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1. ABSTRACT

There are few candidates for biochemical
pathways that either initiate or amplify catabolic processes
involved in osteoarthritis (OA).  Perhaps, one of the most
likely sources for such pathways may be within the
extracellular matrix itself.  This review focuses on an
example of how specific degradation products of the
extracellular matrix of cartilage, produced during
proteolytic damage, have the potential to enhance OA-like
processes. In this example, these products can induce or
activate other factors, such as catabolic cytokines, that
amplify the damage.  The damage, in turn, enhances levels
of the degradation products themselves, as in a positive
feedback loop.  Since these products are derived from the
cartilage matrix, they could be considered barometers of
the health of the cartilage that signal to the chondrocyte,
through outside to inside signaling, the health or status of
the surrounding matrix.   The best example and most
characterized system is that of fragments of the matrix
protein, fibronectin (Fn), although as discussed later, other
recently discovered fragment systems may also have the
potential to regulate cartilage metabolism.  In the case of
Fn fragments (Fn-fs), the Fn-fs enhance levels of catabolic
cytokines as in OA and, thus, are potentially earlier damage

mediators than catabolic cytokines.  The Fn-fs up-regulate
matrix metalloproteinase (MMP) expression, significantly
enhance degradation and loss of proteoglycan (PG) from
cartilage and temporarily suppress PG synthesis, all events
observed in OA.  However, this Fn-f system may be
involved in normal cartilage homeostasis as well. For
example, low concentrations of Fn-fs enhance anabolic
activities and could play a role in normal homeostasis. This
system may also be involved in not only amplifying
damage but also coupling damage to repair. For example,
high concentrations of Fn-fs that might arise in OA
temporarily offset the anabolic response of lower Fn-f
concentrations and cause short-term enhanced catabolic
events that are followed by slowly increasing anabolic
responses. Such effects would be expected for mediators
with roles in regulation of metabolism in both normal or
diseased cartilage. Other products of matrix degradation
have also been shown to regulate cartilage metabolism.  A
common mechanistic theme to these systems may be that
they perturb the cartilage matrix and directly or indirectly
alter function of specific receptors involved in metabolism.
These concepts illustrate the potential of the cartilage
matrix to regulate its composition in both health and
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disease.

2. INTRODUCTION

This chapter reviews newer work that gives
further insight into previous studies on the capability of the
cartilage extracellular matrix, composed of a collagen/PG
network as well as accessory proteins, to signal to the
chondrocyte the need for reparative processes.  Such a
scenario has already been established by the numerous
observations of outside-in signaling in which signals feed
into a cell to regulate metabolism. A newer theme is that
while the components of the normal extracellular matrix
influence the synthesis, assembly and degradation of
macromolecules by chondrocytes, the fragmented
components of the damaged matrix alter this influence or
feed back regulation and contribute to progression of
damage.  Although it is known that numerous anabolic and
catabolic factors regulate chondrocyte metabolism, little is
known of what initiates these pathways. Thus, it is
intriguing to question whether the perturbation of the
matrix itself, perhaps by matrix fragments, may initiate
these pathways. A very important notion is that such a
fragment system may be operative not only during damage,
but also during normal metabolism and in either case, may
shift metabolism in either direction, depending on the
concentration of the fragments.  Thus, matrix fragments
may serve as amplifiers or catalysts for the current
metabolic state.  This review will focus on discussion of the
effects of Fn-fs on cartilage metabolism, the most
characterized fragment system.

3. DISCUSSION

3.1.  Fn and Fn-fs are elevated in synovial fluids and
cartilage in RA and OA

In order to understand how the degradation of the
matrix plays a role in regulation of cartilage homeostasis, it
is important to recognize that fragments can arise not only
from enhanced levels of proteinases that can act on existing
pools of precursors, but can also arise from normal levels
of proteinases acting on enhanced levels of precursors.
Thus, it is important to understand conditions that enhance
levels of Fn might also enhance levels of Fn-fs. The role of
Fn in cartilage tissue has been reviewed recently (1).  The
following discussion will focus on the potential causes of
enhanced Fn levels in OA.

While some proteins decrease in OA, the
precursor of Fn-fs, native Fn, is elevated in the cartilage
matrix in human OA cartilage (2-9) with the greatest
increase near the articular surface (10-12) or close to
eburnated areas (13).  Enhanced cartilage Fn levels are also
observed in canine (10,14) and rabbit (10) in vivo  models
of OA damage. The increase in Fn levels appears to be
greater in the deep than in the superficial cells of human
OA cartilage (15).  This increase in Fn may be due to both
enhanced synthesis and enhanced retention of Fn as shown
by Burton-Wurster and Lust (16).  This work showed a 3-
fold increase in Fn synthesis relative to protein synthesis in
canine OA cartilage as well as an increase in the proportion
of Fn retained by OA as opposed to normal cartilage

matrix.  The increase of Fn within the cartilage matrix is
associated with an increase in Fn in synovial fluids of
patients with OA and rheumatoid arthritis (RA) (17).  The
increase may be as much as 3 to 4 fold, with the average
concentration of Fn in healthy donor synovial fluids
increasing from 171 µg/ml to 721 and 568, in RA and OA
synovial fluids, respectively (18).  With such high levels of
Fn, fragmentation to significant levels is greatly facilitated.

While native Fn can be expressed in various
isoforms, due to differential splicing of the precursor
mRNA, the population synthesized within cartilage tissue is
significantly different than in other tissues and includes
relatively high levels of an ED-b(+) form and of a cartilage
specific form, (V+C)- which lacks several amino acid
sequences found in the isoforms of other tissues, as
reviewed (1). The ED-b(+) isoform increases throughout
the cartilage matrix in a canine model of OA (19).  The
mRNA for this Fn isoform is also increased in human OA
cartilage (20).  In contrast, the isoform found in synovial
fluid and likely made by synovial tissue in vivo  is the ED-
a(+) isoform (21) which is present in OA cartilage, but
made only at low levels (20).

The cause of the enhanced Fn synthesis in either
cartilage or synovial tissue in OA, may be at least partially
due to TGF-beta, which has been shown to enhance Fn
synthesis in cartilage (22).  IGF-1 may also play a role,
since IGF-1 enhances Fn synthesis in many cell types,
including, but not limited to, preadipose cells (23), rat
thoracic aortic smooth muscle cells, glomerular mesangial
cells (24) and rat thoracic aortic adventitial fibroblasts (25).
Catabolic cytokines are not likely responsible for the
enhanced Fn levels.  Recent work has shown that IL-1-beta
cannot stimulate Fn synthesis in superficial or deep
cartilage explants (15). It is interesting to speculate that the
effect of the anabolic factors on enhancing Fn synthesis
might ultimately lead to higher levels of Fn-fs, which
would induce our observed Fn-f mediated chondrocytic
chondrolysis.  Such a linkage may be a component of
“attempted but failing repair” in damaged cartilage.

Biomechanical forces may also influence Fn
synthesis.  For example, Fn synthesis is increased in canine
articular cartilage explants after cyclic impact (26) and in
bovine articular cartilage explants after intermittent cyclic
loading (27).  Compressive loading and unloading has also
been shown to affect Fn synthesis (28).  It is conceivable
that enhanced Fn synthesis may also occur through the
effects of altered biomechanical forces on activation and
liberation of growth factors stored in cartilage tissue.

