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1. ABSTRACT

The myogenic regulatory factors are necessary
for the determination and terminal differentiation of
skeletal muscle.  Gene targeting experiments have
demonstrated that MyoD and Myf5 are important for
myogenic determination whereas myogenin and MRF4 are
important for terminal differentiation and lineage
maintenance.  During development, all trunk skeletal
muscle is derived from the somite.  Two spatially distinct
sources of myogenic progenitors are defined by the
expression of MyoD or Myf5 and these give rise to hypaxial
and epaxial musculature.  Both in vivo and in vitro analyses
have provided a detailed picture regarding the molecular
events controlling lineage determination, cell migration,
terminal differentiation and tissue repair.  Signal
transduction pathways regulating cell cycle, protein-protein
interactions and myogenic factor gene activation are
implicated in the regulation of myogenesis.  Recent
experiments examining the origin and stem-cell capacity of
satellite cells suggest that these cells may originate from
the vascular system, are multipotential and may be useful
for the treatment of several degenerative diseases.

2.  INTRODUCTION

Skeletal muscle represents an ideal model system
for the study of many biological problems.  Distinct
molecular markers exist that permit detailed analyses of
myogenic determination, myoblast proliferation and
terminal differentiation.  The myogenic regulatory factors
are vital to the determination and maintenance of skeletal
muscle.  During development, the induction of MyoD and
Myf5 expression defines the origin of myogenic progenitor
cells (mpcs) that are responsible for forming distinct
muscle groups of the adult organism.  Gene targeting and
transgenic mice have provided insight into the genetic
relationships within the myogenic regulatory factor family
and with molecules expressed within presumptive
myogenic lineages.  Interesting new insights have been
uncovered explaining the molecular mechanisms that
govern both proliferation and terminal differentiation.  A
number of signaling pathways have been shown to regulate
myogenesis during development and regeneration of
damaged tissue in the adult.  These pathways regulate cell
cycle progression, protein-protein interactions and
transcriptional activity of the myogenic factors.
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Figure 1:  Somitic origin of the trunk musculature.  The left side depicts events that occur in somites at the thoracic level and the
right side shows events at limb-level somites. Dermomyotomal expansion leads to the extension of cells from the dorsomedial lip
(DML) to a position beneath the dermomyotome.  This marks the formation of the epaxial myotome which can be identified by
Myf5 expression.  A similar extention occurs at the ventrolateral lip (VLL) forming the hypaxial myotome.  The cells of the
hypaxial myotome predominantly express MyoD.  At the limb level, cells in the VLL delaminate and migrate to the developing
limbs.  These cells are Pax3, Lbx1, c-Met and Msx1 positive.  Upon arrival, these cells down-regulate Pax3 and initiate
expression of the myogenic regulatory factors, in particular MyoD.  Formation of the body wall musculature occurs via a
continued ventral expansion of the myotome.  It should be noted that the first appearance of the epaxial myotome occurs at day
8.5 whereas the first appearance of the hypaxial myotome is at day 9.5.  NT=neural tube; NC=notocord.

Furthermore, the use of the mdx mouse, which represents a
model system for Duschene’s muscular dystrophy, is
expanding our knowledge of skeletal muscle diseases and
uncovering novel insights regarding satellite cell origins
and potential therapies to alleviate the debilitating effects of
these diseases.

In this review, we will provide the reader with a
basic understanding of the molecular events that are
responsible for regulating myogenic commitment, myoblast
proliferation and terminal differentiation.  Furthermore, we
briefly outline exciting new developments in myogenic
stem cell research.

3.  DETERMINATION AND DEVELOPMENT OF
THE MYOGENIC LINEAGE

3.1. Somitogenesis: formation of epaxial versus hypaxial
musculature

The formation of somite pairs on either side of
the neural tube marks a crucial event during vertebrate
development (for review see 1).  Somites form in a rostral

to caudal direction and epithelization begins about day 7.5
postcoitum (p.c.) in the mouse.  As development proceeds,
somites become subdivided into the ventral sclerotome and
dorsal dermomyotomal domains.  Sclerotomal cells give
rise to the vertebrae and the ribs whereas the
dermomyotome gives rise to the dermis of the back and the
adult skeletal musculature of the trunk (reviewed in 2 and
3).  Early experimentation using quail-chick somite grafts
demonstrated that medial and lateral portions of somite are
patterned by secreted factors from surrounding tissues and
give rise to two distinct populations of myoblasts (4,5,6).
Cells of the medial portion of the somite give rise to the
muscles of the deep back, or epaxial muscles, whereas the
lateral portion develops into the muscles of the body wall
and limbs, or hypaxial muscles (5).

In birds, myotome formation occurs in sequential
stages (for review see 7 and 8).  First, cells in the
dorsomedial lip (DML) extend beneath the dermomyotome,
exit the cell cycle, elongate and terminally differentiate
(9,10). These pioneer cells mark the first appearance of the
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myotome and are followed shortly after formation by a
second wave of cells migrating from the rostral and caudal
portions of the somite (11).  The cells of the second wave
originate in the DML and are dependent upon migration to
enter the myotome from the correct position (11,12).
Myotomal development from cells originating in the DML
represents the epaxial portion of the myotome.  A similar
series of events occurs at the ventral lateral lip (VLL) of the
dermomyotome leading to the formation of the non-
migratory hypaxial portion of the myotome (12,13).
Subsequent expansion of the myotome occurs from the
more superficial to deep regions of the myotome (12).

 At the limb level, events at the VLL occur
differently (Figure 1).  Cells of the VLL undergo an
epithelial to mesenchymal transition, delaminate from the
dermomyotome and migrate to regions of presumptive
muscle development in the limbs (for review see 14).  Limb
muscle formation occurs in temporally distinct waves
involving at least two populations of cells that give rise to
primary and secondary myotubes (6).  In vitro
characterization has shown that these two cell populations
are distinguishable on the basis of clonal morphology and
media requirements (15,16,17).   Moreover, the myosin
heavy chain isoforms expressed by early and late cells
differ suggesting primary myoblasts are destined to give
rise to slow muscle fibers whereas secondary myoblasts
give rise to fast muscle fibers (for review see 18).  In vivo
analyses of somite and limb grafts suggest that these early
and late populations do indeed give rise to slow and fast
fibers, respectively (19).  Although injection of embryonic
myoblasts into limbs of developing birds suggested that
their lineage is maintained (20,21), experiments in adults
support a model in which environmental cues, such as
innervation, play a substantial role in determining fiber-
type potential (22,23).

