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1. ABSTRACT

This chapter reviews the main data on the
physiological substrates of auditory selective attention and
their contribution to theoretical models of cognitive
psychology. While event-related potentials,
magnetoencephalography, and more recently neuroimaging
techniques have provided fundamental information on the
neural correlates of attention in the central cortical system,
measurements of the frequency-following responses in the
brainstem and evoked otoacoustic emissions at the cochlea
strongly suggest attentional phenomena at the auditory
periphery. We propose an adaptive filtering mechanism for
selective auditory attention that can be flexibly and
dynamically tuned depending on the attentional demand.

2. INTRODUCTION

Knowledge of the psychophysiological
mechanisms of modality-specific attention closely depends
on knowledge of the corresponding sensory system. In spite
of extensive research these last decades on audition and
sound analysis, the neural basis of automatic and controlled
processing in audition remains poorly understood compared
to that in the visual system. We do not pretend here to
make an exhaustive list of the studies of auditory attention,
but rather give some landmarks of the hypotheses,
orientations, and main findings that have contributed to the
knowledge of the brain mechanisms of auditory selective
attention in humans.

Interestingly, the literature on this topic shows an
evolution in the theoretical and experimental approaches,
the questions raised, and of course the techniques used.
Research in the 1960's has been characterized by the

elaboration of theoretical models of attention based on
behavioral measurements. Since the pilot experiment by
Hillyard et al. in 1973 (1), the chronometric measures
provided by event-related potentials (ERPs) and later by
magnetoencephalographic recordings (MEG) have enriched
the psychological theories and physiological models of
selective attention. These models, in turn, have been
improved with the development of ERP mapping systems
and electrical source analysis methods. Likewise promising
is the recent use of neuroimaging techniques such as
functional magnetic resonance imaging (fMRI) and
positron emission tomogaphy (PET), which provide better
spatial resolution for locating the brain structures activated.
However, as will be discussed, the variety of experimental
paradigms and the empirical approaches frequently used
have often made it difficult to interpret the findings within
the framework of theoretical models of attention. On the
other hand, the recent discovery of active mechanical
processes in the cochlea that are directly connected with the
efferent auditory system has given a new impetus to the
peripheral gating hypothesis.

These various aspects of attentional research are
illustrated below.

3. PSYCHOLOGICAL MODELS OF AUDITORY
SELECTIVE ATTENTION

Auditory selective attention refers to the mental
ability to resist distractor stimuli and select relevant
information from the surrounding acoustic events, as
illustrated in the "cocktail party effect". This effect has
been primarily conceptualized in the so-called structural



Physiology of auditory selective attention

85

models of attention. These models hold that attentional
mechanisms have a limited-capacity and can perform only
one task at a time. In these models there would be a fixed
location in the system for an "attentional bottleneck"
beyond which the parallel processing capacity is limited. A
key issue is the level of processing at which this bottleneck
is located – that is, the level of processing at which auditory
inputs from relevant and irrelevant channels are
differentially processed (reviewed in (2)). This question has
led to two competing theories: early-selection and late-
selection. In early-selection theories the processing of
unattended stimuli can be attenuated prior to full sensory
analysis. In his original statement of filter theory,
Broadbent (3) assumed that stimuli are briefly stored and
analyzed in parallel for elementary characteristics at the
pre-attentive level, with only a selected subset ("selected
channel") allowed by the filter to be processed at higher
levels (see also (4)). Later, Treisman (5) proposed a
modified filter-attenuation version, according to which the
filter only reduces the information available on a rejected
channel. In turn, late-selection theories (6,7) propose that
all stimuli are fully processed, even at a semantic level,
before any selections take place. The role of attention
would only be to control for access to consciousness,
memory and response.

