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1.  ABSTRACT

A central feature of the osteoarthritic disease
process involves erosive destruction of the articular
cartilage extracellular matrix (ECM) on the surfaces of
diarthrotic joints.  The resultant loss of joint function makes
studies on mechanisms underlying ECM degradation
critical for treatment of the disease and prevention of
disability.  Candidate pathways to account for the loss of
cartilage involve expression of a combination of proteases
that degrade the major cartilage matrix macromolecules,
aggrecan and type II collagen.  The specific types of
enzymatic activities associated with the progressive
removal of ECM and severity of joint disease include the
matrix metalloproteinases, collagenase, gelatinase and
aggrecanase(s).  The degradative enzymes originate in
synovial cells, cartilage cells, the chondrocytes, distributed
within the ECM and leukocytes that actively invade the
joint space.  Specific enzymes arising from each of these
tissues exhibit selective ECM degrading properties; the
different categories of these tissue-derived enzymes will be
discussed in this chapter.  A perspective on the efficacy of
existing agents and the potential for development of novel
therapeutic agents is also included.  While the degradative
enzymes serve as a focal point for therapeutic intervention,
a fundamental understanding of the mechanisms underlying
degradative enzyme expression in osteoarthritis remains an
important goal for prevention of disease.

2.  INTRODUCTION

Osteoarthritis is a disease process with multiple
etiologies that afflicts a majority of the population in the
later decades of life.  Some of the factors contributing to
disease susceptibility include genetics, body mass, previous
history of trauma to a major limb, occupational influences,
and immobilization.  The disease in all cases culminates in
the stepwise degeneration of diarthrotic joint integrity and
function.  A principal cause of joint morbidity results from

degradation of the articular cartilage extracellular matrix
(ECM).  Since the specialized articular cartilage ECM
ensures distribution of mechanical loads generated by
weight bearing, loss of function quickly follows ECM
breakdown.  The loss of function manifests primarily
through painful and highly restricted joint movement.  The
impact of osteoarthritis on personal productivity and
quality of life in an aging society is increasingly being
recognized as an important element of health care costs.
The end stage of osteoarthritis usually requires total joint
replacement.  The current total health care cost attributable
to this procedure is estimated to be hundreds of thousands
annually.

This review delineates the role of various
candidate enzymes implicated as causative agents in the
loss of joint function.  The discussion will include a short
perspective on inhibition of degradative enzyme activity as
a target for therapeutic intervention.  Disease processes
impacted by enzymatic degradation of extracellular matrix
are vast and the subject area represents a dynamic and
expansive topic of current research in biology and
medicine.  The molecular mechanisms involved in ECM
degradation encompass specialized investigations within
such diverse fields as tissue differentiation, growth factor
and cytokine biology, immunological cell selection models
and tumor cell metastatic disease. To limit the central focus
to joint disease, the subject matter covered will establish a
catalog of enzymatic activities that are recognized as strong
candidates in the destruction of cartilage ECM in
osteoarthritis.

The information will be presented within a
structural framework that is organized around the specific
tissues thought to elaborate the degradative enzymes
associated with the disease process.  In this regard, three
major tissues must be considered the synovium, the
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articular cartilage and the immune lymphoid organs.  The
synovium is a thin tissue that lines the joint space and is the
structure that defines the boundaries of the synovial cavity.
However, when inflamed, the synovium contributes to joint
degradation.  The second tissue is articular cartilage.  At
first glance, the cartilage appears to be metabolically
inactive and to serve solely as an inert weight-bearing
tissue lining the bony surface.  However, perturbation of
the chondrocytes within the cartilage ECM results in the
release and activation of enzymes capable of ECM
degradation.  The immune system is the third candidate as a
source of the degradative enzymes that when stimulated,
attack the cartilage ECM macromolecules.

Therapeutic agents recognized as efficacious in
blocking the degradative processes that involve cartilage
degrading enzymes will be described to provide some
perspective on treatment.  Although no definitive answers
are available with respect to prevention of osteoarthritis,
continued discovery of the genetic, physical and metabolic
influences on joint tissue metabolism predicts a promise of
significant advances in our understanding of the role of
degradative enzymes in osteoarthritis.