A third wave of migration, which represents the
adult satellite cells, can be detected during the midfetal
gestational stage in birds (24).  These cells appear to be of
somitic origin (25), and are responsible for the majority of
postnatal skeletal muscle growth (26,27).  In vitro, these
cells can be phenotypically distinguished from primary and
secondary myoblast populations (28,29,30).  Interestingly,
analysis of clonal cultures from adult avian muscle suggests
that satellite cells express a phenotype that is consistent
with their fiber-type origin, although continued passaging
of these cells indicates phenotypic plasticity (29).  Taken
together, development of vertebrate trunk musculature
involves multiple cell lineages that arise from spatially
distinct regions of the somite.  The myogenic regulatory
factors (MRFs) are critical for the appropriate
determination, development and maintenance of these
skeletal muscle lineages.  We will now discuss the current
knowledge regarding the MRFs and how their expression
and activity during embryogenesis is regulated.

3.2. The myogenic regulatory factors
The original cloning of MyoD and demonstration

that it represents a master regulatory gene for the
determination of skeletal muscle, ushered in a new era of
research in skeletal myogenesis (31). This discovery lead to

the cloning of three other factors namely Myf5 (32),
myogenin (33,34), and MRF4/Myf-6/Herculin (35,36,37).
In all cases, overexpresison of these factors converts non-
muscle cells to the myogenic lineage, demonstrating their
role in myogenic lineage determination and differentiation.
Furthermore, the ability of each factor to initiate the
expression of one or more of the other three suggests they
form a cross-regulatory loop (38).

The MRFs belong to the basic helix-loop-helix
(bHLH) superfamily of transcription factors which includes
c-myc.  The HLH domain is responsible for the
dimerization of these factors with the ubiquitously
expressed E-proteins, such as E12, E47, HEB, and ITF, and
the basic domain is responsible for DNA binding
(39,40,41).  Heterodimers bind to the consensus E-box
(CANNTG) DNA sequence motif found in the promoters
of many muscle specific genes (40,42,43).  The bHLH
domains of the MRFs are highly homologous while the
amino and carboxyl terminals show limited homology.
Structurally, the MRFs contain several functionally distinct
domains responsible for transcriptional activation,
chromatin remodeling, DNA binding, nuclear localization
and heterodimerization (44,45,46,47,48).

3.2.1. Developmental expression of the myogenic
regulatory factors

During development the MRFs are expressed in a
highly regulated spatial and temporal fashion (reviewed in
49,50).  In situ hybridization analyses demonstrate that
MRF expression occurs in slightly different patterns in
epaxial versus hypaxial muscle.  Myf5 expression is
detected in the dorsomedial portion of the somite at day 8
p.c. and at day 9.5 in the lateral, or hypaxial domain of the
somite (51,52).  Myogenin is first detected at day 8.5 p.c.
and remains detectable throughout fetal development (53).
MRF4 expression is detected transiently between days 10
and 11 and then reexpressed from day 16 onward to
become the predominant MRF expressed in adult muscle
(54,55,56).  MyoD expression is first detected
approximately day 9.75 in the hypaxial somitic domain and
continues to be expressed throughout development (54,57).
In the limb bud, the temporal appearance of these factors is
slightly different.  Although Myf5 expression is again
detected first, it is followed very quickly by MyoD and
myogenin which are detected from day 10.5 onward
(51,53).  Unlike observations in the somite, MRF4 is not
transiently expressed during limb development but is first
detected at day 16 and becomes the predominant MRF
expressed in the adult (54,55).  Analysis of protein
expression has confirmed the in situ hybridization results
with the dorsal and ventral subdomains of the myotome
predominantly expressing Myf5 and MyoD, respectively
(50).

3.2.2. Lessons from gene targeting
Targeted inactivation of the MRFs has provided a

great deal of insight into the nature of lineage
determination, lineage maintenance and their genetic
relationships.  Mice lacking a functional copy of MyoD are
viable without any obvious defects in skeletal muscle (58).
In a similar fashion, targeted inactivation of the Myf5 gene
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Figure 2:  Functional and genetic relationships of the
MRFs.  Gene targeting experiments indicate that Myf5 and
MyoD are required for the determination of the myogenic
lineage.  By contrast, terminal differentiation is dependent
upon myogenin and MRF4.

gives rise to mice with seemingly normal muscle although
these mice die perinatally due to a severe rib development
defect (59).  Myf5 null mice do not show changes in the
expression pattern of the other MRFs but do demonstrate a
delay in myotome development (59).  Mice lacking both
MyoD and Myf5 genes show a complete absence of
myoblasts and muscle fibers.  This demonstrates that at
least one of these factors is required for determining the
myogenic lineage during embryonic development and
activation of myogenin and MRF4 are dependent upon  the
preceding expression of MyoD and/or Myf5 (60).

Gene targeting of the myogenin locus provided
the first indication of the importance of the MRFs during
development.  In accordance with the appearance of
myogenin at the onset of differentiation, lack of myogenin
leads to perinatal death due to a severe deficiency of
differentiated muscle fibers in newborn mice (61,62).
Areas of presumptive muscle development have normal
numbers of myonuclei and these cells are capable of
differentiation when cultured in vitro (62).  Interestingly,
closer examination of myogenin null mice indicates that
primary muscle fiber formation is unaffected whereas there
are defects in secondary fiber myogenesis (63).