Support for either theory has depended in large
part on the type of paradigm used. Kahneman and Treisman
(8) have distinguished two basic experimental approaches:
the filtering paradigm and the selective-set paradigm.
Examples of the latter are Posner's (9) paradigm on the cost
and benefits of attention and expectation and Shiffrin and
Schneider's (10) visual search paradigm. The tasks
investigated with these paradigms are generally easier
(stimulus rate is much slower) than those used in the
filtering paradigm, and the observations have often
supported late selection theories. The filtering paradigm, in
the auditory modality, typically consists of dichotic
listening with subjects attending to the input arriving at the
designated ear and ignoring the input to the opposite ear
(11). Initial findings with the filtering paradigm suggested
that very little information is processed in the unattended
ear, providing an empirical basis for early-selection, or
filtering, theories (3). Subsequent studies, however, showed
that more analysis seems to occur in the unattended channel
than had been initially thought. (For example, subjects can
be aware from their own name presented in the unattended
ear (12)). These observations led to the modification of the
first version of Broadbent's filter theory (5), and to the
emergence of the late-selection theories.

Another class of attention models includes the so-
called resource or capacity theories of attention. These
theories primarily refer to the issue of how attention can be
allocated and shared between several sources or tasks, and
have been particularly suitable in accounting for human
performance in dual-task and divided-attention situations
(reviewed in (2)). Although they entail a more global view
of attentional processes, resource models have been less
often addressed with physiological measures, in the
framework of auditory selective attention, than the
structural models. Indeed, for years two basic questions in

selective attention research have been the level of
processing at which relevant and irrelevant channels are
differentially processed and the extent to which unattended
information is processed.

4. ERPS AND PHYSIOLOGICAL MODELS OF
AUDITORY SELECTIVE ATTENTION

In these theoretical questions of the level of
attentional selection, the use of ERPs has provided
fundamental and decisive information. Indeed, ERPs are
characterized by a double - temporal and spatial -
specificity. First, as a chronometric tool, they accurately
measure time events in the absence of, or before, the
behavioral measures of cognitive psychology. Therefore,
they can yield precise information on the temporal
dynamics of mental activities. Second, being generated
"somewhere in the brain", their topographic analysis
provides clues about the brain structures and the
neurophysiological processes involved. An early line of
research focused on the temporal aspects of attentional
events and has provided definitive electrophysiological
support for the early-selection theories of attention (1, 2,
13-18). More debated, however, were the questions of how
early in the sensory processing chain and by which
physiological mechanisms this attentional selection occurs.

These issues were most often investigated
through selective dichotic paradigms. Typically, subjects
were instructed to detect occasional target stimuli in a
series of tones presented to one ear, and to ignore a
concurrent sequence of tones to the opposite ear. The
general observation was that the ERP to tones in the
attended ear was negatively shifted compared with the ERP
to the same tones in the same ear when ignored. This
attention-related negativity, however, has been differently
interpreted, giving rise to two physiological models of
auditory attention.

4.1. The "gain" theory of attention
In their pioneering experiment in 1973, Hillyard

et al. (1) presented tone sequences at a rapid rate (variable
interstimulus interval (ISI) of 250-1250ms). They found an
attention effect (negative displacement of the ERP to
attended tones relative to unattended) in the time range of
the N1 wave around 100 ms post-stimulus. The auditory N1
wave of ERPs is known to be generated primarily in
auditory cortex (19) (reviewed in (20)). Therefore, the
larger N1 to attended stimuli ("N1 effect") was interpreted
as an increased activity of the N1 generators, reflecting
modulation of activity in the neural populations involved in
the obligatory sensory analysis of acoustic stimuli in
auditory cortex. The authors proposed that selective
attention acts as a filtering or a gain mechanism capable of
inhibiting or gating unattended stimuli, relative to attended,
at an early stage of sensory analysis (about 100 ms). This
model represents a physiological version of the original
psychological filtering or attenuation models (3,5).

4.2. The "attentional trace" model of attention
Later, Näätänen et al. (21) showed that the

attention-related negativity observed by Hillyard et al. (1)
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could be dissociated in time from the "obligatory" N1
wave. Using a longer and constant ISI (800ms), they found
that the attentional negativity (measured as the negative
difference "Nd" waves obtained by subtracting ERPs to
ignored tones from those to the same tones when attended)
began to emerge around 150ms post-stimulus and persisted
for at least 500ms. Näätänen and colleagues proposed that
the Nd wave (called "processing negativity"; PN) is a
component of endogenous origin, representing activity in
attention-specific neural systems separate from the
obligatory sensory analysis (21). He suggested that the "N1
effect" observed by Hillyard's group was caused by an
endogenous PN overlapping the exogenous N1, rather than
by an intensification of the N1 generator process. The
shorter ISI used in Hillyard's experiment could, according
to Näätänen, have shortened the PN latency because
subjects had to process the stimuli more rapidly.