3.  ARTICULAR CARTILAGE

The functional capability of articular cartilage
rests with its three primary components, water,
proteoglycan and type II collagen (1-5). The water content
of cartilage depends largely on the proteoglycan content.
The presence of water in association with the hydrophilic
and negatively charged glycosaminoglycans contributes to
the compressive resilience of the tissue.  Articular cartilage
proteoglycans include large and small proteoglycans with
varying amounts of glycosaminoglycans and
oligosaccharides covalently attached to a core protein.  The
proteoglycans and their constituent glycosaminoglycans
originate as products of the chondrocyte.  The
proteoglycans are transported from the cells to the
extracellular environment through multiple processing
steps.  The chondrocytes are non-randomly distributed
throughout the cartilage matrix and exhibit variation in
metabolism that coincides with location (6,7).  Alteration of
the chondrocyte morphology also modifies collagen
synthesis (8) and may contribute to release of latent
degradative enzymes such as procollagenase (9).

Type II collagen is assembled as cross-linked
fibrils and provides cartilage with tensile strength (10,11).
Collagen is protected from denaturation by the
macromolecular complexes of aggrecans (large aggregating
proteoglycans) (12-17).  Aggrecans consist of a core
protein having a molecular weight of 200-350 kilodaltons
(18-20) to which the individual glycosaminoglycan (GAG)
chains, chondroitin and keratan sulfate, are attached by
covalent linkages to either a serine or threonine residue
(21-23).  The large proteoglycans contain approximately
100 chains of chondroitin sulfate, 40-50 keratan sulfate
chains, 60-70 O-linked and 6-8 N-glycosidically linked
oligosaccharide chains (24).  Core proteins exhibit
extensive homology (> 80%) for chicken, rat and human
proteoglycan (25).  A number of other minor but potentially

structurally important molecules such as fibromodulin,
types IX and XI collagen, decorin and cartilage oligomeric
protein are interspersed within the major macromolecules,
the aggrecans and type II collagen.

4.  HISTORICAL VIEW

The early recognition of the extensive nature of
the articular cartilage erosion from the bony surface makes
the quest for the responsible agent a high priority.  After
years of consideration of lysosomal-like degradative
enzymes, careful evaluation of lesions within human
cartilage suggested a role for collagenase activity (26).  In
fact, studies of swelling pressure of osteoarthritic cartilage
in vitro found that water content was increased.  It was
concluded that the increase in water content was due to a
failure of the collagen network to resist expansion (27).  A
number of studies revealed that the joint space may remain
in the neutral pH range and that proteases active at neutral
pH may be significant to the degradative process (28,29).
This consideration prompted a number of studies of ECM
degradation to be carried out with isolated tissues.

Early studies screening degradative enzymes in
homogenized cartilage collected from joints of animal
models of osteoarthritis provide clues that neutral protease
activity correlated with cartilage degradation.  In many of
the early studies, the index of degradation was the extent of
the cartilage surface area showing fibrillation.  Fibrillation
was defined as a loss of integrity of the outer, smooth
surface of the articular cartilage.  The visualization of the
extent of fibrillation often was achieved with particulate
dye staining of the surface.  Analysis of forty-nine
specimens of osteoarthritic cartilage revealed increased
collagenolytic activity and the highest levels of activity
coincided with osteoarthritic lesions on the surface (30).
Continued study of human osteoarthritic cartilage showed
that proteolytic activity increased in proportion to the
severity of disease and the significance of proteases as
contributors to cartilage breakdown was increased by evidence
that inhibiting the activity with chelators slowed the arthritic
process (31).  The role of the proteases active at neutral pH
was extended to degradation of the proteoglycan.  The effects
of these enzymes on the proteoglycan became implicated in the
loss of the ability of the large aggregating proteoglycans
(aggrecans) to form stable non-covalently linked
macromolecular complexes with hyaluronic acid.  This
supposition was strengthened by the demonstration that
cleavage of the core protein released the hyaluronic acid
binding domain from the remaining aggrecan structure (32).
One important feature of the osteoarthritic cartilage was the
discovery in a canine model that the degradation of the matrix
was accompanied by changes in the character of the
proteoglycans so that the chondroitin-sulfate chains were of a
larger hydrodynamic size (33).  This discovery presaged the
recognition that some abortive reparative effort occurs within
the ECM that may be associated with the onset of cell cloning.