With the increases in Fn levels in cartilage and
synovial fluids in RA and OA, it would be expected that
Fn-f levels would also increase. Griffiths et al (29) found
Fn-fs which ranged from 200-kDa to as low as about 24-
kDa in RA, OA, traumatic arthritis and septic arthritis
synovial fluids.  These Fn-fs represented a major portion of
the total Fn in most cases.  Fn-fs in RA synovial fluids have
also been confirmed by others (30).  We reported Fn-fs in
OA synovial fluids, which we estimated to be up to µM
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Figure 1.  Schematic of Fn domain structure – The Fn dimer consists of two subunits each with separate domains connected by
less ordered segments that are easily cleaved by various proteinases.  The types of ligands each domain can bind are shown.  Note
the cleavage sites of the proteinases used in our Fn-f isolations.  Our studies focus on tests of the N-terminal 29-kDa segment
which is liberated by thrombin. The 50-kDa, cathepsin and thrombin generated Fn-f is less active, while the 110-140-kDa Fn-f
family has the least activity.  The 35-kD and 25-kD segments are not fully characterized by us in terms of cartilage damage.

concentrations, and which ranged from less than 200-kDa
down to 30-kDa (31).  It is important to emphasize here
that Fn-fs have been reported in other pathological body
fluids and tissues as well and may also play roles in
damage/repair throughout the body (32-39).

Theoretically, the enhanced levels of Fn-fs in OA
synovial fluids could be due to proteinases from cartilage
or synovial fluids acting on Fn derived from cartilage or
synovial fluids.  Recent work has shown that the Fn
isoform in canine OA synovial fluids is the synovial tissue
isoform (21) and different than the cartilage isoforms (19).
However, it is possible that there is at least a minor
contribution from cartilage-derived Fn-fs in OA synovial
fluid since cartilage, if moderately degraded, could
theoretically contribute the same mass of Fn-fs as found in
OA synovial fluid as discussed by us (40).  Furthermore,
we have shown that IL-1 treated cartilage explants do
release elevated levels of Fn-fs into the culture media (40)
and we would expect that in OA, cytokines would also
enhance release of Fn-fs from cartilage into the synovial
fluid. Nonetheless, regardless of the individual
contributions of cartilage and synovial tissue to the Fn-f
pool, either pool has the potential to cause cartilage
damage.  In support of this concept, we have shown that
OA synovial fluids contain Fn-fs that can enter cultured
cartilage explants in vitro and cause severe depletion of PG
from the cultured cartilage (40).

3.2 Fn-fs have activities not expressed in native Fn
The presence of high levels of Fn-fs in OA and

RA synovial fluids would have been predicted to have
some effect on cartilage metabolism, based on observations
that Fn-fs often have cryptic properties not shared by native
Fn and are often involved in regulation of proteinase levels.
For example, Fn-fs enhance elastase release from
monocytes (41), enhance protease release from neutrophils
(42) and enhance MMPs in synovial fibroblast cultures
(43). There is a continually growing list of other activities
of Fn-fs not expressed in native Fn.  The following
references are not comprehensive but rather a short list that
illustrates just a few of the various activities Fn-fs express
in various types of cells and tissues  (33,44-54).

3.3. Fn-fs enhance loss of PG from cartilage explants
We proposed in 1991 (55), that since Fn-fs had

been shown to regulate numerous cellular activities of
various types of cells, they might affect cartilage
metabolism.  We discovered very potent effects as
described throughout this review.  We first investigated the
effects of Fn-fs on the kinetics of release of degraded PG
into the culture media of 18 month-old bovine
metacarphophalangeal cartilage cultured under serum-free
conditions.  We found that amino-terminal 29-kDa, gelatin-
binding 50-kDa and cell-binding 140-kDa Fn-fs were very
potent at 0.1 to 1 µM concentrations  (56).  The 29-kDa Fn-
f was the most active, followed by the 50-kDa and 140-kDa
Fn-fs. Figure 1 shows the location of these Fn-fs within the
Fn subunit.  Subsequently, we found that the Fn-fs
penetrate cartilage and surround chondrocytes (57) to cause
the release of half of the total PG within a few days when
cartilage is cultured in the presence of 100 nM or 1 µM Fn-
fs (56).  These concentrations of Fn-fs are at or below
measured concentrations in OA synovial fluid (31),
consistent with their potential physiologic role.  The Fn-fs
do not cause significantly increased collagen degradation,
nor cause cell death, based on measurement of tissue DNA
content (58).  This matrix-depleting activity of the Fn-fs is
also present in an RGDS synthetic peptide, corresponding
to the integrin receptor-binding sequence of Fn, consistent
with involvement of a Fn receptor.  However, native Fn has
only weak matrix-depleting activity, suggesting that this is
an activity that might be expressed in vivo  only in degraded
Fn (56).  The relative inactivity of native Fn has been
confirmed in tests of most of the parameters affected by the
Fn-fs. The damaging activities of the Fn-fs require mRNA,
as well as de novo  protein synthesis and metabolic energy,
suggesting that the Fn-fs are not acting as proteinases (56).
Not only do the Fn-fs enhance proteinase activity, but also
they temporarily suppress PG and general protein synthesis,
by up to 50% (58,59).  However, the effects of the Fn-fs on
18 month-old bovine metacarpophalangeal cartilage are not
totally reversible in vitro .  Upon removal of the Fn-fs from
cartilage cultures, the PG synthesis rates increase to values
up to 140% of control values. The PG content, however,
does not return to normal levels in 18-month old bovine
cartilage (58,59).  The reversibility has not yet been tested
in younger bovine cartilage, but as will be discussed later,
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adolescent rabbit cartilage does recover from Fn-f mediated
matrix damage, while mature rabbit cartilage does not.

Most of our work has focused on use of a 29-kDa
amino-terminal Fn-f, which is the most biologically potent
of the Fn-fs (56).  Two other Fn-fs, a gelatin-binding 50-
kDa and the cell-binding 140-kDa Fn-f, are slightly less
active.  The 140-kDa Fn-f is not homogenous but often a
mixture of 110 to 140-kDa Fn-fs, due to differential
trimming at the carboxyl-terminus.  Thus far, all three Fn-fs
have been shown to have similar qualitative effects.
Therefore, throughout this review the term Fn-f will be
used generically. The typical Fn-fs studied by us are
generated by sequential cathepsin D and thrombin digestion
of human plasma Fn (56,60,61) and are active on bovine
(56), human knee (62,65), rabbit and rat cartilage explant
cultures (unpublished).  Similar cathepsin D and thrombin
generated Fn-fs from rabbit plasma Fn, bovine plasma Fn,
rat plasma Fn or guinea pig plasma Fn are equally active on
bovine cartilage (unpublished). Thus, in general, Fn-fs from
one species can cause damage to cartilage of another
species.  The most potent amino-terminal Fn-fs are not
contained within the region of differences between the Fn
isoforms discussed earlier.  Thus, the Fn-f cartilage
chondrolytic activities should be isoform-independent for
the amino-terminal Fn-fs and amino-terminal Fn-fs from
any type of isoform should be active.

3.4. Fn-fs enhance levels of proteinases
The effects of Fn-fs on induction of proteinases

have not been completely characterized, although the up-
regulation of several matrix metalloproteinases (MMPs)
has been confirmed by gelatin and casein zymography in
both human and bovine articular cartilage explants.  By
these methods, collagenolytic (MMP-1), gelatinolytic
(MMP-2, MMP-9) and stromelysin-1(MMP-3)-like
activities are increased by at least several-fold (56,63,64).
Up-regulation of protein levels of MMP-3 has been
confirmed in both bovine (63,64) and human knee explants
(65).  At least two MMPs are up-regulated at the mRNA
level in a concentration-dependent fashion, MMP-3 and
MMP-9 (64).  Similar studies on the other MMPs have not
yet been performed. Current in situ  hybridization analysis
has confirmed up-regulation of MMP-3 (unpublished).  We
predict based on our ongoing studies, that most, if not all,
of the common MMPs are up-regulated at the mRNA level.
Conversely, the Fn-fs have little effect on mRNA levels of
tissue inhibitor of matrix metalloproteinases (TIMP-1) (64),
a potential regulator of MMP activities in this system.