In addition, the attentional PN wave was found to
include two components: an "early PN", possibly generated
in auditory association cortex, and a "late PN" of larger
amplitude and longer duration at frontal sites. These
observations led Näätänen (2, 18, 22) to develop the
"attentional-trace" model of selective attention. According
to this model, the initial selection is performed by a
comparison process between a sensory input and an
attentional trace in auditory cortex. This trace is defined as
a voluntarily maintained representation, through a
consciously controlled system, of the physical features that
separate relevant stimuli from irrelevant ones. The better
the match, the longer the comparison process continues.
The early component of the PN would reflect this on-line
comparison mechanism. The late component would be
related to a frontal mechanism to control and maintain the
attentional trace.

The attentional-trace model is fundamentally
different from the filtering hypothesis first proposed by
Hillyard. The two models differ not only in their nature, but
also in their predictions and implications for auditory
information processing. Unlike the attentional-trace model,
physiological filtering could occur at a number of
processing stages and would directly affect the
transmission, analysis, and representation of stimulus
information (23). The point at issue is the nature of the Nd
(PN) wave. In the filtering hypothesis, the Nd could include
modulations of exogenous components, in addition to
whatever endogenous processing system may be invoked.
In Näätänen's model, all ERP effects of selective attention
would be of endogenous origin and explainable by the
attentional-trace theory. The comparison process would be
the mechanism of early selection.

4.3. Electrophysiological evidence for complex
physiological processes

4.3.1. Processing of relevant inputs
The conclusions of this controversy, which has

been at the origin of many ERP and MEG studies in the
1980's, may be summarized with the following: (i) at least a
part of the attentional Nd wave is of endogenous origin
((24-35), reviewed in (2,18)); (ii) the Nd wave includes an

"early", modality-specific component, probably generated
in auditory cortex, and a "late" frontal component
(14,15,17,22,27,31,35-38); and (iii) the onset latency of the
Nd wave strongly and inversely depends on the rate of
stimulus delivery - the faster the stimulus rate the shorter
the Nd onset latency (14,26,39,41).

These findings have been hotly defended by
Näätänen (2,18) as supporting the attentional-trace theory.
However, a number of parallel findings have challenged
this hypothesis, showing that the morphology and/or the
topography of the "early" Nd wave was more complex than
that expected from a unitary ERP component that simply
changed in amplitude and latency. In several dichotic
listening experiments using short ISIs and difficult-to-
detect targets (high attentional load), attention was found to
affect multiple midlatency ERP components around 20-
50ms in addition to the N1 wave around 80-100ms
(15,16,43-45). The findings were replicated with MEG
recordings (46) and interpreted as modulation of major
subcomponents of the exogenous responses, thereby
leading the author to defend the gain theory of attention.

Furthermore, data in our laboratory (35) showed
that a strong attentional demand is not a necessary
condition for attentional modulation of exogenous sensory
components. In two dichotic listening experiments using
rather long ISIs (800ms), effects of attention were
expressed as three successive components of different
nature. The first, an "Nd1" component (around 70-80ms)
that followed the same frequency-dependent variations as
the exogenous N1 distribution, was interpreted as a genuine
modulation of the neural activity in tonotopically-organized
supratemporal auditory cortex (Figure 1-A; Note also that
N1 is known to include temporal and frontal components
(47). However, attention effects were found for the
temporal, but not for the frontal components of N1). The
second, an endogenous attentional "Nd2" component (110-
275ms) with an origin different from that of N1 in auditory
cortex, was stronger in the left hemisphere regardless of the
direction of attention (Figure 1-B). The third was a late
attentional wave ("Nd3") with a frontal distribution,
probably generated in deep structures of the frontal cortex
(31,35,48).