Three laboratories inactivated the MRF4 gene
yielding a range of defective rib cage phenotypes
(64,65,66).  The severity of the rib phenotype correlates
with perturbations in Myf5 expression, which lies
approximately 6 kilobases away suggesting cis-regulatory
elements (67,68).  The most severe rib defects are observed
in mice that do not activate Myf5 (64).  Moderate
perturbation of Myf5 expression leads to alterations in
myotomal muscle development and rib abnormalities (65).
Mice with normal Myf5 expression are born healthy and
fertile with minor rib abnormalities and show a four-fold
increase in myogenin expression (66,69).  This suggests
increases in myogenin levels are able to compensate for the
lack of MRF4.

Together, the gene targeting experiments suggest
a model (Figure 2) in which MyoD and Myf5 act to
determine the myoblast lineage whereas myogenin and
MRF4 are important for differentiation and maintenance of
the terminally differentiated state (70,71).

To further understand the functional relationships
of the MRFs, mice lacking multiple MRFs or, mice in
which the coding sequence of one MRF has been knocked-
in to the locus of another, have been examined.  Mice
lacking functional copies of both myogenin and MyoD,
myogenin and Myf5, myogenin and MRF4 or lack all but
Myf5 are phenotypically identical to myogenin null mice
indicating that myogenin is genetically downstream of both
MyoD and Myf5 (69,72,73).  Surprisingly, mice lacking
MRF4 and MyoD yield a phenotype similar to that of
myogenin null mice (72).  This indicates that myogenin can
only compensate for the lack of MRF4 in the presence of
MyoD expression lending support to the hypothesis that
that different lineages are defined by MyoD and Myf5
expression.  Furthermore, the data suggests that MyoD and
myogenin cooperate to define one lineage whereas Myf5
and MRF4 define a distinct lineage.

Substitution of the coding region of myogenin
into the Myf5 locus (Myf5myg-ki) rescues the rib defect in a
Myf5 null background (74).  However, mice homozygous
for Myf5myg-ki in a MyoD null background die perinatally
due to reduced muscle formation.  Furthermore, Myf5myg-ki

in a myogenin null background are born with a myogenin
null phenotype showing that the early expression of
myogenin is unable to compensate at later time points of
differentiation (75).  It has been suggested that myogenic
deficiencies observed in some multiple knock-out animals
demonstrates that a critical threshold level of MRF
expression is required to initiate terminal differentiation.

To obtain a greater understanding of how MyoD
and Myf5 serve to determine lineages within the
developing myotome, our laboratory examined the
expression patterns of two transgenes that drive the
expression of the bacterial beta-galactosidase (lacZ) gene
under control of MyoD promoter elements.  The upstream
MD6.0-lacZ (6.0 kilobases of upstream MyoD promoter
sequence) is detected in differentiated myocytes (76),
whereas the 258/-2.5lacZ transgene (which has the 258
base pair –20 kilobase core enhancer fused to 2.5 kilobases
of the MyoD promoter) is detected in determined myoblasts
(77).

Mice lacking Myf5 demonstrate a 2.5 day delay
in development of paraspinal, intercostal and limb muscles
(78,79), confirming previous reports that delayed
expression of MyoD in a Myf5 null background marks the
onset of muscle differentiation (80).  By contrast, mice
lacking MyoD demonstrate normal epaxial muscle
formation while hypaxial muscle development is delayed
approximately 2 days (78,79).  These results provide strong
evidence that epaxial musculature is dependent upon Myf5
expression whereas MyoD is required for appropriate
hypaxial muscle formation (81).
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Figure 3:  Extracellular growth factors which are important
for myotomal development. Sonic hedgehog is secreted by
both notochord and floor plate which serves to induce Myf5
expression. Wnts, in particular Wnt1, secreted from the
dorsal neural tube similarly induce Myf5 expression in the
epaxial myotome.  By contrast, Wnt7a secreted from the
dorsal ectoderm induces MyoD expression in the ventral
myotome.  BMP4 secreted from the dorsal ectoderm and
lateral plate mesoderm is important for repressing MRF
activation and maintaining Pax3 expression in cells of the
dermomyotome and the migrating precursor population in
the VLL.  Both dorsal neural tube and the DML secrete
noggin, inhibiting the repressive effects of BMP4 on
myogenesis.  DML=dorsomedial lip; VLL=ventrolateral
lip; DE=dorsal ectoderm; NT=neural tube; NC=notocord;
MM=medial myotome; VM=ventral myotome.

Figure 4:  Activation and self-renewal of satellite cells.
Satellite cells are activated by trauma or weight bearing.
Initially, cells express MyoD or Myf5 and proliferate.
Expression of both MyoD and Myf5 is found in cells prior
to differentiation and fusion onto the existing damaged
fiber.  Studies examining the role of MyoD during muscle
regeneration suggest that Myf5 expression may play a role
in the self-renewal capacity of the satellite cell
compartment since cells lacking MyoD do not exit the
proliferative phase of activation and demonstrate a
diminished capacity for differentiation.  See text for details.

 To examine whether the migratory hypaxial
population of cells are affected in the absence of MRF
expression, mice lacking both MyoD and Myf5 were
examined using the 258/-2.5lacZ transgene (82).
Expression of lacZ is detected in both newly formed
somites and limb buds.  This pattern of staining
demonstrates that in the absence of MRF expression
activation of the –20 kilobase enhancer of MyoD occurs
and cell migration to the limbs is unaffected (82).
Interestingly, many lacZ positive cells in both the somitic
and limb bud regions adopt non-myogenic fates suggesting
these cells are multipotential (82).  This confirms reports
demonstrating that in the absence of Myf5, cells migrate
abnormally and have an increased propensity to terminally
differentiate along non-myogenic cell fates (83).  The
importance of Myf5 for certain myogenic lineages is
strengthened by the fact that smooth muscle cells of the
esophagus are delayed in their transdifferentiation to
skeletal muscle in the absence of Myf5 expression (84).

Taken together, the data obtained from transgenic
mice clearly demonstrates that MyoD and Myf5 are
responsible for the determination of two distinct
populations of muscle cells in the myotome.  However, the
precise mechanisms involved with initiating the expression
of MyoD versus Myf5 remains unclear.