One interesting observation is that in monolayer
chondrocyte cultures nearly all of the MMP-3 protein in the
"conditioned" medium is in the zymogen form, while in
cartilage explant "conditioned" medium, mostly active
MMP-3 is found (64).  Thus, either the monolayer cultures
do not fully express proteins needed for activation or the
cartilage matrix plays a role in activation. The effect of the
Fn-fs on proMMP-3 protein levels in monolayer cultures is
so significant that 1 µM concentrations of pro-MMP-3 are
found in "conditioned" medium within a few days and pro-
MMP-3 is one of the major proteins in the medium (64).
MMP-3 appears to have a major role in Fn-f mediated

cartilage matrix damage since antibodies to MMP-3 slow
damage to Fn-f treated bovine cartilage explants (63).
Because of the importance of MMP-3, we typically
measure MMP-3 as a correlate of cartilage matrix damage
since we have never observed enhanced degradation of PG
and release of PG fragments into the culture medium
without up-regulation of MMP-3.  However, when PG
synthesis is up-regulated by e.g. IGF-1, we still observe
both enhanced MMP-3 and enhanced PG degradation, but
we do not see a reduced cartilage PG content because of the
enhanced PG synthesis.

Although MMP-3 appears to be important, the
physiologic site of cleavage of aggregating PG (aggrecan)
found in matrix turnover of normal or IL-1 treated cartilage
(66, as discussed; references therein) is not the MMP-3 site
at Asn360-Phe361.  Instead, the cleavage site is at residues
Glu392-Ala 393 and is termed the "aggrecanase" site. It
should be noted that there is no published work on the
identity of "aggrecanase"; it is only an activity based on
this observed cleavage site of aggrecan in normal and IL-1
treated cartilage (discussed in ref 66).  This activity has not
yet been attributed to a specific protein. Nonetheless, this
"aggrecanase" type cleavage is found in degraded aggrecan
fragments in the "conditioned" medium of Fn-f treated
cartilage (66) and the NITEGE392 neoepitope, an epitope on
the amino-terminal side of the "aggrecanase" site,
containing residues 392 and lower (62), is found in
immunostained sections of Fn-f treated cartilage.  We have
no evidence for MMP-3 mediated aggrecan degradation.
This is partly because the "aggrecanase" site is carboxyl-
terminal to the MMP-3 site. Thus, it is much more difficult
to obtain amino-terminal sequencing evidence for MMP-3
induced cleavage if there is an "aggrecanase" activity
present that might act on MMP-3 degraded aggrecan.  Our
observation of the NITEGE neoepitope in Fn-f treated
cartilage could erroneously suggest that there cannot be
MMP-3 cleavage because if both MMP-3 and
"aggrecanase" acted simultaneously, a 32-residue peptide
connecting these two cleavage sites would be generated.
Thus, if this peptide diffused out of the cartilage, we would
not observe the NITEGE neoepitope.  However, we do not
yet know if this peptide is generated or whether it escapes
the tissue or whether the NITEGE neoepitope in the tissue
is lost with time.  It is also possible that MMP-3 does not
act on aggrecan at all, but performs crucial cleavages on
other matrix molecules such as link protein, which might be
required for release of "aggrecanase" degraded PG into the
medium. Further work will be needed to explore these and
other plausible mechanisms. However, it should be noted
that the general literature on characterization of the crucial
enzymes in normal, OA or cytokine mediated cartilage
degradation is not yet unambiguous and that the existence
of "aggrecanase" as a new or unique chondrocyte-derived
proteinase has not yet been established.

Regardless of the role of MMP-3 in the Fn-f
system, we can propose that since MMP-3 can also degrade
intact Fn into small Fn-fs (40,67,68), MMP-3 activity
found in OA or RA cartilage or synovial fluids may
generate Fn-fs, which then amplify MMP-3 expression in a
feedback loop.  The same might be true of other MMPs.
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Thus, Fn-fs would amplify generation of even higher levels
of Fn-fs.

In order to rule out the possibility that the
proteolytic activities observed in Fn-f-treated cultures were
not due to contamination with other factors or with
proteinases, we showed that the activities of the Fn-fs on
cartilage tissue were not due to endotoxin.  We also showed
that the effects required de novo  mRNA and protein
synthesis (56).  Furthermore, our Fn-f preparations did not
contain detectable levels of IL-1, IL-6 or TNF-alpha (69) or
of several different types of proteolytic activities toward
synthetic substrates nor activities on zymogram gels (63)
and did not cause PG loss from non-living cartilage (59).
Synthetic tetrapeptides derived from the 140-kDa Fn-f and
certainly devoid of any potential proteinase activity, also
enhanced PG depletion from cultured cartilage (56).

It has been reported that at high concentrations of
at least 1 µM, Fn-fs generated by autolytic processing
under various conditions have proteolytic activity (70-74).
Currently, we study the effects of 1 to 100 nM
concentrations of Fn-fs on explants in serum cultures.
Innate proteolytic activities at these concentrations would
not make significant contributions to our greatly up-
regulated MMP activities.  These observations of Fn-f
proteinase activity might be related to an earlier
observation that some, but not all, preparations of Fn
contain a plasma gelatinase that can be activated with
trypsin or by electrophoresis in SDS (75).  We have not
detected gelatinases in our Fn-f preparations (63) and, in
fact, the gelatinase activities induced by our Fn-f
preparations require metabolic energy and mRNA synthesis
(56).  Furthermore, some of the investigators who reported
innate proteolytic activity of Fn-fs (76) have confirmed our
observation that the 29-kDa amino-terminal Fn-f, the most
active Fn-f in our system, is not very effective at 1 µM in
degrading and releasing PG from non-living cartilage even
in serum-free conditions.  The same study showed that an
auto-activated 42-kDa gelatin-binding Fn-f at 1 µM was
active on non-living cartilage.  In contrast, 100 nM
concentrations of our counterpart gelatin-binding 50-kDa
Fn-f, which is not auto-activated, have been shown to
induce MMP-3 protein (63).  Thus, while the gelatin-
binding Fn-fs activated under certain conditions may have
some proteolytic activity, our Fn-fs do not have protease
activity at the lower concentrations studied by us and at
those concentrations induce MMPs.