Existence of several successive attentional waves
of different nature in auditory cortex (modulation of
exogenous components and endogenous activities) implies
the existence of different physiological operations during
attentional selection. In fact, any theory of selection would
require some form of template to represent the stimulus
features that separate attended and unattended input, as
well as some process of comparison with the template. The
multiple findings of attentional modulation of obligatory
ERP components before 100ms post-stimulus - whatever
the additional endogenous activities elicited - strongly
strengthen the hypothesis of a sensory gain control (16)
within the auditory cortex and support the filtering model
of attention at a (early) cortical level. Existence of a
genuine gating mechanism in cortex is not surprising,
however, since in both the visual and somatosensory
systems, there is strong evidence that selective attention
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Figure 1: Attentional effects in auditory ERPs : Evidence
for both a modulation of exogenous responses in auditory
cortex (A), and an endogenous origin (B) of the auditory
attentional waves. A. Comparison of the potential
distributions of the auditory N1 wave elicited by pure tones
of 500, 1000, 2000 and 4000 Hz when ignored, and of the
Nd1 wave (at the same latency of 80-100 ms) reflecting the
effect of attention to each of these tones. N1 and Nd1
present similar topographic variations with the tone
frequencies (stronger mastoid positivities associated with
more anterior frontal negativities for higher tone
frequencies). This strongly suggests that Nd1 reflects an
attentional modulation of the N1 generator activities in
tonotopically-organized auditory cortex. B. Comparison of
the scalp current density distributions of the auditory N1
wave to unattended tones with the attentional effects
around 150 ms (Nd2). N1 is characterized by stronger
currents in the contralateral temporal areas, whereas
attention effects (Nd2) are stronger in the left hemisphere
whatever the direction of attention, suggesting different
origins for N1 and Nd2.

modulates exogenous components at early stages of
analysis (49-51). A possibility is that under active attention
conditions, the N1 generator process has a lower (more
sensitive) threshold of activation and thus evokes larger
activity in some of its subsystems. This interpretation
would fit with, and complement, two findings from
different approaches. First, auditory N1 amplitude
correlates with the detection of threshold-level acoustic
events (20, 52). Second, auditory selective attention to a
specific range of frequencies lowers the detection threshold
for the stimuli of that frequency range (53). The N1
enhancement (as well as the modulation of other exogenous
midlatency components) could well be the reflection of this
change of sensitivity in the auditory system under the
control of higher central mechanisms ( perhaps reflected by
the late frontal Nd wave) (54).

4.3.2. Active rejection of irrelevant inputs
Thus far we have analyzed the attention effects in

the ERPs to attended tones. However, the procedures in

most of the studies reviewed above did not allow the
distinction, within the attentional effects, between a
negative shift of the ERPs to attended tones (relative to a
"neutral" condition") and a possible positive displacement
of the ERPs to unattended tones. In other words, the data
could say neither if irrelevant inputs are actively rejected
nor at which level of processing such would occur. The few
studies having addressed this important question have
generally reported a positive-going shift in the ERPs to
unattended tones, relative to a "neutral" condition, that
begins approximately 100ms after the negativity to
attended tones (30,32,45,55-57). The data strongly suggest
that there does exist an active rejection mechanism for
irrelevant acoustic inputs. Furthermore, the attentional
facilitation and inhibition may be two independent
processes with different temporal properties (inhibition
occurring later than facilitation (45)).

5. A PERIPHERAL FILTER MECHANISM OF
ATTENTION?

Thus far we have seen that the
electrophysiological and MEG data on auditory selective
attention can be better explained by a mechanism of
sensory gain or physiological filtering at the cortical level,
rather than by the attentional-trace hypothesis. Unlike the
predictions of the attentional-trace model, however, an
attentional filter mechanism could theoretically affect
auditory processing at several stages of analysis, including
at the level of the peripheral auditory system.

In fact, since the pioneering study of Hernandez-
Péon in 1956 (58), the theory of peripheral gating had
attracted many prominent physiologists (59-61) before
being rejected for many years. Hernandez-Péon and
colleagues had observed an amplitude decrease in the
response to clicks recorded at the dorsal cochlear nucleus
of unanesthetized cats during attention to visual,
somesthesic or olfactory targets. However, their findings
were later refuted on methodological grounds (62,63)
(however, see (64)). Subsequently, a number of human
studies attempted to show a peripheral effect of attention in
the brainstem auditory evoked potentials (BAEPs)
generated within the first 10ms of sensory analysis. Except
the findings from Lukas in 1980 (65,66), who showed a
decreased amplitude and an increased latency in waves I
and V of the BAEPs during visual attention (see also (67)),
most of these attempts were unsuccessful (13,68-76), and
the general view was that auditory attention alters the
sensory analysis of inputs only in the central auditory
system.