3.3. Regulation of myogenesis during development
3.3.1. Extracellular cues regulating myogenic
determination

Several factors are expressed in axial and lateral
regions of the developing embryo which are important for
somite formation and the determination of cell lineages
(Figure 3; for review see 85).  Axial structures, such as the
neural tube and notocord, provide signals necessary for
epaxial myogenic determination (86-91).  By contrast, the
hypaxial myogenic lineage is dependent upon signals
originating from the lateral plate mesoderm and dorsal
ectoderm (92-97).  Factors secreted from these structures
include sonic hedgehog (Shh), Wnts, transforming growth
factor–beta (TGF-beta)-like molecules, fibroblast growth
factors (FGFs) and the bone morphogenic proteins (BMPs).
All of these factors regulate myogenic determination and
differentiation.  However, there are differential effects
observed between epaxial and hypaxial musculature.

Sonic hedgehog (Shh) is expressed in the
notochord and neural floor plate and has been shown to
positively regulate the formation and survival of the dorsal
myotome (98-101).   Mice lacking Shh show reduced Myf5
expression in the expaxial myotome (102,103), however,
formation of the hypaxial myotome and MyoD expression
is unaffected (103).  In association with Shh, several Wnts
have been shown to induce myogenesis and are thought to
synergistically act with Shh (99,104,105).   Mice lacking
both Wnt-1 and Wnt-3a are unable to from the medial
dermomyotome but show normal development of the
lateral myotome (106).  Interestingly, Wnt-1 induces Myf5
expression whereas Wnt-7a, which is expressed in the
lateral plate mesoderm, induces MyoD expression (107).
These results confirm previous studies demonstrating that
the neural tube induces Myf5 expression while the dorsal
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ectoderm preferentially activates MyoD expression (94).
Taken together, this data indicates the importance of Shh
and Wnt signaling during development.  Moreover, it
confirms the hypothesis that epaxial and hypaxial
musculature represent distinct lineages dependent on Myf5
and MyoD expression, respectively.

The BMPs belong to the TGF-beta family of
secreted factors and information obtained thus far shows
these factors negatively regulate myogenesis.  In particular,
BMP4 has been of some interest due to its high level of
expression in the lateral plate mesoderm (93).  Recent
experiments looking at the effects of BMPs on cells
strongly suggest BMP concentration gradients are vital for
cells to respond appropriately (108).  Low BMP levels in
the limb bud maintain migrating, Pax3 expressing
myogenic precursor cells in a proliferative state and repress
myogenesis.  By contrast, high BMP concentrations induce
cell death (108).  Important aspects of BMP signaling are
the patterns of expression of BMPs and their inhibitors
follistatin, noggin and chordin.  Expression of the BMP
antagonist, noggin, in the DML and lateral plate regulates
the development of both medial and lateral myogenic
lineages (105,109,110).  Indeed, ectopic expression of
noggin in the lateral regions of the embryo represses Pax3
expression, expands the MyoD expression domain, and
induces myogenesis (110).

Several FGF and TGF-beta family members have
been identified.  Treatment of cultured myoblasts with these
factors suggests they act to stimulate proliferation and repress
terminal differentiation.  However, in vivo these molecules are
important for the formation and terminal differentiation of the
dorsal myotome (111).  Neutralizing antibodies to TGF-beta or
basic-FGF (bFGF) inhibit myotomal induction by axial
structures.  Exposure of segmental plate explants to a
combination of TGF-beta and bFGF induces myotome
formation.  TGF-beta acts to specify the cells to the myogenic
lineages whereas bFGF acts to promote proliferation and cell
survival (111).  Other TGF-beta and FGF molecules have been
shown to play a role during regeneration and these will be
discussed below (Section 3.5.1).

Cell-cell contact during development represents an
important mechanism that contributes to the formation of
distinct cell types.  The transmembrane proteins of the Notch-
Delta/Jagged signaling pathway are involved with cell contact
signaling (112).  Upon interaction of a Notch expressing cell
with a Delta/Jagged expressing cell, the intracellular portion of
Notch is cleaved, translocates to the nucleus and suppresses
differentiation.  Overexpression of the cytoplasmic portion of
Notch represses myogenesis (113).  During development,
Notch2 is expressed in cells of the DML, which lie juxtaposed
to Delta expressing cells in the developing somite (114,115).
This suggests that Notch2 suppresses myogenic commitment
prior to cells extending beneath the dermomyotome.

3.3.2. Genes important for myoblast migration during
development

Migration of cells from the VLL to the developing
limb buds is required for the formation of limb hypaxial
musculature.  The naturally occurring splotch mutant

mouse does not develop limb musculature (116).  This is
due to a loss-of-function mutation in the Pax3 gene which
is required for cells of the VLL to migrate (117-119).  It
should be noted that although migration of muscle
precursor cells is impaired, transplantation of these cells
from the VLL to the limb bud shows they are capable of
terminal differentiation (120).  Overexpression of Pax3 in
cells represses myogenesis suggesting that it is involved
with maintaining migrating myoblasts in an
undifferentiated state (108).  Indeed, upregulation of Pax3
occurs in cells exposed to BMP signals from the dorsal
ectoderm and limb buds, thus permitting muscle precursor
cells to migrate and proliferate prior to differentiation
(93,108,121).

Although cells that do not migrate in splotch mice
are specified to the myogenic lineage there is evidence that
Pax3 is involved with determination of the myogenic
lineage.  Generation of mice lacking Myf5 in a splotch
background demonstrates a surprising genetic relationship
between Pax3, MyoD and Myf5 (122,123).  Splotch mice
demonstrate normal myotomal development and activation
of MyoD.  However, splotch mice lacking Myf5 do not
form any musculature due to a lack of MyoD expression in
the developing somite (122,123).  Moreover, exposure of
paraxial mesoderm explants to Pax3 can induce myogenic
differentiation, supporting a role for Pax3 in activating
MyoD in a Myf5 independent pathway during
somitogenesis (122).

The c-Met receptor tyrosine kinase and its cognate
ligand hepatocyte growth factor/scatter factor (HGF/SF) are
important for the migration of myogenic cells.  Targeted
disruption of the c-Met or HGF/SF genes leads to a similar
phenotype as that observed in splotch mice (124,125).
Similar to splotch mice, there are not any defects in
myotomal development.  Moreover, although migratory
cells of the VLL do not delaminate and migrate to the
limbs, they are specified to the myogenic lineage, as
observed in splotch mice (124,126).