3.5. High concentrations of Fn-fs enhance release of
catabolic cytokines and decrease cartilage PG content,
while low concentrations enhance PG synthesis and PG
content

In our initial studies, the kinetics of release of
degraded PG from explant cartilage into the culture media
was used to measure kinetics of cartilage matrix
degradation (56).  However, this limited our studies to less
than one week due to the extensive matrix damage.  In
more recent studies, in order to study longer time periods,
explant culturing has been performed in 10%
serum/DMEM.  The serum slows the rate of PG
degradation by several-fold and allows an anabolic

response of the cartilage to the damage.  Since the kinetics
are slowed, it is more difficult to accurately measure PG
release into the media.  Thus, the cartilage PG content is
now measured which does not provide information on rates
of degradation but rather on the combined effects of altered
anabolism and catabolism. By looking at steady-state
metabolism, we discovered a very interesting dose-
response effect of the Fn-fs. A 1 µM concentration caused a
50% decrease in PG content within a few days, followed by
a very steady but reduced PG content, as shown in Figure
2A (59). This latter part of the PG content curve was often
flatter than in the control, suggesting an anabolic response
to the matrix damage. In contrast, in serum-free cultures the
PG content decreased by up to 80% within a few days (56).
During this early catabolic phase, MMP-3 release into the
media plateaued (65) as shown in Figure 2B.  A 100 nM
concentration caused a slightly slower rate of PG decrease
than 1 µM, and this was also followed by a stable but
decreased PG content beyond a few days.  However, at 10
nM there was about a 7-day lag period with PG content
often higher than controls, followed by a 50% decrease of
PG content by day 21.  A 1 nM concentration had a
surprising effect; the PG content immediately increased
from 120 to 150% of control levels and was maintained for
up to 21 days in culture.  More recent data shows that 1 nM
causes a decreased PG content beyond day 35, suggesting
that as the Fn-f concentration is lowered the length of the
lag period increases, but eventually the same degree of
matrix damage occurs eventually.  We have no explanation
for this observation but it may suggest that as the Fn-fs
bind cartilage they slowly concentrate until a minimal
tissue concentration is reached which then begins the
damaging cascade.  Thus, dilute Fn concentrations will
require a longer time period for this concentration to be
attained.

The early catabolic phase of damage is also
associated with enhanced release of catabolic cytokines as
described (65,69).  Fn-fs added to human knee cartilage
explants caused a peak of release of TNF-alpha and IL-1-
beta that decreased after a few days as shown in Figure 2C.
IL-6 release occurred earlier but continued throughout a 21
day culture while IL-1-alpha release showed a lag period
before release began but continued for most of the culture.
As shown in Figure 2B, the peak of MMP-3 release
occurred with the onset of TNF-alpha and IL-1-beta release
and declined as IL-1α release declined.  The cytokines
apparently account for the bulk of the protease induction
and the temporary PG synthesis suppression since
antibodies to these cytokines, when added to human
chondrocyte cultures, partially or totally block these two
activities (69). The effects likely involve transcriptional
gene regulation, since metabolic and RNA synthesis
inhibitors suppress the release of these cytokines and these
cytokines are not found in un-treated cartilage (69).

3.6. After the damage phase, PG synthesis increases to
supernormal levels during a period of decreasing
cytokine release and enhanced anabolic factor release

As stated earlier, the Fn-fs suppress PG and
protein synthesis up to 50%  (58,59).  Thus, our
observations of enhanced PG content discussed were at



Effect of Fibronectin Fragments on Cartilage

718

Figure 2.  Effect of various concentrations of the 29-kDa
Fn-f on PG content, MMP-3 release into the media and
release of catabolic cytokines.  Panel A; bovine articular
cartilage was cultured in 10% fetal bovine serum/DMEM
(Dulbecco's modified Eagle's medium) with 1, 10, 100 nM
or 1 µM Fn-f or without Fn-f (Control). PG content of
cartilage was determined by the DMB assay.  Similar
kinetics are observed for human knee cartilage with 1 and
100 nM Fn-f.  Note the lag period for PG depletion which
becomes longer as the Fn-fs are diluted.  Also note that the
overall extent of PG depletion is similar at the higher
concentrations but that 1 nM Fn-f immediately enhances
PG content.  Panel B; conditioned medium of human knee
cartilage was assayed for MMP-3 release.  Note that the
peak occurs during the period of maximal loss of PG shown
in panel A.  Panel C; conditioned media of human knee
cartilage was assayed for the cytokines shown.  The control
levels, with no Fn-f addition, are not shown but were
typically less than 5% of the peak.  Note that only IL-6
does not peak and subside during the period of maximal
MMP-3 expression.

odds with the effects on PG synthesis.  In order to reconcile
these data, we considered that the effect on PG synthesis
may have been only temporary.  Upon further investigation,

we found that the very slow decrease in PG content after
the damage phase and the above normal PG contents found
with 1 nM Fn-f treatment occurred with enhanced PG
synthesis.  Thus, while high concentrations initially
suppress PG and protein synthesis, the rates slowly increase
to "supernormal" levels.  The time period required for the
increase to "supernormal" levels was inversely related to
the Fn-f concentration as shown in Figure 3A.   The greater
the Fn-f mediated early matrix damage, the slower the
increase in anabolism. This inverse relationship is
consistent with what would be expected when positive and
negative or anabolic and catabolic effects are summed.
While the increase to "superanabolic" levels is very
significant at 1 nM Fn-f, we have found that the rates of
synthesis and PG content begins to decrease by day 35,
suggesting that this "superanabolic" response may precede
matrix damage.  As discussed earlier, 1 nM Fn-f appears to
be "superanabolic" up to day 28 in culture.  However, this
dilute concentration may simply require a longer period of
time before a critical level accumulates within the matrix
and initiates damage.  The data in Figures 2 and 3 do
suggest a loss in elevated activities by day 28 and more
recent data show a catabolic effect by day 35.

In order to explain why PG synthesis rates
increase to over 100% of control and not merely to control
levels in Fn-f treated cartilage, we have tested the
possibility that Fn-fs also activate growth factors.  The
effect on TGF-beta, which stabilizes the chondrocyte
phenotype (77,78) and blocks the effects of IL-1 on
chondrocytes (78,79) has been tested.  IGF-1, which has
been shown to be the synovial fluid component (80) and the
serum component (81) responsible for maintaining PG
synthesis rates and which can antagonize the effects of IL-1
and TNF-alpha (82) has also been tested for the possibility
that its release is enhanced by Fn-fs.   As shown in Figure
3B,C, the IGF-1 and TGF-beta levels in the media of Fn-f
treated cartilage, are elevated over control levels by
statistically significant amounts in cartilage exposed to
either lower or higher concentrations of Fn-fs (69).  The
lack of strict dose dependence suggests that the effect may
not be transcriptional.  In fact, metabolic inhibitors have no
effect on release of these factors (69), suggesting that they
might be released from cartilage stores. Also, up-regulation
in chondrocyte cultures, devoid of matrix, was not detected.
Thus, the Fn-fs do not up-regulate synthesis of these
factors, but somehow enhance their release and activation.

The reason the Fn-fs do not cause a further
decrease in steady-state PG content beyond about one week
in culture is that the release of catabolic cytokines has
greatly decreased by then and the effects of the anabolic
factors have become predominant. Since explant cultures
with the Fn-fs continuously present show a pulse-like
release of catabolic cytokines, especially in terms of TNF-
alpha and IL-1-beta (Figure 2) and not continuously
elevated release, we investigated whether this cytokine
pulse could be initiated with only short-term cultures.  We
found that a 7-day exposure to the Fn-fs was sufficient to
cause as much cartilage PG depletion, MMP-3 release and
enhanced release of TNF-alpha, IL-1 and IL-6 as a
continual exposure for up to 28 days (83).  This suggests
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Figure 3.  Effect of Fn-fs on PG synthesis and on IGF-1
and TGF-beta release into media of explants of bovine
articular cartilage – Panel A, bovine articular cartilage in
10% serum/DMEM was cultured with various
concentrations of 29-kDa Fn-f and at various times,
incubated in the presence of 35S-sulfate labeling.  Values
were normalized to % of the initial specific activity at day
0.  Note that as the Fn-f concentration is increased, PG
synthesis suppression increases during the first two days.
However, the synthesis rates slowly increase subsequently.
The rate of this increase becomes greater as the Fn-f is
diluted.  The period of supernormal PG synthesis
corresponds to the period of very stable PG content beyond
7 days shown in Figure 2A, which is higher in PG content
than in control cartilage.  Thus, the pattern of PG synthesis
is consistent with the pattern of PG content. Also, note that
1 nM Fn-f causes an immediate increase in PG synthesis,
consistent with the immediate increase in PG content
shown in Figure 2A.   Panel B, human knee cartilage was
cultured with 10% serum/DMEM with various
concentrations of Fn-f and media analyzed for IGF-1
content using the Nichol's Institute (San Juan Capistrano,
CA), IGF-1 assay kit, a kit which includes an acid
dissociation step to inactive IGF-1 binding proteins and
which can be used to measure total IGF-1.  Similar values
were observed for bovine cartilage.  Panel C, media used
for IGF-1 assays were assayed for TGF-beta content.  Both
curves suggest an effect that is not dependent on the
concentration of the Fn-f.  The effects on cytokine release
(figure 2C)  were concentration dependent.