Yet, there has been a renewal of interest for the
peripheral model of attention with the recent discovery that
the cochlea is the center of exquisitely sensitive active
processes, and that these processes are directly connected
with the efferent auditory system (reviewed in (77)). First,
it was found that the cochlea can emit sounds, the "evoked
otoacoustic emissions" (EOAEs), in response to auditory
stimulation (78). EOAEs appear to arise from
physiologically active processes of the outer hair cells in
the organ of Corti (79-81) and can be easily recorded in
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Figure 2: Effects of auditory selective attention in the
evoked otoacoustic emissions (EOAEs) recorded in the
human ear. A. Peripheral auditory pathways. B. EOAEs
elicited by 1-kHz tone bursts in one subject. The
superimposed traces show the reproducibility of the signals
in three runs of 200 stimuli each in the unattended ear.
Attention effects are generally not evident in the raw
waveforms. C. Amplitude spectra of EOAEs from one
subject attending to (full lines), or ignoring (dotted lines),
the evoking stimulus (1-kHz tones). The vertical lines
delimit the primary band (spectral band centered around,
and within ±15% from, the attended frequency) and the
secondary bands (same width as the primary). The
spectrum amplitude in the primary band is larger for
attended than unattended stimuli. D. Mean amplitude of the
EOAEs to attended tones relative to unattended in three
spectral bands. The effect of attention is highly significant
in the primary band and decreases with increasing distance
from the attended frequency.

humans using a small acoustic probe composed of an
emitter and a microphone fitted in the external ear canal.
The outer hair cells, whose active micromechanical
properties play an important role in the transduction
process (82), receive direct synapses from medial efferent
neurons of the olivocochlear bundle (OCB) (83), thereby
allowing the cochlear mechanics to be altered by
descending inputs via the medial efferent system (84,85)
(Figure 2-A). Furthermore, this alteration in the cochlear
mechanics can occur in a frequency-specific manner, since
the afferent and efferent fibers with the same characteristic
frequencies innervate the same cochlear region and have
similar tuning curves (86,87).

Thus, this cochlear-efferent system provides the
functional architecture for top-down control of sensory
processing at the periphery. In addition, the EOAEs have
properties well suited to test attentional effects. First, they

can be elicited by stimuli of much lower intensity than
brainstem potentials, and may thus reveal finer peripheral
phenomena (see also below). Second, they have high
signal-to-noise ratios relative to brainstem potentials,
thereby permitting shorter recording sessions (Figure 2-B).
This is critical in experiments requiring subjects to
maintain sharply focused attention.

Indeed, several studies found that EOAE
amplitudes are reduced when subjects are engaged in a
visual task (88-92). The findings strongly suggested the
existence of a top-down attentional control mechanism
operating through centrifugal projections to the cochlea
(probably through the medial efferent system). However,
the procedures (comparison of the EOAE amplitudes
between a passive listening condition and an active task)
did not reveal whether the observed effects were due to a
genuine effect of selective attention or to a change in non-
specific arousal during task performance (18,89). (Note that
this question also applies to previous electrophysiological
studies in humans and in animals (e.g. (64,65)).