5.  SYNOVIAL ENZYMES

The distinction between what is a synovial-
derived degradative enzyme versus a degradative enzyme
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from other sources remains difficult to discern.  One
characteristic of osteoarthritis is that there is often evidence
of synovitis at the margins of the joint but the role of
synovial tissue in cartilage degradation remain unclear.  In
general, the floridity of the synovitis in osteoarthritis does
not compare with that observed in an inflammatory disease
such as rheumatoid arthritis.  However, the difference in
the two disease conditions permits some comparisons to be
made.

Analysis of synovial fluid from an animal model
of osteoarthritis showed no significant difference in the
concentration of latent metalloproteinase between normal
and experimental knees (34).  In the same animal model,
interleukin-6 levels were significantly elevated.  In a model
of slowly progressive osteoarthritis induced by a tibial
valgus osteotomy, the synovial fluid of the operative knee
exhibited increased levels of matrix metalloproteinase-3
(stromelysin) (35).  At later stages of disease (18 months
after surgery), the molar ratio of MMP-3 to tissue inhibitor
of metalloproteinases-1 (TIMP-1) was higher in the
operative knee.  A comparison of the differential
expression of cathepsins B and L in the synovial membrane
of patients with rheumatoid arthritis and osteoarthritis
revealed that matrix metalloproteinase mRNA expression
was greater than cathepsin expression (36).  The levels of
cathepsin and metalloproteinase proteins were elevated in
the rheumatoid synovial lining suggesting that post-
transcriptional up-regulation of the enzymes occurred.
Recent work suggests that the cathepsins may act to
accelerate the degradation processes by adding to
metalloproteinase activity (37).  Comparison of MMP-3
levels synovial fluid of hips with osteonecrosis of the
femoral head and hips with osteoarthrosis showed
measurable levels of MMP-3 in both sources with levels
being higher in the osteonecrosis samples (38).  TIMP-1
levels were the same in both groups.  Matrix
metalloproteinase-13 was also measurable in the synovial
stroma in samples collected from rheumatoid and
osteoarthritic knees (39).  The level of MMP-13 was higher
in the rheumatoid synovium when compared to the
osteoarthritic tissue.

An overwhelming amount of evidence from
studies of synovial tissue supports the view that in chronic
inflammatory conditions such as rheumatoid arthritis,
synovial-derived degradative enzymes contribute to joint
destruction.  The same evidence suggests that synovial
tissue in osteoarthritis exhibits some level of inflammatory
enzymes such as MMP-3 but the synovium is not a major
source of degradative activity.  Such a conclusion leaves
open the question of where the degradative enzymes arise
in osteoarthritis.  However, RT-PCR analysis of mRNA
from cells from osteoarthritic synovial fluid showed the
presence of matrix metalloproteinase-9 (MMP-9) signal
(40).

6.  CHONDROCYTE ENZYMES

Studies of normal and osteoarthritic cartilage
under a variety of conditions ranging from characterization
of human cartilage degradative enzymes from autopsy

samples to in situ hybridization studies of cartilage from
animal models of osteoarthritis implicate the chondrocyte
in the destructive process.  In normal articular cartilage,
chondrocytes are metabolically active cells that are
essentially non-dividing and which are primarily involved
in the gradual turnover of the aggrecan components of the
ECM.  However, many studies have established that the
chondrocyte is a cell in a state of “calm before a storm”.
The storm being the process activated by acute phase
reactants of the inflammatory process.  The
proinflammatory mediators, interleukin-1 alpha and beta,
tumor necrosis factor alpha and other components such as
transforming growth factor beta, phospholipase A2 and
oxygen intermediates are capable of triggering the
activation of latent neutral metalloproteinases (41-47).
Once activated, the matrix metalloproteinases represent a
group of enzymes that effectively degrade the cartilage
ECM in a sudden and potentially irreversible manner (48-
51).