Lbx1 is a homeobox protein expressed in the VLL
and in Pax3 positive migrating cells.  Targeted inactivation
of Lbx1 leads to a disruption of only a subset of forelimb
muscles and complete ablation of hindlimb musculature
(127-129).  Specifically, forelimb extensor muscles are
absent, implicating Lbx1 in the dorsoventral migration
pattern of myogenic precursor cells during development
(127-129).  Interestingly, Lbx1 expression is not detected in
the trunk-level dermomyotomes of splotch mice suggesting
that in certain regions of the developing embryo, Pax3 is
involved with activation of Lbx1 expression (130).

Msx1 is a homeodomain protein that demonstrates
overlapping expression with Pax3 and represses
myogenesis in vitro (131).  Interestingly, Msx1 has recently
been shown to be antagonistic to both Pax3 and MRF
expression.  This regulation is mediated by direct
interaction between Msx1 and Pax3, blocking Pax3 DNA
binding, and is important for controlling the timing of
myogenesis in the limb (132,133).
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The molecules responsible for activating MRF
expression during development are currently unknown.
However, recent studies examining the expression and
activity of Dach2, Eya, Six1 and Pax3 proteins have
suggested one mechanism by which the MRFs may be
activated in the myotome (134,135). These four molecules
are expressed in the dermomyotome, myotome and the
migratory population of cells in the VLL (135). Dach2 and
Pax3 positively autoregulate the expression of each other
and myogenesis is induced within the somite by expression
of Dach2/Eya2 or Six1/Eya2 complexes (134).  Although it
is not known whether these transcription factor complexes
activate the promoters of MyoD or Myf-5 directly, it is clear
that these proteins are likely responsible for the ability of
ectopic Pax3 expression to induce myogenesis in non-
muscle tissue (122).

3.4. Regulation of terminal differentiation
3.4.1. Cell cycle and myogenesis

Decreases in growth factor concentration
represents a cue for myoblasts to exit the cell cycle and
undergo terminal differentiation.  As myoblasts exit the cell
cycle, expression of cyclin/cdk (cyclin-dependent kinase)
inhibitors and retinoblastoma protein (pRb) are upregulated
(135-138).  The importance of cyclin/cdk inhibitors and
pRb has been demonstrated by the fact that overexpression
of E1A, which renders pRb inactive, inhibits myogenesis
and can permit terminally differentiated myotube nuclei to
reenter S-phase (139,140).  Similarly, myoblasts that lack a
functional copy of Rb re-initiate DNA synthesis upon
growth factor stimulation.  However, unlike E1A mediated
inactivation of pRb, Rb null cells are capable of
differentiating in the absence of pRb suggesting that p130
and p107 can compensate during differentiation but, are
unable to maintain the differentiated phenotype (141,142).
Moreover, both MRF and MEF2 proteins are dependent on
pRb expression for full gene activation (143,144).

Overexpression of cyclin D1, which is important
for the G1-S transition, and increases in cyclin/cdk kinase
activity inhibit myogenesis, possibly due to
phosphorylation and destabilization of MyoD (145-147).
The putative phosphorylation residue is serine-200 which,
when mutated to alanine, leads to an increase in MyoD
stability and activity (148).  Furthermore, MyoD and Myf5
protein level oscillations during the cell cycle correlate with
changes in cyclin expression and cyclin/cdk activity (149).
Physiologically, cyclin D1 levels increase upon stimulation
of myoblasts with tumor necrosis factor alpha (TNF-alpha),
leading to inhibition of terminal differentiation (150).

During terminal differentiation, upregulation of
cdk inhibitors is important for cell cycle withdrawal (151),
resistance to apoptosis (152), MyoD stability (153) and for
the induction of myogenin, which is necessary for the
differentiation program to proceed (154).  Recent data
demonstrates a direct link between MyoD and cell cycle
regulation (155,156).  In proliferating myoblasts nuclear
cdk4 binds MyoD and inhibits MyoD-mediated gene
expression (155).  Conversely, a short carboxyl-terminal
sequence of MyoD can inhibit cyclin/cdk4-dependent
phosphorylation of pRb, promoting terminal differentiation

(156).  Furthermore, upregulation of the cyclin/cdk
inhibitor p57KIP2 stabilizes MyoD by blocking cyclinE-
cdk2 activity (153) and by direct interaction with MyoD
(157).  It is clear that a fine balance exists between cell
cycle regulation and terminal differentiation.

3.3.2. The Mef2 family of transcription factors
Along with the MRFs, it has been suggested that the

myocyte enhancer factor 2 (MEF2) family of transcription
factors play a role in myogenesis (for review see 158,159).
MEF2 proteins are members of the MADS (MCM1,
agamous, deficiens, serum response factor) box-containing
family of transcription factors.  The MEF2 family consists
of four members, MEF2A-D, and they demonstrate a
widely distributed pattern of expression.  Although much of
the information regarding these factors demonstrates their
importance in cardiac muscle, they have been shown to
form autoregulatory loops with the MRFs and are important
for the expression of many muscle-specific genes.
Structurally, MEF2 proteins are composed of amino
terminal MEF and MADS domains which are responsible
for dimerization and DNA binding.   The carboxyl terminal
domains thought to be important for gene activation and
kinase responsiveness (Black and Olson, 1998).  Homo-
and heterodimers bind an A/T rich DNA sequence element
(C/TTA(A/T)4TAG/A) which is found in the promoters of
many muscle-specific genes (158).

