must leave their normal quiescent state and re-enter the cell
cycle.  During angiogenesis, proliferative endothelial cells
become apoptotic in response to antagonists of integrin
αvβ3 leading to the regression of angiogenic blood vessels
(51). The ligation of vascular cell integrin αvβ3 promotes a
critical and specific adhesion-dependent cell survival signal
during angiogenesis leading to inhibition of p53 activity,
decreased expression of p21WAF1/CIP1, and suppression of
cell death (52).  Interestingly, the cyclins also play a role in
the onset of endothelial cell death, vessel regression and
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dissolution.  Apoptosis of human endothelial cells after
growth factor deprivation is associated with rapid and
dramatic up-regulation of cyclin A-associated Cdk2 activity
(53). In apoptotic cells, the C termini of the CDKIs
p21Cip1/Waf1 and p27Kip1 are truncated by specific cleavage.
The enzyme involved in this cleavage is caspase-3 and/or a
caspase-3-like caspase. After cleavage, p21Cip1/Waf1 loses its
nuclear localization sequence and exits the nucleus.
Cleavage of p21Cip1/Waf1 and p27Kip1 results in a substantial
reduction in their association with nuclear cyclin-Cdk2
complexes, leading to a significant induction of Cdk2
activity. These data suggest that the activation of Cdk2
through caspase-mediated cleavage of CDKIs may be
critical in the execution of apoptosis following caspase
activation.  Thus, multiple stages of the angiogenic process
appear to converge on the proliferative capacity of the
endothelium, especially the cyclins, as a determinant of
angiogenic potential. Further, many anti-angiogenic agents
have mechanisms of action, which inhibit endothelial cell
proliferation.  One well-documented example is the
fumagillin analogue AGM-1470, a potent inhibitor of
angiogenesis in vivo and a powerful antitumor agent.
AGM-1470 acts by altering the endothelial cell cycle and
inhibiting growth factor induced proliferation (54).  AGM-
1470 inhibits phosphorylation of the Rb protein, and limits
growth factor-induced mRNA expression of Cdc2 and
cyclins A, E and D1 (54,55).  In addition, AGM1470 also
acts directly on the tumor cell cycle. These observations are
of interest since gene therapy using cDNAs encoding cell
cycle regulatory proteins, which directly manipulate the
cell cycle of a tumor, can also inhibit the angiogenic
potential of the surrounding vasculature.  For example,
restoration of functional p16 in human gliomas led
suppression of tumor vascularization through down-
regulation of vascular endothelial growth factor  (VEGF)
expression (56).  Thus, regulating the ability of endothelial
cells to proliferate is an important and readily manipulated
component of the angiogenic process.

The proliferative response of endothelial cells can
be modulated by multiple factors.  One common pathway
which plays a dual role in endothelial cell proliferation is
the protein kinase C (PKC) pathway.  PKC activation is a
necessary step for the proliferative effects of many pro-
angiogenic factors, including fibroblast growth factor
(FGF-2) and VEGF (57-60).  Additionally, over-expression
studies have shown that some individual isoforms of PKC
are necessary for cell cycle progression in endothelial cells.
Rosales et al (61) observed that PKCβ1 over-expression
promoted bovine aortic endothelial cell growth and
shortened bovine aortic endothelial cell doubling time.
PKCθ activity is required for transition through the G2/M
stage of the cell cycle in microvascular endothelial cells
(62). However, direct manipulation of the PKC pathway via
multiple mechanisms, can also lead to endothelial cell cycle
arrest and therefore decreased angiogenic potential.  For
instance, stimulation of large vessel endothelium with
either PMA or diacylglycerol, two agents that activate
PKC, leads to G2 arrest through decreased activity of cdc2
kinase transition due to inhibition of tyrosine
dephosphorylation  (63).  PMA also decreases cyclin B and
cdc25B expression, which is thought to contribute to

decreased cdc2 kinase activity. In venous, endothelial cells
PKC stimulation during the early G1 phase potentiates
growth factor-stimulated DNA synthesis, the activation of
cdc2 and cdk2 cyclin-dependent kinases, and the mRNA
expression of cdc2, cyclins A, D1 and E. Conversely, PKC
stimulation in the late G1 phase inhibits DNA synthesis,
activation of CDKs and prevents the transcriptional up-
regulation of E2F1, cyclin A and cyclin E (64,65). While
these studies suggest a strong relationship between PKC
activation and regulation of endothelial cell proliferation,
they do not assess the role of individual PKC isoforms.
Rosales et al (61) demonstrated that overexpression of
PKCα reduced proliferation of endothelial cells by
increasing the accumulation of cells in the G2/M phase of
the cell cycle. One isoform that appears to regulate
endothelial cell proliferation is PKCδ.  Decreased PKCδ
activity is a specific requirement of VEGF induced
endothelial cell proliferation and migration (66).  Over-
expression of PKCδ in microvascular endothelial cells
leads to an accumulation of cells in S-phase of the cells
cycle associated with decreased cyclin A, E, and D1
activity and a failure of cyclin D1 to translocate to the
nucleus (67,68).  The sole causal factor was an up-
regulation of the p27kip1 gene.  PKCδ activity is also
specifically responsible for the up-regulation of p21cip1

inhibition of endothelial cell cycle associated with phorbol
ester treatment (69).  Collectively, these data suggest that
the regulation of different PKC isoforms may be an
attractive therapeutic option to modulate angiogenesis and
endothelial cell proliferation.

