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1.  ABSTRACT

Critical to the complete expression of the
virulence of M. tuberculosis and thereby its pathogenesis in
human infection, is the ability of this pathogen to interact
with the host in a specific manner.  To date, cytokine
circuits during tuberculosis and M. tuberculosis infection
have been studied most intensely.  With this regard, both the
whole M. tuberculosis and its protein and non-protein
moieties appear to be influential on the in situ cytokine
profile, and consequently, to the final outcome of infection.
The interplay and final balance of macrophage activating
and  immuno-enhancing cytokines versus macrophage
deactivating and immunosuppressive cytokines most likely
determines the final expression of M. tuberculosis infection.
Further, cytokine circuits also underlie the
immunopathology of tuberculosis.  Modulation of the in
vivo cytokine milieu may allow the development of more
effective vaccines to prevent M. tuberculosis infection, and
adjunctive immunotherapy to improve treatment of
tuberculosis.

2. INTRODUCTION

Infection with Mycobacterium tuberculosis
continues to be the most common recognized infectious
disease worldwide contributing to significant morbidity and
mortality (1).  The interaction of the host with M.
tuberculosis is likely to be conducive to expression of the
virulence of this pathogen.  In fact, the very nature of the
complex interaction between the host and the organism may
underlie the salient features of M. tuberculosis infection
namely, the persistence of infection within host tissues, and
the development of disease. The immune response to M.
tuberculosis can be characterized to be both salutary to the
survival of the host, contributing to control of mycobacterial
replication, and damaging to the host, contributing to
promotion of tuberculosis.  Recent research has allowed a
better understanding of the survival of the pathogen after
initiation of M. tuberculosis infection, and the establishment

of immunopathologic circuits during tuberculosis.  This
knowledge may pave the way for development of both
better vaccines to prevent infection with M. tuberculosis,
and immunomodulatory approaches to aid in treatment of
tuberculosis.

3. PATHOGENESIS OF M. TUBERCULOSIS
INFECTION

In humans, infection with M. tuberculosis is
associated with a wide spectrum of outcomes ranging from
containment of infection and development of protective
immunity, to development of tuberculosis as a consequence
of rapid initial mycobacterial replication or reactivation of
latent infection after a period of mycobacterial dormancy.
The unique ability of M. tuberculosis to be associated with a
pathogenesis allowing such diverse modes of outcome is
dependent on M. tuberculosis virulence, which in turn is
comprised of and combines the following three different
components.  The ability of M. tuberculosis to survive and
replicate within host mononuclear phagocytes; the specific
property of M. tuberculosis dormancy which allows the
organism to survive for prolonged periods of time within the
tissues of the host; and the intense interaction of M.
tuberculosis with the host which contributes both to
pathogenesis and protective immunity.

3.1.  Infection with M. tuberculosis
In an M. tuberculosis-naive individual, subsequent

to an aerosol infection with a few (up to 5) bacilli (2), a
primary focus of infection is established which is initially
mainly featured by the intracellular multiplication of the
organism within the host's most proficient phagocytes, the
alveolar macrophages (3).  In fact it appears that M.
tuberculosis has adapted to employ any of several cellular
molecules abundantly present on the surface of
macrophages, such as the complement receptors (CR)
(CR3 and CR4) (4), fibronectin receptors (5), and mannose
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receptors (6), to gain access to the intracellular space of
these professional "killer" cells.  Through particular modes
of intracellular trafficking and a combination of events which
may include alkalinization of the phagosome (7), prevention
of phagosome-lysosome fusion (8), and escape from the
phagosome (9), M. tuberculosis evades powerful
intracellular killing mechanisms.  Despite induction of
several potent macrophage activating molecules such as
tumor necrosisa ( TNF α) (10) and interleukin-1 (IL-1) (11)
by M. tuberculosis, intracellular replication ensues.  The
biologic basis for the rapid intracellular replication of M.
tuberculosis is not fully understood, however, most likely is
multifactorial.  Potent macrophage deactivating molecules
such as transforming growth factor beta (TGFβ) (12) and
IL-10 (13) are induced by M. tuberculosis, which counteract
all known macrophage activating cytokines       (TNF α and
IFNγ), and microbicidal molecules (reactive oxygen and
nitrogen intermediaries) (14, 15).  In addition, M.
tuberculosis is well-equipped to scavenge these potent
microbicidal molecules (reactive oxygen and nitrogen
intermediaries) by moieties such as mycobacterial sulfatides
(16) and cell wall lipoarabinomannan (17).  Further, the
organisms ability to alter intracellular iron concentrations, as
by mycobactins (18), may allow modulation of the
production of macrophage activating cytokines (19).