that the Fn-fs can set into motion a damage cascade with
effects that linger long after the Fn-fs are removed from the
culture.  This may also partly explain why restoration of
PG in adult bovine cartilage is not possible (58,59), since
the damage cascade is continuing after Fn-fs are removed
to allow repair.  However, as will be discussed later,
restoration of PG is possible, in spite of the damage
cascade, under certain conditions in which catabolism is
blocked or anabolism enhanced.

3.7. The enhanced anabolic reparative phase triggered
by the damage makes cartilage more refractory to
subsequent damage

The collective data on cytokine and growth factor
release, on PG synthesis and on MMP-3 levels, allow us to
describe an interesting scenario, likely to be physiologically
relevant.  At low concentrations of Fn-fs, only IGF-1 and
TGF-beta are released and this apparently causes an
enhancement of PG synthesis to above control rates (69).
However, as the Fn-f concentration is raised, as might
occur in severe OA, the additional release of catabolic
cytokines occurs, leading to a masking of the initial
enhanced PG synthesis rates with an ultimate suppression
of PG synthesis and induction of MMPs.   Subsequently,
the release of TNF-alpha and IL-1-beta slows, while IL-1-
alpha and IL-6 release continues.  This apparently allows a
slowing of the catabolic processes and allows the anabolic
effects of enhanced IGF-1 and TGF-beta release to again
predominate.  Thus, damage induces reparative responses.
This dose dependent effect on PG synthesis can be
compared to early OA where PG synthesis is elevated (84;
and references therein), as with 1 nM Fn-f, and to severe
OA, where PG synthesis suppression continues (84,85), as
with higher Fn-f concentrations.

Based on the observations of this "superanabolic"
effect of the Fn-fs, we have proposed that low
concentrations or short exposures to Fn-fs might help to
condition cartilage in a beneficial fashion and that such
effects might occur in minimally damaged cartilage in vivo
(59).  To test this possibility, we cultured cartilage with 1
nM Fn-f for 1 week, which slightly increases the cartilage
PG content and enhances PG synthesis, and then subjected
the cartilage to 100 nM Fn-f.  This pre-conditioning
significantly slowed the onset of PG depletion as shown in
Figure 4A (59).  Thus, continuous exposure to low
concentrations of Fn-fs may be beneficial over a limited
time period.  In separate experiments, the effect of
exogenous IGF-1 was found to be similar to that of 1 nM
Fn-f, consistent with a role for Fn-fs in mobilizing growth
factors. In other experiments, the effect of a short exposure
to a higher Fn-f concentration, followed by a short recovery
period, was tested.  This might be analogous to a more
traumatic type of cartilage injury in vivo .  Cartilage was
exposed to 100 nM Fn-f for 4 days, a period that does not
induce maximal catabolic effects, followed by a 4-day
recovery, and then a second exposure to 100 nM Fn-f (83).
As shown in Figure 4B, this type of pre-treatment also
made the cartilage more refractory to subsequent cartilage
PG depletion.  Our results collectively show that if the
damage period or Fn-f concentration is minimal, the
anabolic effect can be triggered to limit damage, making
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Figure 4.  Effect of Fn-fs on conditioning of cartilage –
Panel A, bovine articular cartilage in 10% serum/DMEM
was cultured with no addition (Control), or with 1 nM 29-
kDa Fn-f for days 0-28, or with 1 nM Fn-f for days 0-7,
followed by adjustment to 100 nM Fn-f for days 7-28; or
with 100 nM Fn-f for days 7 to 28.  Cartilage PG content
was measured by the DMB assay.  Panel B, bovine articular
cartilage was cultured in 10% serum/DMEM with no
addition (Control), or with 100 nM Fn-f for 4 days before
the start of the experiment (d-4 to 0) or with 100 nM Fn-f
for days 4 to 28, or with 100 nM Fn-f for days –4 to 0 and
days 4 to 28.  Note that conditioning with low
concentrations of Fn-f for a long period or with high
concentrations of Fn-f for a short period, conditioned the
cartilage against further damage.

cartilage more refractory to subsequent damage.  These
data are consistent with a role for moderate tissue damage
in normal tissue homeostasis.

We have no evidence for the cause of this
"superanabolic" response described above and utilized in
our attempts to "condition" cartilage.  However, one
possibility is that the "conditioning" has led to up-
regulation of MMPs to a level sufficient for activation of
growth factors.  The level required for activation may be
much lower than that required for matrix damage. Thus, 1
nM Fn-f treated cartilage may show "superanabolism"
without matrix damage.  It is known that proteolysis
activates TGF-beta (86) that is known to be stored in the
extracellular matrix, as well as IGF-1, that is known to be
trapped within the cartilage matrix (82,87). In fact,
proteinases have been shown to release TGF-beta from the
extracellullar matrix in other types of cells (88) and
proteinases, including MMP-3, can degrade IGF-1 binding

proteins (IGFBPs) (89) that can trap and inactive IGF-1
within the cartilage matrix. In support of the role of MMPs,
we have shown that addition of MMP-3 to cultured
cartilage results in the initial suppression of PG synthesis,
elevated IGF-1 in the media and, after a few days,
enhanced PG synthesis (unpublished), just as do the high
concentrations of Fn-fs.  We have also shown that Fn-f
treatment of chondrocytes enhances release of IGF-1 and
IGFBPs from around the chondrocyte matrix (Purple and
Homandberg, submitted). While we have no evidence of a
role for protease-induced activation of IGF-1 in the Fn-f
system, we have found that one of the IGFBPs, BP4,
decreases in concentration in the presence of the Fn-fs.
Since there is no effect on mRNA levels for this protein, it
is likely that this protein is degraded during Fn-f treatment
(90).  The observation that proteinases can enhance PG
synthesis was first made in 1984 (91,92). Thus, it is very
conceivable that proteases induced during the damage
phase might account for a linkage between cartilage
damage and attempted repair responses.

Other work with the Fn-f system has suggested
an additional feature that may also contribute to the
"superanabolic" effect.  Fn-fs up-regulate expression of
some, but not all IGFBPs (90).  We propose that as the
newly synthesized IGFBPs are released from chondrocytes,
they bind IGF-1 and concentrate it around the cells.  Thus,
during Fn-f induced proteolysis, the active IGF-1
concentration around the cell may be greatly elevated,
leading to enhanced PG synthesis. This interesting
mechanism is currently under investigation.