In atherosclerosis, one event implicated as the
initial step in plaque formation is induction of endothelial
dysfunction or endothelial denudation from the vessel wall.
Endothelial cells perturbed by shear or cytokine exposure
(such as that from activated macrophages) decrease the
soluble factors and intercellular communication that
maintain the quiescent, “contractile” smooth muscle cell
phenotype (70).  Although untested in restoring intimal
integrity after angioplasty, intervention using antisense
technologies has been successful in preventing multiple
facets of graft failure in animal models.  In rabbits,
autologous vein grafts treated with anti-sense
oligonucleotides to either proliferating cell nuclear antigen
or cdc2 kinase have better endothelial function than
untreated or control-transfected grafts (71).  Treated grafts
elaborated more nitric oxide, exhibited greater
vasorelaxation, reduced superoxide radical generation,
VCAM-1 expression and monocyte binding activity.  Thus,
arrest of vascular cell cycle progression preserves the
normal endothelial phenotype and imparts resistance to
atherosclerosis and restenosis.

6.2. Restenosis and neointima formation
Coronary angioplasty has become a commonly

performed technique to establish myocardial
revascularization. However, in 30-60% of cases restenosis
occurs which may or may not be accompanied by recurrent
angina (72). This injury to the vessel causes smooth muscle
cell proliferation, migration and the production of
extracellular matrix. This results in thickening/hyperplasia
of the neointima (72). This is associated with an activation
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Figure 3. Western blot analysis of protein lysate obtained
from Trypanosoma cruzi-infected (I) and uninfected (U)
myocardial tissue. Note the increase in phosphorylated
ERK (ERK1/2) in infected hearts.

Figure 4. Western bot of infected myocardial tissue
demonstrating induction of cyclin A over time (days post
infection). Ctr (control, uninfected myocardial tissue).

of the MAPK-AP-1 pathways (73) and ET-1. Cell cycle
regulatory molecules, downstream targets both of MAPK
and ET-1, are associated with smooth muscle cell and
fibroblast proliferation and hence are responsible for
remodeling in the cardiovascular system. As stated
previously, MAPK and ET-1 blockade has been reported to
ameliorate restenosis. There is a marked induction of
cyclins and CDKs shortly following angioplasty and is
sustained for many days following injury. This is consistent
with the period when neointimal growth is most rapid.
Recently, studies have targeted the cell cycle regulatory
molecules to reduce neoinitma formation following
angioplasty. For example, the principal animal model used
for gene therapy studies is the balloon-injured rat carotid
artery model. There are reports that a single dose of
antisense oligodexoynucleotides directed against Cdk2
and/or Cdc2, and proliferating cell nuclear antigen can
inhibit the proliferation of vascular smooth muscle cells for
an extended period of time following balloon injury
(30,44,74,75). Chang et al (76) performed localized arterial
injection of a nonphosphorylatable form of dominant
negative retinoblastoma protein gene product (Rb) at the
time of angioplasty, which blocked cellular proliferation.
This indicates that phosphorylation of Rb is required for
smooth muscle cell proliferation during neointimal
remodeling after angioplasty. Moreover, Sylvester et al
(75) extended these studies and investigated the
mechanisms that regulate cyclin A gene expression
following angioplasty. These authors demonstrated that a
Ras-dependent mitogenic signaling pathway is essential for
normal stimulation of cyclin A promoter activity and DNA
synthesis in rat smooth muscle cells.

7. INFECTIONS OF THE CARDIOVASCULAR
SYSTEM

7.1. Trypanosoma cruzi infection of the cardiovascular
system

The role of the MAPK-ET-1-cyclin pathways in
the pathogenesis of infections of the cardiovascular system
has not been examined in detail. Trypanosoma cruzi, a
hemoflagellate protozoan parasite, is the etiologic agent of
Chagas’ disease, an important cause of acute myocarditis
and chronic cardiomyopathy in endemic areas of Latin
America (77). This disease is accompanied by arrhythmias
and CHF.  Infection of the cardiovascular endothelium with
this parasite increases the synthesis of ET-1 causing
vascular spasm and myocardial ischemia  (78,79,80,81).
Therefore, we focused on the  T. cruzi infection-associated
activation of upstream pathways leading to activation of
ET-1 (i.e., MAPK- AP-1 pathway) (13,82-86) and the
downstream targets of MAPK and ET-1, the cell cycle
regulatory molecules. These factors are important in the
process of cardiovascular remodeling. We found that in the
myocardium of T. cruzi-infected mice there was an
upregulation of myocardial expression of ERK1/2 (Figure
3), AP-1 and ET-1 (13). In addition, Western bot analysis
revealed an increased expression of cyclin D1 and cyclin A
(Figure 4). Immunohistochemistry demonstrated
localization of ET-1 and cyclin A and D1 to the vascular
endothelium, the endothelium of the endocardium and
fibroblasts. These observations underscore the critical
importance of the endothelium in the pathogenesis of
chagasic cardiomyopathy and in the role of cell cycle
regulatory molecules in the process of remodeling
following this infection.

 8. CONCLUSIONS

The importance of the cell cycle regulatory
proteins in the pathogenesis of a variety of cardiovascular
disease states is now emerging. Whether knowledge of
their regulation will lead to new therapeutic strategies
awaits further investigations.
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