Soon after establishment of a focus of M.
tuberculosis infection, with the recruitment of blood
mononuclear cells, the process of M. tuberculosis
"sensitization" of CD4 and CD8 lymphocytes is initiated.
However, due to yet to be defined reasons, protective
immunity requires up to 3 weeks to become adequately
vigorous to contain M. tuberculosis growth.  Meanwhile,
uncontrolled intracellular replication continues which
eventually may culminate in the rupture of infected
phagocytes and spread of infection to other cells.
Importantly, phagocyte rupture allows the initiation of both
extracellular growth, and tissue damage culminating in
caseation necrosis.   As M. tuberculosis growth expands,
lymphohematogenous spread allows the seeding of both
pulmonary (upper lobes of the lung) and extrapulmonary
sites.  Finally, with the development of specific host cell-
mediated immune response, mycobacterial replication is
controlled and most infected individuals develop a robust
life-long immunity to M. tuberculosis.  Protective immunity
involves the host's capacity to produce T-cell cytokines,
that expand M. tuberculosis antigen reactive T-cells (IL-2)
and induce macrophage activation (IFNγ), and ultimately to
develop microbicidal granulomas.  With this regard, the
production and activity of cytokines that are crucial to the
development of Th1 responses, such as by macrophage IL-
12 (20), are critical to the final containment of infection.
However, regardless of the development of systemic
protective immunity, about 5-10% of M. tuberculosis-
infected subjects retain the capacity to reactivate
mycobacterial growth and development of tuberculosis after
a short (1-2 years) or a prolonged (life-time) period of
latency.  The ability of M. tuberculosis to persist in a
dormant state within host tissues is not well understood,
however, most probably relates to the capacity of the
pathogen to switch its metabolism from a rapid aerobic
growth to a slowa naerobic growth (21).  Whether the

structure of the initial granulomatous response and/or the
nature of cytokines induced by M. tuberculosis are
important in the initiation or termination of dormancy is not
known.  However, conditions that weaken cell-mediated
immunity increase the chance of terminating the latent state
of infection and development of tuberculosis (22).

The factors that are important in the maintenance
of protective immunity against M. tuberculosis infection
after primary infection (i.e immunologic surveillance) are not
known.  In experimental animals live but not dead organisms
induce protective immunity (23), and two separate T-cell
subsets confer protective immunity and delayed type
hypersensitivity (24).  It is possible that the sustenance of
successful immunological surveillance after M. tuberculosis
infection is contingent on a dynamic interaction in situ
(granuloma) which is permissive to the continuos
sensitization of M. tuberculosis-reactive T-cells, which may
in turn be dependent on the low grade replication of a few
remaining bacilli, periodically.  Under this scenario, the co-
incidence of the breakdown of the immune system by co-
conditions (such as HIV infection) with the low grade
periodic mycobacterial replication within "healed" M.
tuberculosis-infected foci, is likely to be conducive to
initiation of the process of reactivation and exponential
growth of M. tuberculosis.  Whereas the actual events
around reactivation are poorly understood, cytokines
induced by the organism or its products may be
instrumental in this process.  With this regard again the
capacity of M. tuberculosis to induce cytokines that are
suppressive to T-cell function and deactivate macrophages
and damage the tissues is noteworthy.