3.8. Decreasing catabolism or increasing anabolism
blocks the Fn-fs and promotes restoration of PG in Fn-f
damaged cartilage

Our earlier studies showed that after treatment of
18 month-old bovine metacarpophalangeal cartilage with
Fn-f to cause removal of approximately half of the total
cartilage PG, continuous culturing in 10% serum/medium
did not allow restoration of PG (59).  Therefore, we tested
whether agents that either decrease catabolism or enhance
anabolism might be effective in shifting the homeostasis
sufficiently toward anabolism to restore the PG content.
The agents tested were directed toward different points in
the pathway for Fn-f mediated activities. A synthetic
peptide, RFDS, which presumably blocks Fn receptor
activity and Fn-f activity (93), an anti-oxidant, N-
acetylcysteine (NAC), that is known to block cytokine
pathways and which also blocks Fn-f activities (94,95), and
a growth factor, IGF-1, which is known to antagonize
cytokine action and enhance PG synthesis, were tested.  All
three agents partially or fully blocked the cartilage
damaging activities of the Fn-fs.  Subsequent studies
showed that all three also were effective in enhancing
restoration of PG (96).  Thus, restoration of PG in Fn-f
damaged adult bovine cartilage in explant cultures was
possible with perturbation of metabolism.  These
observations also showed that in order to restore PG in
cartilage no longer exposed to the Fn-fs, the catabolic
events that initiated the PG loss and continued during the
attempted repair had to be suppressed or compensated.
This was consistent with our earlier observation that the
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damage events are prolonged long after the Fn-fs are
removed from the culture.  A further conclusion is that
therapeutic agents that can inhibit cartilage degradation
should have potential as reparative agents.

3.9. Could the enhanced anabolic response be involved
in normal homeostasis?

Since Fn-fs at relatively low concentrations have
"superanabolic" effects and Fn-fs would be generated
during normal cartilage tissue turnover, it might be
expected that they would have some role in normal
homeostasis.  While this is possible, this role cannot be
confirmed until more is known of the basal levels of Fn-fs
and the turnover rates of native Fn.  However, it is possible
that the Fn-fs play a role in moderate tissue damage, where
their role may be in inducing anabolic processes for tissue
remodeling.  With more severe matrix damage and higher
concentrations of Fn-fs, their role might shift to amplify the
tissue damage.

We can speculate that the Fn-fs found in severe
tissue damage might be derived not only from the damaged
cartilage per se  but also from Fn that would be induced as
part of a repair response.  For example, growth factors,
such as TGF-beta or IGF-1 that might be released during a
mild reparative or remodeling response, might up-regulate
Fn levels in an uncontrolled fashion, which could lead to
elevated Fn-f levels in the presence of normal baseline
levels of proteinases. Thus, Fn-fs could increase
dramatically after moderate tissue damage and eventually
amplify the damage. As explained earlier, this damage
would then initiate anabolic processes and thus, the Fn-fs
would sequentially amplify both directions of catabolism
and anabolism

3.10. Could the Fn-fs initiate early OA?
Another question is if the Fn-fs are involved in

early stages of OA, from where would they originate?  Fn-
fs could arise from cartilage degradation in early stages of
OA, however extensive matrix degradation would be
required.  On the other hand, Fn-fs could be generated by
MMP-3 action on elevated synovial fluid Fn levels early in
the disease.  For example, it has recently been shown that
in an experimental OA model of partial-meniscectomized
rabbits, MMP-3 was first up-regulated in the synovium,
followed later by up-regulation of MMP-3 in cartilage (97).
This was suggested to indicate that the inflammation of
synovium was the initiator in the cartilage degeneration.
Based on these observations, we could propose that the
synovial tissue MMP-3 generated in early OA, prior to an
indication of cartilage matrix damage, might generate Fn-fs
from synovial fluid Fn that would penetrate non-activated
cartilage. In turn, this would lead to generation of cartilage
Fn-fs, which would amplify the degradation.  In support of
this contention, we have shown that MMP-3 generated Fn-f
mixtures derived from synovial fluid Fn are as active as
those derived from plasma Fn (40).   We have also shown
that the Fn-fs found in OA synovial fluid are active in
cartilage chondrolysis and account for part of the cartilage
matrix damaging activities observed when the fluids are
added to cultured cartilage (40).  Lastly, we have shown
that addition of MMP-3 to bovine synovial fluid leads to

generation of Fn-fs (40).  Thus, a potential role for Fn-fs in
early OA could originate from the initial involvement of
synovial tissue. The additional generation of Fn-fs within
the cartilage tissue would certainly additionally amplify
ongoing cartilage damage.

3.11. Fn-fs damage cartilage in an in vivo model that
shows biochemical similarities with the in vitro model.
Both have been used as models of cartilage degradation

In collaboration with Dr. J. M. Williams, we have
found that Fn-fs cause articular cartilage damage when
injected into rabbit knee joints (98).  We have continued to
characterize this model and have shown that many of the
biochemical events observed in explant cultures are also
observed in this in vivo  model.  This has allowed us to
couple both models in tests of therapeutic compounds and
to use the in vitro  model to test mechanisms that are likely
at play in the more relevant in vivo  model. In
characterization of the in vivo  model we found that
injection of Fn-fs into rabbit knee joints caused loss of up
to 50% of the knee cartilage PG within 7 days (98).  More
recent work shows that this degree of matrix damage
occurred within 2 days of injection and that MMP-3 levels
plateaued by 2 days.  The Fn-fs also temporarily suppressed
PG synthesis and exposed the NITEGE neoepitope of
aggrecan, just as in the in vitro  model (see above)
(Homandberg and Williams, in preparation).  PG synthesis,
although initially suppressed, slowly increased to
"supernormal" levels, also suggesting a "superanabolic"
response.  This anabolic response led to restoration of PG
within 2 weeks in adolescent rabbits, while in skeletally
mature rabbits, PG was not restored (99,100).  Thus, this
model has potential in studies of aging. One of the most
striking observations was that the non-injected knee
cartilage showed evidence of a systemic effect. Figure 5A
shows that injection of Fn-fs into knee joints of adolescent
rabbits led to a decrease in steady state PG content,
followed by a recovery within 2 weeks. Figure 5B shows
that PG synthesis rates were enhanced in the injected knee
cartilage much as rates are enhanced after the PG depletion
in cultured bovine cartilage explants.  Note that the non-
injected knee shows a significant increase in PG content by
day 12. Thus, by some systemic mechanism, the damage
has caused a systemic anabolic effect in the non-injected
knee.  If a higher concentration of Fn-fs is injected, the
non-injected knee shows damage at nearly the same time as
the injected knee.  Thus, the higher concentration has
altered the response in the non-injected knee from anabolic
to catabolic, as observed when 1 nM and 100 nM Fn-f
concentrations are compared in vitro  (see above). When the
Fn-fs were injected at weekly intervals, the catabolic
systemic effect became more obvious. For example,
cartilage from the non-injected knee showed a loss of 40%
of its PG, suppressed PG synthesis, elevated MMP-3 levels
and elevated NITEGE neo-epitope, although about one
week after these events occurred in the injected knee
(Williams et al , in preparation). Since systemic effects are
observed in human OA, this model may be useful for
identification of the responsible biochemical factors.