Several lines of evidence suggest that MEF2 and
MRFs synergistically activate gene expression.  It is
important to note that MEF2 expression is initiated after the
onset of differentiation suggesting these factors are
involved during later stages of terminal differentiation
(159).  At the level of gene expression, full activation of
both MRF4 and myogenin promoters require both MRF and
MEF2 proteins (160,161).  In vitro, MRF and MEF2
proteins are capable of interacting to activate gene
expression by both indirect and direct mechanisms
(162,163).  In flies, ablation of the single MEF2 gene
results in an inability of muscle cells to differentiate (164).
By contrast, targeted inactivation of the MEF2C gene in
mice is embryonic lethal due to severe defects in cardiac
morphogenesis (165).  However, no defects in skeletal
muscle were noted, possibly due to functional redundancy
of the factors.  Transgenic mice carrying a lacZ reporter
gene regulated by MEF2 factors show that MEF2 activity is
high during embryonic development but is not detected
after birth (166).  Downregulation of MEF2 activity
suggests that MEF factors are regulated at a
posttranslational level that is currently unknown (166).

3.4.2. Growth factors and signal transduction
The determination, maintenance and activation of

the myogenic program during development is regulated by
factors such as Shh, BMPs, FGFs and Wnts.  To gain an
understanding of how extracellular signals regulate
myogenesis, several studies have been carried out using
myoblast cell lines in vitro.  Treatment of cells with growth
factors and cytokines leads to the activation of several
intracellular kinase pathways which ultimately lead to
changes in gene expression, cell survival and cellular
morphology (for review see 167).  Many distinct
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mechanisms have been elucidated to explain how growth
factors are able to repress or stimulate the myogenic
program.

Protein kinase C (PKC) activity is increased in
response to mitogenic stimulation.  Overexpression of
activated PKC represses MRF-mediated transcription of
muscle-specific reporter vectors and terminal
differentiation.  Transcriptional activation and DNA-
binding are regulated by the direct phosphorylation of a
threonine residue in the basic domain of myogenin (168).
Although this threonine residue is conserved in all four
MRFs, PKC phosphorylation is specific for myogenin
suggesting that PKC-mediated regulation of myogenesis
involves other pathways (169).

Binding of ligands to cell-surface receptors
initiates a cascade of events which leading to the activation
of p21ras.  Overexpression activated p21ras in 10T1/2 mouse
fibroblasts inhibits MRF-mediated differentiation without
altering DNA-binding or the inherent transcriptional
activation properties of the MRFs (170).  Interestingly,
inhibition of MEK and rac/rho kinase pathways, which are
activated by ras, do not rescue myogenesis suggesting these
pathways are not involved in regulating terminal
differentiation (171).  However, more recent studies
demonstrate that inhibition of the MEK signaling pathway
alleviates the repressive effects of FGF on myoblast
differentiation (172).  Furthermore, overexpression of the
MAPK phosphatase, MKP-1, which is normally
upregulated during differentiation, is important for
inhibiting MAPK activity and permitting differentiation
(173).  It should be noted that later stages of differentiation
require MKP-1 downregulation for myoblast fusion and
myotube formation (173).  Taken together, it is clear that
increases in MAPK signaling are required for transmitting
growth signals and decreases in MAPK activity is required
for myogenesis to proceed.

Insulin-like growth factors (IGFs) are known to
positively regulate myogenesis. IGF stimulation leads to an
increase in phosphatidylinositol 3-kinase (PI3’K) activity.
Dominant negative forms of PI3’K or, inhibition of PI3’K
activity using synthetic inhibitors, are able to block IGF-
mediated differentiation (174-176).  When IGF signaling is
blocked, cells maintain high levels of Id proteins and are
unable to upregulate p21Cip1 for cell cycle withdrawal (174).
Conversely, expression of activated PI3’K is able to induce
differentiation suggesting a direct role for PI3’K in
myogenesis (176).

The lipid products resulting from stimulation of
PI3’K activity serve to activate protein kinase B (PKB/Akt).
During differentiation, PKB expression is upregulated and its
activity is important for myocyte survival (177).  Expression
of a dominant negative form of PKB inhibits PI3’K and IGF
stimulation of myogenesis indicating PKB lies downstream
of these signals (178).  Surprisingly, activated PKB is able to
phosphorylate Raf, rendering the Raf/MEK/MAPK pathway
inactive (179).  Although this inhibition is important during
differentiation, overexpression of activated PKB is unable to
force differentiation under growth conditions suggesting the

involvement of mediators that are specifically expressed at
the onset of myogenic differentiation (180).

In many cell lines, the absence of extracellular
growth factor stimulation leads to apoptosis indicating that
pathways exist that are essential for cell survival.  Although
platelet-derived growth factor (PDGF) and IGF elicit
opposite responses in myoblast cell lines, either factor on its
own is sufficient to prevent apoptosis (181).  Two distinct
pathways are utilized indicating that cell survival can be
mediated by separate mechanisms (181).  What is surprising
is that myoblasts stimulated with PDGF, which is mitogenic,
produce a transient PKB activation and prolonged ERK
activation.  By contrast, IGF leads to transient ERK
activation and prolonged PKB activity suggesting that the
decision to proliferate is dependent upon the length of time
that the MAPK pathway is active (181).  This mechanism has
been proposed for regulating proliferation versus
differentiation decisions in the pheochromocytoma cell line,
PC12, although prolonged ERK activity leads to
differentiation (182).  It remains to be seen what molecular
events occur in myoblasts to elicit these distinct responses to
extracellular cues.

MEF2 proteins are positively regulated by both p38
stress-activated and MKK5/BMK1 kinase pathways (183-
186).  The finding that MEF2 factors represent downstream
targets of these pathways suggests that activation of MEF2
transcriptional activity is an important step during
myogenesis.  Indeed, overexpression of p38 isoforms or,
upstream activators, stimulates myogenesis (187,188).  It is
interesting to note that the gamma isoform of p38 (SAPK3-
beta/ERK6) is highly expressed in skeletal muscle.  Although
expression of this kinase is upregulated upon differentiation,
it does not appear to phosphorylate MEF2 proteins and
therefore, its function remains unclear (187,189).