Two studies have tested these hypotheses. One, in
our laboratory, used a dichotic selective listening paradigm
based on those previously employed in ERP experiments
(e.g. (1,16,21)), in which the stimulus and task conditions
were optimized for the early selection of competing inputs
(15). Subjects were presented with short tone pips of 1kHz
in one ear and 2kHz in the other ear, rapidly and randomly
delivered (ISI of 180-250ms). The task was to count
occasional targets of slightly higher intensity in the
designated ear which were difficult to discriminate from the
frequent standard stimuli. The tone frequency in each ear
and the ear attended were counterbalanced so that the effect
of attention could be measured in four (2 frequencies x 2
ears) conditions in each subject. It was found that the
EOAE amplitudes to attended tones were larger than those
to the same tones in the same ear when unattended (Figure
2-C). Although the absolute magnitude of the effect was
small (0.5dB), it was highly significant and observed in 41
of the 48 observations. In addition, the effect was largest in
the spectral band corresponding to the attended stimulus
frequency (Figure 2-D). It was concluded that selective
auditory attention could already operate as a peripheral
band-pass filter at the cochlear receptor level prior to the
transduction process (93). (Note, however, that the
paradigm did not distinguish whether the observed effects
were due to an increase in the EOAE amplitude for
attended tones or to a decrease for unattended tones).

The second series of experiments, conducted in
another laboratory (94), did not come to these conclusions,
however. In these experiments, subjects still listened to
random sequences of 1 or 2kHz tone pips and were
instructed to pay attention to one frequency in order to
detect occasional targets of slightly higher intensity. In five
of these experiments, all the tones were delivered to the
same ear, whereas the 6th experiment was similar to that of
Giard et al. (93). No effect of attention was observed in any
experiment. Although a deep discussion on the
methodological issues is beyond the scope of this review,
we note two points that might explain the differences in the
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results of the two studies. First, in 5 of the 6 experiments
both the attended and unattended stimuli were presented at
the same ear (94). Previous ERP findings have shown that
early effects of attention are more easily observed when the
attended and unattended stimuli are separated by large
differences including a different spatial origin (15,16,95). A
second and more important difference between the two
studies is the stimulus intensity used. Giard and colleagues
(93) presented sounds of 15dB HL, whereas Michie and
colleagues (94) used sounds of 60 or 70dB SPL. As noted
above (and discussed by Michie), these louder sounds
might have led to ceiling effects in the cochlea, preventing
any observation of fine attentional modulations. This
interpretation is strengthened by the fact that the efferent
system has been found to be more efficient for low
intensity stimulation (96-99).

Other recent findings from different approaches
have provided evidence that activities of the peripheral
auditory system can be modulated, in a frequency-specific
manner, under the influence of higher mechanisms. In
1994, Scharf and colleagues (100) (see also (101)) reported
that a patient, whose olivocochlear bundle had been
surgically sectioned for severe Meniere's disease, showed
better ability to detect signals in noise, regardless of
whether the signals were of the attended or unattended
frequency. Scharf's interpretation was that the OCB during
attention may act as a sharp band-pass filter by suppressing
responses to frequencies outside a narrow attentional focus.
A separate study of the cat (102) showed that activation of
the OCB by contralateral noise increases the response to
single auditory nerve fibers to ipsilateral tones in a
continuous masking noise, whereas it decreases the
response of auditory nerve fibers in a quiet background.
While these different findings may diverge in the models of
OCB functioning, they all support the view that top-down
efferent inputs can control and modify cochlear mechanics
in a frequency-specific manner.

In parallel with these findings at the cochlear
level, several recent studies have challenged the view that
auditory attention operates only at central cortical level.
Attention effects have been reported in the "frequency-
following responses" (FFR) generated in the brainstem
probably at a site peripheral to the inferior colliculus (103-
105).

6. FUNCTIONAL BRAIN IMAGING STUDIES OF
AUDITORY ATTENTION

In recent years, the rapid development of the
neuroimaging techniques such as PET and fMRI, which are
based on quantitative measurement of regional cerebral
blood flow (rCBF) and metabolism, has provided powerful
tools for localizing neural operations with high spatial
resolution. Yet their actual contributions to the
understanding of attentional mechanisms has been
somewhat limited primarily because of their weak temporal
resolution and secondly because the paradigms used have
been very diverse and often not based on conceptual
models. Results from these techniques are therefore
difficult to compare and interpret in the framework of

attentional theories. In spite of these limitations, however,
neuroimaging studies of auditory attention have provided
interesting information about the involvement of auditory
cortex as well as evidence for an active mechanism of
rejection of irrelevant inputs.