A consideration of the degradative enzymes
expressed by the articular chondrocyte fails to reveal a
particular enzyme that stands out as singularly critical to
the disease process.  Some forms of the degradative
enzymes appear to be selectively changed with respect to
disease condition, time in the history of disease or at a
particular location on the joint surface.  A pragmatic
approach would suggest that multiple enzymes likely play
overlapping roles particularly as different ECM
components serve as substrate (52).  The latent
metalloproteinases also represent substrate molecules as
conversion of latent forms of these enzymes contributes to
a progression in the degradative cascade.

In some respects, the degradative enzyme
cascade active in cartilage degradation resembles other
enzymatic cascades such as that represented by the
complement system.  The complexity of the activation
process may require a redundant regulatory activation,
involving post-transcriptional and post-translational
mechanism, to ensure tissue and matrix stability during
periods of excessive load, prolonged infection or massive
trauma.

The enzymatic activities directed at the major
matrix components, collagen and aggrecan, remain the
focus of investigation of cartilage ECM degradation.  The
early studies on arthritic cartilage initially centered on the
cathepsins but this emphasis was replaced following
demonstration of collagenase in the matrix (53-57).
Thereafter, a number of studies confirmed the expression of
a variety of matrix metalloproteinases in cartilage.  The
forms that have been reported to be present in varying
levels depending on the state of the cartilage, include
MMP-9, MMP-1, MMP-2, MMP-3, MMP-7, MMP-8,
MMP-13 and membrane type 1 MMP (MT1-MMP) (58-
65).  RT-PCR studies of 54 osteoarthritic samples from
twenty-four patients revealed that differential expression of
MMP-9 mRNA coincides with severity of cartilage
degradation (66).  The severity of cartilage breakdown was
determined by the extent of fibrillation of the surface and
the mRNA expression was confirmed by in situ
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hybridization.  Importantly, this study revealed that MMP-9
expression was unregulated in osteoarthritic cartilage that
exhibited a normal surface appearance.  One hypothesis
linking the expression of MMP-9 to inappropriate levels of
mechanical loading involves the unregulated expression of
the enzyme.

The role of increased collagenase activity on the
cleavage of type II collagen was first suggested by the early
studies confirming that active enzyme was extractable from
osteoarthritic cartilage but not from normal articular
cartilage (67).  The role of the collagenases in the direct
breakdown of type II collagen has been strengthened
considerably.  Immunohistological studies confirm an
increased presence of neoepitopes in osteoarthritic cartilage
that correspond to degraded fragments of a purified type II
collagen substrate.  The neoepitopes correspond to fragments
produced by MMP-1 (collagenase-1), MMP-8 (collagenase-2)
and MMP-13 (collagenase-3) (68).  MMP-7 expression was
localized to chondrocytes in the superficial and the transitional
zones of osteoarthritic cartilage (69).  The expression of MMP-
7 showed a linear correlation with an increase in disease
severity using the Mankin histological scoring system.  Recent
studies showed that expression of at least one member of a
new family of proteins that exhibit a disintegrin-like and a
metalloproteinase-like domain might also be involved in the
pathobiology of osteoarthritis (70).