The in vitro  model has been used to compare the
metabolism of human ankle and knee cartilages (62). Ankle
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Figure 5.  Effect of intra-articular injection of Fn-fs into
rabbit knee joints – Panel A; adolescent rabbits were intra-
articularly injected with 250 µl of 29/50-kDa mixtures and
the injected and non-injected knee cartilage analyzed for
PG content at various times.  Panel B; knee cartilage from
similarly treated rabbits was removed, transferred to
explant cultures in DMEM and subjected to labeling with
35S-sulfate to measure PG synthesis. Note that the injected
knee shows first a loss of PG, followed by an increase in
PG content to above normal levels, while the non-injected
knee shows no initial PG depletion but rather a delayed
effect of slightly enhanced PG content.  The injection also
temporally suppresses PG synthesis, which is followed by
supernormal rates.

joints are much less susceptibility to OA than knee joints
according to numerous cadaveric, radiographic and clinical
studies.  In order to determine whether biochemical
differences might account for differences in susceptibility
to OA or to mediators of OA-like cartilage damage, the Fn-
f model was employed.  We found that addition of Fn-fs to
cultured human knee cartilage decreased the PG content
comparable to that of bovine cartilage.  However, ankle
cartilage in most cases was not affected as exemplified in
figure 6A.  With some donors, ankle and knee cartilage
showed differences in MMP-3 and catabolic cytokine
levels.  Thus, ankle cartilage is an interesting exception to a
generalization of the potency of Fn-fs and this suggests that
we cannot assume that the Fn-fs will be active toward every
type of cartilage.  Nonetheless, the Fn-f system provides
some suggestion that at least some of the differences in OA
susceptibility between ankle and knee joints may be
biochemical in nature and provides a model system for
further studies.

Both the in vitro  and in vivo  Fn-f models have
also been used to test the effects of high molecular weight
hyaluronic acid (HA), a chondroprotective agent that has
shown mixed clinical results as discussed (101,102).  HA
added to human knee (103) or bovine cartilage explants in
vitro  (101) partially blocked the effects of Fn-fs and
partially promoted restoration of PG in Fn-f damaged
cartilage.  Figure 6B illustrates that HA has the ability to
restore PG in Fn-f damaged human knee explants.  HA has
also been shown to be effective in decreasing the matrix
damaging activities of Fn-fs injected into rabbit knee joints
(102).  Thus, the in vivo  model has provided a more
relevant test system, while the in vitro  model will allow us
to investigate the mechanism for this reparative activity of
HA.

3.12. The Fn-fs may act through the alpha5beta1 RGDS-
dependent Fn receptor

Preliminary evidence suggests that the
alpha5beta1 RGDS-dependent Fn receptor integrin is at
least partly responsible for Fn-f activities.  This is the major
Fn receptor in chondrocytes (104) and is involved in matrix
interactions and proliferation of chondrocytes (105).
Antibodies to this receptor as well as RGDS peptides block
adhesion of chondrocytes to Fn (106). Interestingly, this
receptor has been shown to be a chondrocyte
mechanoreceptor (107) and a mechanotransducer in bone
(108).  The structure and biological activity of integrins has
been reviewed (109).

This implication of the Fn receptor in the Fn-f
mechanism is based on our observations that antibodies to
alpha5beta1 Fn receptor cause both PG synthesis
suppression (Purple and Homandberg, manuscript in
preparation) and MMP-3 induction, as do the Fn-fs
(Bewsey and Homandberg, unpublished).  Also, RFDS and
GRADSPK synthetic peptide analogs of the RGDS
sequence block the action of the Fn-fs (93).  The
alpha5beta1 receptor has also been implicated in the up-
regulation of MMPs in synovial fibroblasts (43) and in
chondrocytes (110).

However, the available data do not rule out the
involvement of other receptors.  There is precedent for
cooperative signaling between integrin receptors as
reviewed (111). For example, ligation of the alpha5beta1
receptor is required for internalization of vitronectin by
alphaVbeta3 (112).  Also, both the alpha5beta1 and
alpha4beta1 receptors are required for Fn-f mediated MMP
gene induction in fibroblasts (113). For more detailed
information on Fn receptors, the reader is also referred to
recent reviews (114,115) and a review in this journal,
“Fibronectin-Integrin Interactions” by Johansson et al  (116)
(http://bioscience.org/1997/v2/d/johanss1/htmls/126-
146.htm).

One of the puzzling characteristics of the Fn-f
activities is that not only do the larger central Fn-fs have
chondrolytic activities but also amino-terminal 29-kDa
heparin-binding and 50-kDa gelatin binding Fn-fs (56).
The latter two Fn-fs are not known to bind the Fn receptor.
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Figure 6.  Effect of Fn-fs on human knee and ankle
cartilage and use of model to test high molecular weight
hyaluronic acid (HA) – Panel A, human knee and ankle
cartilage from the same donor were cultured in 10%
serum/DMEM with 100 nM Fn-f.  Curves shown are knee
cartilage with no addition (K Control), ankle cartilage with
no addition (A Control) or K with Fn-f addition (K + Fn-f)
or ankle cartilage with Fn-f addition (A + Fn-f).  Note that
ankle cartilage was unaffected by Fn-fs. This effect was
confirmed with matched ankle and knee cartilages from at
least 7 different donors.  Panel B, human knee cartilage was
cultured in 10% serum/DMEM with no addition (Control)
or with adjustment of cultures to 1 mg/ml HA or with
adjustment to 100 nM 29-kDa Fn-f from days 0-7 or with
adjustment to Fn-f from days 0-7, followed by adjustment
from days 7-21.  Note that HA has very effectively restored
PG in cartilage previously treated with the Fn-f.

However, more recent observations suggest that the amino-
terminus of Fn is indirectly involved in receptor interaction.
For example, amino-terminal Fn-fs and antibodies to them
inhibit pericellular matrix assembly (117) and block
interaction of receptor with receptor antibodies (118).
Binding of cells to the amino-terminal 29-kDa segment is
required for formation of a Fn matrix, the matrix is required
for increased binding of this segment and this segment only
binds when the alpha5beta1 integrin is present (119).
Others have also shown that this amino-terminal segment
helps mediate binding of Fn and receptor (120). Our own
preliminary work shows that when the 29-kDa, 50-kDa and
140-kDa Fn-fs are added to chondrocyte monolayer
cultures and the cells exposed to chemical crosslinkers, the
alpha5 subunit of the Fn receptor can be isolated in covalent
linkage with each of the Fn-fs.  This suggests that the Fn-fs
bind at or near the Fn receptor (unpublished).  We are

presently investigating whether other types of alpha
subunits in cartilage, contained within other types of Fn
receptors, become crosslinked to Fn-fs.

These observations fit into a model proposed by
others in which the amino-terminal domains might bind Fn
fibrils (120).  In this model, the fibrils are initially formed
through domain to domain interactions involving the
interaction of the domains of the most potent chondrolytic
Fn-f, the 29-kDa Fn-f, with domains of Fn having the type
III homology structures found in the 140-kDa cell-binding
Fn-f.  We reported years ago that the 29-kDa amino-
terminal Fn-f interacted with the 140-kDa Fn-f in
polymerization reactions (60,121,122).  Subsequently,
others have confirmed the interactions of the amino-
terminus with more central or C-terminal type III homology
domains (123-125) and shown the requirement of these Fn
domains for cell interaction (126).

In this model, as additional molecules of Fn bind
the fibrils, the amino-terminal domains of each Fn
molecule bind the fibrils, which induces a conformational
change that allows interaction of the carboxyl-terminal
regions of each Fn molecule with the Fn receptor.  We
hypothesize that each Fn-f might alter Fn/Fn receptor
function by binding either soluble Fn prior to incorporation
of Fn into fibrils or might bind fibrillar Fn and block
incorporation of additional soluble Fn molecules.  This
would weaken and alter the structure of the fibrils and
likely alter receptor signaling.  Amino-terminal Fn-fs might
bind only Fn fibrils or Fn molecules while the 140-kDa Fn-
f with the RGDS receptor-binding domain might also bind
directly to the receptor and block Fn assembly. Alternately,
the Fn-fs may bind other matrix components near Fn fibrils
or near the receptor and this also might weaken the fibrils.
The Fn-fs might alter or weaken fibril structure because
they lack a full complement of interaction sites for Fn
fibrils and once they bind they may weaken or alter fibril
growth. From this discussion, it might be predicted that
mixtures of Fn-fs, representing the entire polypeptide might
be inactive.  However, we have not found this to be true,
likely because the interaction would not be of high enough
affinity to mimic native Fn. This model would certainly
predict that native Fn would be inactive in Fn-f activities,
which is consistent with observations made in both
cartilage explants (56) and in chondrocyte monolayer
cultures (64), the latter largely devoid of matrix that would
block Fn interaction with chondrocytes.  It is also possible
that the Fn-fs may simply, because of their smaller size and
more exposed structure, have different activities than native
Fn and bind to non-receptor matrix components at sites Fn
does not bind and indirectly perturb the Fn receptor.