Slow and fast muscle fibers differ in their
metabolic properties and the panel of contractile proteins that
they express.  Since intracellular levels of calcium are
regulated by contraction speeds, it has been hypothesized that
calcium activated signal transduction pathways are important
for fiber-type specification (159).  Calcineurin, which is a
calcium-activated protein phosphatase, activates the NFAT
(nuclear factor of activated T-cells) transcription factors by
dephosphorylation.  This permits nuclear translocation of
NFATs where they interact with other transcription factors
and activate gene expression (190).  Interestingly, treatment
of animals with cyclosporin A, an inhibitor of calcineurin, or
overexpression of calcineurin in muscle causes a shift from
fast to slow fibers (191-193).  One potential mechanism by
which NFATs are thought to alter fiber-type specific gene
expression is by interaction with MEF2.  Response of T-cells
to changes in intracellular calcium levels is mediated by
MEF2 proteins (194,195,196) and many fiber-type specific
gene promoters contain both MEF2 and NFAT binding sites
(159).

3.4.4. Functional protein-protein interactions
Growth factor stimulation increases AP-1

(fos/jun)-dependent gene expression.  Expression of the c-
fos gene is mediated by binding of the serum-response-
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factor (SRF) to a serum-response-element (SRE) in the c-
fos promoter.  During differentiation, c-fos gene expression
is downregulated leading to decreases in AP-1-meditated
gene activation.  MRF-mediated repression of c-fos
expression requires an E-box element that overlaps the SRE
in the c-fos promoter (197).  It is unclear whether MRF-
mediated repression represents a competition for binding
sites or, if direct interaction between MRFs and SRF is
required (198).  Moreover, the finding that jun can interact
directly with MyoD and inhibit MRF-mediated gene
expression suggests that AP-1 and MRFs form an
autoregulatory loop to control myogenesis (199,200).

MRFs require dimerization with E-proteins in
order to bind DNA and activate gene expression.  One
potential level of regulation involves the Id factors.  Id
molecules contain a helix-loop-helix motif but lack a basic
DNA-binding domain (201 and references therein).  Id
levels increase upon stimulation of cells with growth
factors and dimerization of Id proteins with MRFs or E-
proteins prevents DNA binding and MRF-mediated gene
expression.  Expression of a MyoD-E47 fusion protein is
resistant to Id regulation demonstrating the functional
significance of Id proteins in regulating MRF-mediated
gene expression and terminal differentiation (202).
Alterations in E-protein availability has also been shown to
occur by the MyoR bHLH factor (203).  MyoR is expressed
specifically in skeletal muscle and its expression is
downregulated upon differentiation.  Unlike Id/E-protein
dimers, MyoR/E-protein dimers bind DNA and serve to
repress gene expression (203).

Although the Mos protooncogene is generally
regarded as an upstream activator of the MAPK signal
transduction pathway, activation of the Mos protooncogene
in muscle cells stimulates myogenesis (204).  Mos-
mediated myogenic stimulation occurs at two levels.  First,
activated Mos stimulates dimerization of MyoD and E12
and second, MyoD directly interacts with Mos, inhibiting
downstream Mos-mediated activation of the MEK/MAPK
pathway (205,206).  These results suggest that alterations in
the dimerization status of the MRFs are important levels of
myogenic regulation.  Indeed, interaction of MRF/E-protein
dimers with muscle LIM protein dramatically increases
MRF/E-protein gene activation and stimulates myogenic
differentiation (207).

Several molecules have been shown to interact
with MyoD.  Of particular interest is the regulation of
MyoD activity by p300/CBP and PCAF.  These molecules
are vital for gene activation by altering the acetylation
status of histone cores in DNA (208).  The transactivation
domain of MyoD and the MADS domain of MEF2 proteins
interact with p300, which initiates cell cycle arrest and
differentiation (209,210).  Interestingly, the histone
acetyltransferase (HAT) activity of p300 is dispensable for
MRF-mediated gene expression and only serves to attract
PCAF to the promoters of muscle-specific genes (211).
Significantly, MyoD transcriptional activation requires the
acetylation of several lysine residues located just amino
terminal of the basic DNA-binding domain by PCAF (212).
In light of the fact that under growth conditions MyoD

interacts with N-CoR (213), this suggests a molecular
switch during activation of the myogenic program.  Under
proliferating conditions, MyoD association with N-CoR
serves to attract histone deacetylases (213).  As
differentiation proceeds, N-CoR levels decrease and
p300/PCAF complexes initiate MyoD-meditated gene
expression.  Indeed, the fact that MyoD has two domains
necessary for chromatin remodeling lends support to this
type of regulation (47).

3.5.  Regeneration of adult skeletal muscle
3.5.1. Satellite cells

In adult muscle, approximately 5% of the
myonuclei present in muscle fibers represent satellite cells
(214).  Normally, these cells are mitotically quiescent but
can be induced to proliferate due to stresses, such as
physical trauma or weight-bearing (for review see
215,216).  Activated satellite cells undergo multiple rounds
of cell division, exit the cell cycle and fuse onto the
existing damaged fibers (215).  Several potential factors
exist within the area of damage that may serve to activate
satellite cells (216).  Single-cell RT-PCR (reverse-
transcription polymerase chain reaction) experiments show
that quiescent satellite cells do not express detectable levels
of MRFs, but do express the Met receptor and the muscle
cell adhesion molecule M-cadherin (217).  Upon activation,
cells express either MyoD or Myf5, but eventually express
both prior to progression through the differentiation
program (217).  What is unclear is how the satellite cell
compartment is renewed.

Insight into satellite cell renewal has come from
experiments examining the role of the MRFs during
regeneration.  Although MyoD null mice are born without
apparent defects in skeletal muscle, when these mice are
interbred with the mdx mouse or, adult muscle is subjected
to damage, muscle regeneration is severely impaired even
though several myogenic cells are detected in the damaged
area (218).  In vitro analysis of cells isolated from adult
MyoD null mice demonstrate that these cells are unable to
progress through the normal differentiation program and
are mitotically active under conditions that initiate terminal
differentiation in wild-type control cells (219,220).
Although MyoD-/- cells express high levels of Myf5, their
ability to terminally differentiate is impaired (219).  Taken
together, these results indicate that cells lacking MyoD may
represent an intermediate phenotype between quiescent
satellite cell and determined myogenic progenitor cell
(mpc) (219,221).  Moreover, the expression of Myf5 alone
is insufficient for differentiation, suggesting that renewal of
the satellite cell compartment may be a function of Myf5
expression (219,221).