A central feature of the onset of cartilage
degradation concerns the loss of the aggrecans from the
extracellular matrix.  As discussed above, the reduction of
aggrecan content significantly alters the material properties of
cartilage that provide much of its loading bearing function.  In
particular, loss of aggrecan changes both endogenous water
content and the frictional resistance of water to leave the ECM.
Changes in these parameters decrease compressive resilience
and may contribute to disruption of the collagenous
organization.  Analytical studies of cartilage degradation
products showed that the core protein of the aggrecans
underwent cleavages that were consistent with matrix
metalloproteinase specificity but also showed a unique peptide
product suggestive of a different enzyme.  This activity was
attributed to a putative aggrecanase and more recent data
implicated this enzyme in the osteoarthritic process (71).
However, the fact that both the VDIPEN- and the NITEGE-
neoepitopes produced from aggrecan are detected in joint
cartilage indicates that multiple enzyme activities contribute to
disease (72).

7.  INFLAMMATORY CELL ENZYMES

The inflammatory cell enzymes include the
metalloproteinases that may originate from the monocytes,
macrophages and neutrophils that invade the synovial
lining during inflammation.  A study of MMP-9 expression
in rheumatoid and inflammatory arthritis synovium showed
that the leukocytes, neutrophils and macrophages, and the
endothelial cells infiltrating the tissue expressed elevated
levels when compared to synovial tissue from osteoarthritic
joints (73).  However, cells of synovial fluid samples
aspirated from osteoarthritic joints exhibited significant
MMP-9 expression.

The osteoarthritic joint may also exhibit an
associated release of proinflammatory mediators such as
interleukin-1 that may contribute to joint destruction by
inducing the release of degradative enzymes (74).  The
activity of interleukin-1 as an inducer of cartilage matrix
degradation is now understood to include induction of
matrix metalloproteinase synthesis by chondrocyte and
inhibition of the synthesis of the cartilage matrix
components, type II collagen and aggrecan (75-77).
Evidence exists that the effects of interleukin-1 on cartilage
metabolism is less severe in immature cartilage when
compared to cartilage obtained from animals having
reached sexual maturity (78).  The major age effect
appeared to be the recovery of aggrecan synthesis
following treatment with interleukin-1 in vitro.  These data
form the basis for considering that osteoarthritis exhibits a
greater association with age because of the intrinsic
susceptibility cartilage to respond to the proinflammatory
cytokines.  Other effects of interleukin-1 on joint tissue
include an increase in chondrocyte expression of matrix
metalloproteinase-9, which is elevated in the presence of
protein kinase C activators (79).  Interleukin-1 also
increased the expression of phospholipase A2 in rabbit
chondrocytes so that substrate availability for prostaglandin
synthesis was increased in the joint (80).

8.  HOMEOSTATIC MECHANISMS

The observation that cartilage remains intact and
fully functional in some individuals over six to seven
decades provides a strong argument for the existence of
tightly coupled homeostatic mechanisms to ensure ECM
stability.  One major hypothesis addressing the longevity of
ECM integrity states that a balance between levels of tissue
inhibitors of matrix metalloproteinases (TIMP-1, TIMP-2,
and TIMP-3) and matrix metalloproteinases (MMPs)
prevents ECM degeneration (81,82).  TIMP-2 was
constitutively expressed by human chondrocytes and the
level of expression was unchanged by serum, interleukin-1,
interleukin-6 or transforming growth factor-beta.  TIMP-1
expression by chondrocytes did respond to these agents
(83).  The expression of TIMP-3 in primary human and
bovine articular chondrocytes was also increased by serum
factors, including transforming growth factor-beta (84).
These data suggest that differential regulation of the TIMP
protein occurs in articular cartilage.  A loss in regulatory
factors may be responsible for an imbalance in the ratio of
inhibitor to protease in osteoarthritic cartilage.  A number
of studies have confirmed that the relationship between
these important proteins is perturbed with
metalloproteinase activity being greater than TIMP levels
(85-87).