3.2.  Induction of cytokines by M. tuberculosis
M. tuberculosis and its protein and non-protein

antigens are strong stimuli for induction of cytokines in
human mononuclear phagocytes which most likely affect the
outcome of infection at any stage of M. tuberculosis
infection.  Early studies indicated that purified protein
derivative (PPD) of M. tuberculosis induces the pro-
inflammatory cytokines, IL-1 (11) and  TNFα (10).  On the
other hand, M. tuberculosis, but not its PPD, was strong in
induction of IL-12 in monocytes (25).  However, M.
tuberculosis (12), its PPD (26), and its cell wall
lipoarabinomannan (LAM) (27), which constitutes 0.5% of
mycobacterial weight (28), were potent inducers of TGFβ.
Further, the effect of LAM on induction of TGFβ appeared
to be dominant over induction of the pro-inflammatory
cytokines ( TNF α, IL-1 beta, and IL-6) and IL-10 (27).
Importantly, one of the three moieties of a major secretory
component of actively replicating mycobacteria (antigen 85
complex), namely 30 kD antigen (85B), strongly induces
TNF α (29).    Interestingly, 30 kD antigen is a fibronectin
binding protein (30), and its interaction with fibronectin
enhances the production of  TNF α (29).  More recently, 30
KD antigen has been shown to induce TGFβ (31) and IL-10
(32).  Of note, TGFβ up-regulates its own production (33),
thereby allowing a mechanism for predominance over other
cytokines in situ.  Thus, mechanisms for induction and
amplification of cytokine circuits appear to be inherent to
M. tuberculosis, its components, and its state of
metabolism.
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Whereas it may be argued that the mononuclear
phagocyte cytokine-inducing capacity of M. tuberculosis is
similar to certain "physiologic" stimuli such as bacterial
LPS, it certainly is not a property shared by all bacterial
products.   For example, early studies showed that tetanus
toxoid was an extremely poor stimulus for induction of  IL-
1 beta as compared to mycobacterial PPD (11).
Furthermore, the persistence of M. tuberculosis infection
within host tissues allows a dominant role of mononuclear
cell phagocyte cytokine profile in situ that may not be true
in the case of infection with other bacterial pathogens.

However, at any stage of M. tuberculosis
infection, within granulomas, the cumulative effect of M.
tuberculosis and its moieties on mononuclear cell responses
and, in particular, the cytokine profile determines the
success of the host in containment of mycobacterial growth.
In this regard, the in situ balance of macrophage activating
and deactivating cytokines is critical.  To date,  TNF α has
been shown to be modest in its anti-M. tuberculosis activity
in human mononuclear cell in vitro systems (12, 34).  In
mice, abrogation of  TNF α was associated with loss of
microbicidal granulomas (35).  Further, M. tuberculosis
infection of human alveolar macrophages as compared to
autologous blood monocytes, lead to significantly higher
induction of  TNF α (3), and production of nitric oxide
(NO) (36), which correlated with the superiority of the
former cell type to contain M. tuberculosis.  A role for NO
in human mycobacterial infections has been suggested,
although it has not been consistently shown (37). On the
other hand the ability of alveolar macrophages to produce
TGFβ in response to stimulation by lipopolysaccharide
(LPS) was limited (38).  Importantly, the potency of T-cell
IFNγ as a predominant macrophage activating cytokine may
be at least partly through upregulation of production of
TNF α (39).  Both  TNF α and IFNγ induce microbicidal
pathways (production of reactive oxygen and nitrogen
intermediaries) in phagocytes (40).  On the other hand, it
appears that the main cytokines responsible for macrophage
deactivation within maturing granulomas are TGFβ (41) and
possibly IL-10.  However, the basis for macrophage
deactivation by TGFβ and IL-10 appears to be both
directly, through inhibition of the generation of microbicidal
molecules, and indirectly by counteraction to the effects of
the macrophage activating cytokines (IFNγ and  TNF α).
Abrogation of TGFβ increased (12, 42), and recombinant
TGFβ decreased (12) the ability of human monocytes to
contain the intracellular growth of M. tuberculosis.
Recently, it has also been suggested that the differential
gradient of IFNγ activity across granulomas may be
important in the fate of M. tuberculosis in situ (Orme
unpublished).  It is possible that other macrophage
deactivating cytokines, such as IL-1 receptor antagonist (IL-
1Ra) and IL-4, play a role in early M. tuberculosis
granulomas.  Recent data suggest that IL-1Ra is induced by
M. tuberculosis in monocytes (Wilkinson, unpublished), and
that both IL-4 (43) and TGFβ (44) enhance the production
of IL-1Ra.  Whether production and activity of IL-1Ra
correlates with particular host inflammatory responses is not
known.

3.3.  T-cell responses during M. tuberculosis infection
Evidence for the role of T-cells, in particular CD4

cells, in protective immunity against M. tuberculosis was
established initially in experimental models of tuberculosis
(24).  In humans, the strongest evidence for a predominant
role of CD4 cells in protective immunity is evidenced by the
significant susceptibility of HIV infected populations to
development of active tuberculosis (45). Further, in HIV-
infected patients with tuberculosis, mycobacterial load
increases as CD4 depletion becomes more prominent (46).
Also, tuberculous pleuritis, which is both a paucibacillary
M. tuberculosis infection and self -resolving, is associated
with expansion of CD4 cells  and abundance of IFNγ (47)
locally.  However, the pathogenesis of tuberculous pleuritis
likely reflects a state of "hypersensitivity" of the host to M.
tuberculosis and its products, rather than true M.
tuberculosis infection.