We cannot, however, exclude the possibility that
putative receptors for the amino-terminal Fn-fs exist on
chondrocyte cell surfaces near the Fn receptor and that
these are also involved in Fn fibril formation.  For example,
the amino-terminal 29-kDa Fn-f has been shown to bind a
67-kDa-membrane protein isolated from rat peritoneal
macrophages (127) and a 66-kDa membrane protein from
chick myoblasts (128).  Furthermore, the 29-kDa Fn-f has
been crosslinked to a cell membrane protein on fibroblasts
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to form a 150-kDa protein complex (129).  Other
candidates for Fn-f binding cell surface proteins have been
reviewed (130).

3.13. Could the Fn-fs be altering Fn function by altering
communication between the matrix and the Fn
receptor?

As pointed out by Schmidt et al (131), the
cytoskeleton may serve as a structure where mechanical
signals can switch into chemical signaling pathways.  It is
known that integrins such as the Fn receptor act as a
transmembrane link among the extracellular matrix,
cytoskeletal proteins and actin microfilaments.  This may
allow ligands, such as Fn, to mediate attachment of the
matrix to the cytoskeletal assembly, to regulate cell shape
and internal cellular architecture (132) and to transmit
signals to the cytosol.  Schmidt et al  (131) have also shown
that integrins sense physical forces that control gene
expression and consequently activate the mitogen-activated
kinase (MAP) pathway.  If this linkage between the
integrins and ligands is perturbed, for example, by binding
of Fn-fs to Fn fibrils or to Fn receptors, it is reasonable that
altered signal transduction may occur.  For example, when
fibroblasts are incubated with RGDS peptides that bind the
Fn receptor, the co-localization of the Fn receptors with
extracellular Fn fibers is lost (133) and alpha-actinin and
vinculin are progressively lost from focal contacts,
followed by dissolution of focal contacts  (134,135).
When rabbit synovial fibroblasts are plated onto a surface
containing a 120-kDa Fn-f, focal contacts are decreased
and collagenase is induced.  However, plating of cells onto
surfaces coated with other Fn-fs that allow extensive focal
contact formation does not greatly enhance collagenase
(113).  Furthermore, when Fn-fs are added to fibroblasts,
the cytoskeleton reorganizes (136).  Perhaps the strongest
suggestion that the effect of Fn-fs may be associated with
changes in the cytoskeleton comes from observations that
cytochalasins B and D, which alter cytoskeletal structure,
also induce collagenase and stromelysin (137) and enhance
mRNA for c-fos (138), a transcription factor involved in
up-regulation of MMPs.

We have hypothesized that the Fn-fs may alter
communication between Fn and the Fn receptor(s) and
reducing receptor occupancy by Fn could do this.  This
possibility is intriguing based on studies of other types of
cells.  For example, in the absence of attachment of HT29
colon carcinoma cells to Fn, integrin alpha5beta1 expression
activates a pathway leading to decreased cellular
proliferation while ligation of receptor with Fn reverses this
signal (139).  Furthermore, disruption of binding of Fn to
the alpha5beta1 integrin stimulates cyclin dependent kinases
and DNA synthesis and activation of MAP kinases (140).
Reducing the receptor density may be another means of
blocking Fn function.  For example, when attachment of
substrate to the alpha5beta1 integrins is blocked, the
integrins become both internalized and degraded (141).
Therefore, we could hypothesize that the Fn-fs destabilize
Fn fibrils or block Fn interaction with the Fn receptor,
which in turn, decreases receptor density, which leads to
weakened focal contacts and activation or de-repression of
catabolic pathways.

3.14. Other similar systems may exist and may provide
redundancy

While the activities of the Fn-fs may play a role
in cartilage matrix degradation, it is likely that other matrix
component fragments share this property. It has recently
been shown that collagen type II peptides as well as
synthetic peptides containing the amino-terminal
teleopeptide sequence of type II collagen inhibit collagen
synthesis, deplete cartilage matrix PG and enhance
gelatinases in cultured articular cartilage (142). This is
consistent with another report that collagen peptides
stimulate collagenase production by synovial cells exposed
to collagen fragments (143).  It is interesting that collagen
peptides also down-regulate collagen type II message and
synthesis in isolated chondrocytes (144) and also activate
alveolar macrophages (145).  Preliminary work suggests
the involvement of the anchorin CII receptor in cartilage
damage (Mollenhauer, personal communication).

It has also been shown that treatment of isolated
cultured chondrocytes with a hyaluronic acid (HA)
hexasaccharide causes loss of PG, suppression of PG
synthesis, decreases in degree of aggrecan aggregation and
enhances gelatinase activity (146). Anti-sense
oligonucleotides to CD44 have been shown to cause some
of the effects of the hexasaccharides, consistent with the
possibility that hexasaccharides may enhance chondrolysis
by down-regulation of the CD44 receptor (146).  This HA
receptor appears to play a major role in chondrocyte matrix
assembly at the cell surface (147,148), as well as in matrix
catabolism (149). It has also been shown that Fn-fs up-
regulate CD44 (150).  Ironically, since the anti-sense data
might be interpreted to suggest that reduction of CD44
levels leads to enhanced matrix catabolism, these data
might collectively suggest that the Fn-fs would offset the
catabolic activity of naturally occurring HA fragments.

Recently, a 16-residue synthetic link protein
peptide, derived from the amino-terminus of link protein, a
component of PG aggregates, was found to stimulate PG
synthesis in human articular cartilage (151).   Since link
protein can be cleaved near the amino-terminus by enzymes
such as MMP-3, such amino-terminal peptides could
enhance reparative processes during matrix damage.
However, it would be interesting, as with the Fn-fs, if
higher concentrations of link peptide were chondrolytic.
This additional property would allow link protein
fragments to amplify cartilage repair after moderate
damage but cause much more extensive tissue remodeling
or clearance after severe damage.

4. Perspectives
This review has described the potential of the Fn-

f system to be involved in the complicated pathways of
cartilage homeostasis in health and disease. These Fn-fs
may signal through the respective receptors the health of
the surrounding tissue and should be considered catalysts or
mediators of both directions of homeostasis, catabolism and
anabolism. Thus, the Fn-fs may act continuously to
maintain normal cartilage metabolism as well and thus,
completely blocking their activities may not be prudent
during therapeutic intervention in OA.  However, since Fn-
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fs might act upstream of other common pathways, such as
that of cytokines, they may also represent an effective
target for control of catabolic cytokine pathways.  Since
other fragment systems and pathways, including those of
collagen and hyaluronic acid may intersect, there may be
common targets for prevention of their catabolic activities.
There are many questions to be addressed of such fragment
systems.  Because of the potentially ubiquitous nature of
these systems, elucidation of their activities in these
cartilage homeostasis pathways will be necessary to fully
understand cartilage damage and repair.
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