Another regulatory process may involve the
selective activation of the matrix metalloproteinases.  A
proenyzme activator of MMP-3 occurs in articular cartilage
and results in the step-wise processing of the MMP-3
propeptide to generate multiple active forms of protease.
The catalytic properties of the proenyzme activator share a
resemblance to other metalloendopeptidases that exhibit
specificity for single arginine or dibasic propeptide
cleavage sites (88).  Studies on membrane-type 1 MMP in
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OA cartilage samples show that membranes of
osteoarthritic chondrocytes can activate proMMP-2 which
once activated exhibited a wide range of substrate
specificity against components of the cartilage ECM
(89,90)

9.  PERSPECTIVE ON THERAPEUTIC AGENTS

The emphasis placed in this review on the role of
metalloproteinases in cartilage matrix destruction
emphasizes the need for therapeutic modalities capable of
blocking their action.  The involvement of the individual
proteinases in the degradation of specific proteins makes
the task a difficult one.  The recognized role of
inflammation in cartilage degradation has prompted a
number of studies that evaluated agents such as the non-
steroidal antiinflammatory drugs.  In some instances, the
NSAIDs exhibited efficacious effects on cartilage
degeneration and intervention in the protease cascade
(91,92).  The drugs also showed some selective reactions
with respect to chondrocyte metabolism (93).  However, as
a group, the matrix metalloproteinases remain of central
interest as an appropriate target for preventing joint
destruction in osteoarthritis.

Numerous studies show that members of the
tetracycline family of antibiotics are effective in inhibiting
collagenase and gelatinase activity (94-96).  Oral
administration of the one of these agents, doxycycline,
proved to decrease both collagenase and gelatinase activity
in cartilage from endstage hip osteoarthritis (97).  These
data suggest that an effective oral dose of doxycycline may
be tolerated in a clinical trial to assess efficacious effects on
cartilage degradation in osteoarthritic patients.

Other efforts to address the effects of enzymes
such as collagenase and stromelysin on the extracellular
matrix of cartilage have focused on synthetic compounds
that can inhibit the enzymatic activity (98-100).  This group
of compounds includes chelating agents targeted to the
metal dependency of the enzymes and molecules that are
active site inhibitors and other agents that block enzyme
synthesis.  The success in the therapeutic arena has been
complicated by the multifactorial nature of the disease
process itself (101).  A single effector molecule may only
decrease one element in the cascade of degradative steps.
If that step is early in the process of conversion of latent
protein to active protein, the efficacy of the agent in
question will be improved.

The recognition of the role of proinflammatory
cytokines to the pattern of expression of cartilage degrading
enzymes has resulted in a number of approaches to
effectively counter their action.  As a result, promising data
are available that sequestration of proinflammatory agents
by molecules such as interleukin-1 receptor antagonist
(102,103,104) and antibody to tumor necrosis factor-alpha
(105,106,107) can modulate progression of disease.
Application of sets of anti-inflammatory cytokines could
also intervene in the progression of osteoarthritis by
countering the local synovitis associated with osteoarthritis
(108,109).

Significant interest lies in the use of genetic
methods to redirect tissue metabolism to offset the
degradative cascade in joint (110,111).  A number of
efforts have already been directed to transfection of
synovial cells as a means of regulating proinflammatory
cytokine activity (112,113).  These types of approaches will
likely be extended to efforts to modulate degradative
enzyme expression as well.  Such a metabolic approach
may permit a systematic block in the activation of cartilage
degrading enzymes through the control to the intermediate
steps in the processing of the latent to active enzyme.

10.  CONCLUSIONS

The prevention of cartilage degradation in
osteoarthritis remains a goal for clinician and scientists
alike.  The multitude of factors that initiate of the
breakdown of the cartilage matrix will always remain a
threat to normal joint function.  Altering the character of
the proteins composing the ECM will only be appropriate
when the material properties of the ECM that permit
functional load distribution can be preserved.  In contrast, a
fundamental understanding of the degradative enzymes that
contribute to the ECM degradation and the mechanisms by
which enzyme activation occurs will permit strategies for
preserving joint function.  The outcome of regulation of
cartilage ECM degradation will be a significant reduction
in patient morbidity and increased personal productivity.
The degradative enzymes and tissues that may contribute
the enzymes presented in this review provide guideposts for
directing efforts to control cartilage degradation in
osteoarthritis.
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