More recent evidence suggests that the winged helix
transcription factor MNF (myocyte nuclear factor) is essential
for the maintenance of satellite cells.  MNF expression is
detected in quiescent satellite cells (222).  Two alternatively
spliced isoforms can be detected with the beta isoform
expressed in quiescent cells and the alpha isoform in activated
mpcs (223,224).  Interestingly, mice lacking a functional copy
of MNF show severe deficiencies in skeletal muscle
regeneration and are unable to properly coordinate the
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expression of cell cycle and myogenic determination genes
(224).  This suggests that MNF serves to properly activate
genes responsible for determining mpcs and activating the
myogenic program.

During regeneration, expansion of the mpc
compartment is necessary for proper muscle repair to occur.
FGF6 demonstrates a skeletal muscle-specific pattern of
expression (225-227).  Mice lacking FGF6 are born healthy
and fertile with no developmental abnormalities in skeletal
muscle (228,229).  However, these mice demonstrate a
reduced capacity for regeneration after mechanical injury or
when interbred with the mdx mouse (228).  Although FGF6
null mice have normal numbers of satellite cells, activation of
the regeneration program yields fewer MyoD and myogenin
positive cells and an increased deposition of collagen in sites of
regeneration.  This suggests that FGF6 normally represses
differentiation and permits expansion of the satellite cell
compartment during adult skeletal muscle regeneration  (228).

By contrast, targeted inactivation of the TGF-beta
family member, GDF8 or myostatin, results in mice with
substantial increases in muscle mass (230).  Both hyperplasia
and hypertrophy are responsible for this increase in muscle
mass.  Unlike FGF6, GDF8 is a negative regulator of myoblast
proliferation and differentiation and is involved with
hypertrophic effects which is mediated by satellite cells (230).

Information from previous sections has demonstrated
that members of the TGF-beta family are responsible for
repressing the determination of myogenic cells whereas FGF
family members stimulate proliferation of myogenic cells.  Of
interest are recent studies showing that both ski and sno
oncoproteins are antagonistic to TGF-beta signaling (231,232).
Overexpression of ski/sno proteins induces myogenesis and
can mediate skeletal muscle fiber hypertrophy (233,234).  This
indicates that expression of ski and sno proteins may
antagonize the negative effects of TGF-beta signaling on
myogenic determination and the regeneration program.

3.5.2. Satellite cell origin
Early experiments using quail-chick chimeras

suggested that satellite cells were somitically derived (25).
These cells enter the limbs of mouse embryos at about day
17.5 p.c. (30,235,236).  More recent analyses examining
satellite cell origin suggest that this cell population may
actually arise in the dorsal aorta of embryonic mice (236).
Cultured cells isolated from the dorsal aorta coexpress skeletal
muscle-specific and endothelial markers, similar to adult
satellite cells.  Moreover, these cells are able to contribute to
regenerating muscle (236).  Although splotch and c-Met null
mice do not have cells migrate into the limb during
development, cells isolated from the limbs of these embryos
are myogenic, further supporting the notion that at least some
satellite cells originate from the vascular system (236).

3.5.3. Stem-cells in skeletal muscle
To determine whether regenerating muscle

recruits cells from non-satellite cell origin, genetically
marked bone-marrow was transplanted into mice to assess
the cellular contribution of bone-marrow to regenerating
muscle (237,238).  In both studies, it was shown that

transplanted marrow cells are detected in regenerated fibers
indicating that bone-marrow-derived-stem-cells contribute
to skeletal muscle regeneration (237,238).  Similar results
are obtained when highly purified hematopoietic stem cells
are injected intravenously into mdx mice (239).  However,
in all three cases, grafted cells do not contribute to the
satellite cell compartment indicating that they are only
capable of terminal differentiation (216).

To determine if muscle tissue contains stem cells
similar to those found in bone marrow, cells isolated from
adult muscle were subjected to a specialized FACS
(fluorescence-activated cell sorting) technique (239).  This
method permits the isolation of stem cells on the basis of
Hoescht 33342 dye exclusion (240,241).  Analyses from
adult skeletal muscle indicates that a population of stem-
cells exists and these cells express muscle-specific markers
in vitro (239).  What is surprising is that intravenous
injection of these cells indicates that not only are they
capable of participating in muscle regeneration but they
also contribute to the satellite cell compartment (239).
Moreover, these cells also repopulate bone-marrow of
lethally irradiated mice and give rise to the three major
blood lineages (242).  Similar studies have revealed that
pluripotent stem-cells can be isolated from numerous
different tissues, including neural tissue (243,244).  The
ability to isolate multipotential stem cells from numerous
tissues may provide the raw material necessary for stem
cell therapies for the treatment of several degenerative
diseases including muscular dystrophies.

4. PERSPECTIVES

It is clear that a great deal of information has
been obtained regarding many aspects of skeletal muscle
development.  The myogenic regulatory factors represent
an ideal paradigm for the study of cell lineages and the
molecular events required for the establishment of a
terminally differentiated tissue.  However, several
questions remain concerning aspects of determination,
proliferation and terminal differentiation.  In particular, the
molecules responsible for the de novo activation of MyoD
and Myf5 are unknown.  Similarly, regulation of MRF
activity during proliferation and terminal differentiation are
poorly understood due to a lack of myoblast specific genes
that have been identified to date.  Although several signal
transduction pathways and protein-protein interactions
regulating MRF expression and activity have been
described, how these processes are integrated represents a
major challenge in muscle research.  Moreover,
coordination of cell cycle and terminal differentiation is
complex and we are only now beginning to understand the
many factors involved.

The recent investigations into satellite cell origin
and the demonstration that multipotential stem-cells are
readily isolated from adult tissue have raised a multitude of
questions.  The potential use of muscle-derived stem-cells
for the treatment of many degenerative diseases is truly
exciting.  Research focussed on understanding the
molecular nature of these cells and their potential uses will
provide a great deal of insight into myogenesis.
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