6.1. Localization of the brain structures involved in
auditory attention

Evidence for attention effects in auditory cortex
has been found in several studies using fMRI (106-109)
and PET (110-113). As in some ERP and EOAE
experiments reviewed above, however, several of these
studies compared passive listening situations with active
auditory conditions (107-109, 113), making it difficult to
know whether the effects were due to genuine selective
attention or to changes in non-specific arousal during task
performance. Other studies, based on "classical" dichotic
selective listening paradigms, found increased activity in
the superior temporal gyrus of auditory cortex. The effect
was generally larger in the cortex contralateral to the
direction of attention (106, 110-112) and was interpreted as
"selective tuning of the left or right auditory cortices
according to the direction of attention" (112). However, in
a paradigm where attention was directed to either visual or
auditory stimuli, Frith and Friston (114) did not find any
auditory attention effects in auditory cortex, but rather in
right mid-thalamus. The other brain structures found to be
activated during auditory attentional tasks included several
regions of the frontal cortex (106,111,112,115), bilateral
precentral and left postcentral cortices, and the
supplementary motor area (111). While attentional effects
were also found in the anterior cingulate gyrus without
involvement of "posterior attention structures" (115),
another study found the reverse (106). As previously noted,
the different paradigms used (continuous performance test
in the first experiment and dichotic listening in the second)
do not permit direct comparison of the findings.

6.2. Active rejection of unattended stimuli
More informative are the findings of decreased

activity in auditory cortex for unattended or task-irrelevant
tones, relative to relevant tones, reported in several PET
studies (e.g. (113, 116)). This decreased activity in rCBF
has been interpreted as physiological evidence for an active
mechanism of selective inhibitory modulation of cortical
processing for non-relevant inputs (116), and is to be
related to the positive-going displacement of ERPs to
unattended stimuli reported previously.

7. CONCLUSION AND PERPECTIVES : AN
ADAPTIVE FILTERING MODEL OF SELECTIVE
ATTENTION

Although a clear demonstration of an effect of
attention at the cochlea has yet to be confirmed, the data
reviewed above indicate that: (i) selective attention can
alter auditory processing at several levels of sensory
analysis, including auditory cortex, the brainstem, and very
probably the cochlea; (ii) higher attentional load induces
earlier effects of attention (15,16,21,93,95); and (iii)
attention to frequency-specific regions induce frequency-
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specific changes in perceptual processing at behavioral
(53,117-119),  central cortical (35), and peripheral
(93,100,101) levels. Altogether, these findings fit with the
hypothesis of a flexible, adaptive filtering mechanism for
selective auditory attention. This band-pass filter
mechanism could be dynamically tuned depending on the
attentional demand in the task: higher attentional demand
yields sharper and more efficient filter tuning as well as
earlier filtering operations. In other words, the "location of
the bottleneck" would be variable, adapting for the most
efficient result at the lowest energetic cost. Peripheral
effects of attention would occur only if the system is
"obliged" to do so. (This was particularly evident in our
study (93), since effects of attention in EOAEs dramatically
depended on the precise adjustment of the task difficulty
for each subject - a slightly too easy task led to no effect).
This flexibility in the locus of the bottleneck makes sense
in an "energetic" and efficiency perspective. In an easy, less
energy-demanding task, the effects of attention will occur
later, leaving more resources to process unattended stimuli.
Conversely, a high selective attentional load (strongly
focused attention) would require the whole attentional
system to be sharply tuned and would activate already the
earliest, most peripheral structures able to participate in the
attentional selection, thereby making the filter more active
and efficient.

A variable locus of the bottleneck had been
previously proposed in psychological models of attention
(e.g. (120-122)). The recent physiological findings
reviewed here could bring new support to these models as
well as a double implication. The first is that they would
overrule the discrepancy between the early- and late-
selection theories of the structural models. The second is
that flexible, adaptive filtering mechanisms for auditory
selective attention would reduce the gap between the
structural theories and the energetic views of attention.

The above hypotheses would be strengthened by
the following: (i) the confirmation of an effect of attention
at the peripheral level of sensory pathways and a deeper
understanding of the OCB control on the efferent system,
(ii) a better knowledge of the active mechanisms of
rejection of unattended inputs and their relationship with
attentional load, and (iii) further investigation of the
location, functional role, and operative mode of the frontal
structures involved in attentional control.
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