The mechanisms by which CD4 cells  contribute
to immunosurveillance against M. tuberculosis include the
induction of Th1 cytokines, IL-2 and IFNγ, and contact
between CD4 cells and mononuclear phagocytes (48).  The
importance of IFNγ in protective immunity to tuberculosis
derives from two separate lines of evidence.  Mice with a
disrupted gene for IFNγ are extremely susceptible to M.
tuberculosis infection (49, 50).  Humans who are
homozygous for a mutation in IFNγR are extremely
sensitive to fatal mycobacterial infection (51).  On the other
hand, cytolytic activity of M. tuberculosis reactive CD4
cells towards M. tuberculosis infected target cells has been
demonstrated in vitro (52).  This mechanism may
particularly contribute to apoptotic cell death of M.
tuberculosis-infected cells at sites of active infection (53),
which recently has been shown to be important in
containment of intracellular mycobacterial replication (54).
However, secondary to the fact that human T-cell responses
to M. tuberculosis antigens are heterogeneous, it has been
practically impossible to decipher particular M. tuberculosis
antigens that confer protective immunity (55).

  Despite a well-demonstrated role of CD8 cells in
protective immunity against M. tuberculosis in mice (56), the
role of this cell type in human infection remains unclear.
However, when sensitive assays were employed, MHC
class1-restricted CD8 responses to early secreted antigens,
which presumably are targets of protective immunity (57)
were shown in a subgroup of tuberculosis patients (58).
Further, M. tuberculosis-specific CD8 cells appeared to
function through cytolytic mechanisms (58).  Similarly,
whereas γδ Tcells have been shown to demonstrate innate
reactivity to M. tuberculosis (59), produce IFNγ and lyse
M. tuberculosis-infected targets (60), their role in
immunosurveillance against M. tuberculosis remains unclear.
On the other hand, both CD8 and γδ T-cells types may
contribute to host defense early during primary M.
tuberculosis infection.

4. CYTOKINE CIRCUITS DURING ACTIVE
TUBERCULOSIS

Up to 60% of patients with active pulmonary
tuberculosis, the predominant clinical form of disease,
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Figure 1.  Longitudinal analysis of cytokines induced by
PPD of M. tuberculosis in PBMC of patients with
pulmonary tuberculosis and healthy PPD skin test reactive
control subjects.  PBMC were isolated from patients with
tuberculosis at the time of diagnosis (T0), and 3, 6, and 12
months (MO) after initiation of anti-tuberculous therapy.
PBMC were cultured with and without PPD (10 mg/ml), and
culture supernatans harvested.  PBMC from control
subjects were only assessed for cytokine production
concurrent with enrollment of patients at T0.  Cytokines
(IFNγ,  TNF α, TGFβ, and IL-10) were assessed in culture
supernatants.  All patients were treated successfully (i.e.
without treatment failure) with short course chemotherapy (6
months) (Hirsch & Ellner, unpublished data).

demonstrate suppression of their in vitro T-cell responses to
mycobacterial antigens (61).  Suppression of T-cell
responses correlates with the extent of tuberculosis
radiographically, and is associated with loss of cutaneous
DTH response (i.e. PPD skin test), (62). The basis for low
T-cell responses is not due to changes in the relative
numbers of the main T-cell populations (63), and despite
possible concentration and/or expansion of M. tuberculosis-
reactive cells at sites of active infection, low responses are
not due to lack of antigen-responsive T-cells in the blood
(64).  We have described a functional suppression of T-cell
responses to mycobacterial antigens that encompasses both
low Th1 cytokine production (IL-2 and IFNγ) and T-cell
proliferative responses (IL-2 responses) (62, 65).  The
molecular basis of T-cell suppression during active
tuberculosis has been identified to be predominantly TGFβ
(62).  Levels of TGFβ in plasma in fact correlate with extent
of tuberculosis (62), and stimulated release of TGFβ
corrects to that seen in healthy subjects by 3-6 months after
initiation of therapy (Hirsch unpublished).  Importantly, in
the latter study stimulated production of IFNγ remained
significantly low until time points well after completion of
chemotherapy (Figure 1).  These data may imply
mechanisms other than and in addition to that mediated by
immunosuppressive cytokines in modulation of IFNγ
response during tuberculosis.

4.1.  The role of monocytes in immunosuppression of
tuberculosis

Evidence for a predominant role of blood
monocytes in suppression of T-cell responses during
tuberculosis derives from several studies. Depletion of

adherent monocytes from  peripheral blood mononuclear
cells of patients with pulmonary tuberculosis enhances T-
cell responses (65, 66), including the production of  IL-2
(65) and IFNγ (31).  On the other hand, small numbers of
monocytes when added back to T-cell cultures, suppress T-
cell functions (67).  Further, monocytes from patients with
tuberculosis spontaneously express IL-2R on their surface
(68), and display an activation of nuclear factor k B (NFkB)
(69).  When cultured with  exogenous IL-2, monocytes
from patients remove IL-2 from supernatants (68).  Also,
the production of the proinflammatory cytokines, are
upregulated upon in vitro  stimulation with PPD or LPS (70,
71).

The mechanisms by which monocytes  from patients with
tuberculosis suppress T-cell responses are in part known.
First, inspite of expression of functional IL-2 R, the
blastogenic defect of PBMC is only partly corrected by
exogenous IL-2 (68).  On the  other hand, monocytes from
patients with active pulmonary tuberculosis spontaneously
express TGFβ (41), and produce augmented amounts of
TGFβ upon stimulation by PPD or 30 kD antigen of
M.tuberculosis (62, 31).  By contrast, concentrations of IL-
10 in monocyte cultures of patients with tuberculosis were
either similar (62), or only slightly increased (figure 1) as
compared to that of control subjects.  Abrogation of TGFβ
by neutralizing antibody or natural inhibitors of TGFβ
enhanced T-cell responses to PPD in PBMC of patients
(62, 42).

4.2.  Cytokine profile of tuberculous granulomas
Recently, Shwander et al have shown an alveolitis

featured by the presence of abundant numbers of immature
mononuclear phagocytes, which by cytostaing are
indistinguishable from monocytes, in bronchoalveolar
lavages of the tuberculosis involved lungs (as compared to
the uninvolved lung) of patients with tuberculosis (72).
Whereas active recruitment of blood monocytes to sites of
infection underlies the latter finding, the cytokine profile of
monocytes may well be reflected at sites of tuberculous
granulomas.  We have identified TGFβ, but not  TNF α, in
tuberculous granulomas of patients with active untreated
tuberculosis (41).  In the above mentioned study (72),
despite the fact that the distribution of lung CD4 and CD8
cells simulated that of the blood, there appeared to be a
concentration of naive but not memory T-cells in the
tuberculosis involved lungs.  However, alveolar T-cells were
"hyper-responsive" to M. tuberculosis antigens as
compared to PBMNC in vitro (Schwander, unpublished).
Whether these dysregulations of mononuclear cells at sites
of infection contribute to the inability of the host to contain
M. tuberculosis or to immunopathology is not known.

4.3. Role of cytokines in immunopathology of
tuberculosis

The clinical hallmark of tuberculosis include
features such as fever, weight loss, and inanition.  Whereas,
the immunopathology of chronic M. tuberculosis infection
is characterized by extensive tissue destruction, formation
of cavities, and fibrosis.  Many of the mentioned features of
tuberculosis are likely cytokine-mediated, and correlate with
cytokines measured systemically.   TNF α is cytotoxic to
epithelial cells, reduces the production of surfactant protein
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by type II alveolar cells, promotes fibroblast activity,
enhances the production of fibroblast collagenases, and
promotes the production of reactive oxygen intermediaries
that are cytotoxic to tissues (73).  Further,  TNF α
potentiates the cellular toxicity of M. tuberculosis (39).  On
the other hand, excessive production of TGFβ is associated
with extensive fibrosis and tissue damage (74). TGFβ is a
strong inhibitor of epithelial and endothelial cell growth (75),
and it both promotes the production and deposition of
collagen matrix(76), and enhances  tissue degradation
through induction of the production of macrophage
collagenases (77). In experimental animals, systemic
administration of TGFβ is associated with cachexia and
generalized fibrosis (78).   Further, in humans undergoing
chemotherapy, high plasma TGFβ correlated strongly with
the development of liver and lung fibrosis (79).   The
pathogenesis of many human fibrosing diseases has been in
fact associated with TGFβ (80).

4.3.  Modulation of the host responses to M.
tuberculosis

The elucidation of cytokine pathways during M.
tuberculosis infection and during tuberculosis allows the
application of immunomodulatory approaches to both
vaccination against the organism, and management of
tuberculosis. It is of note that certain cytokines, such as IL-
12, boost immunologic responses to microbial antigens, and
therefore may prove to be ultimately useful as adjuvants in
the design of protective vaccines (81).  On the other hand,
in a study of immunization of mice against Shistosoma
mansoni, vaccination routes that were conducive to
expression of TGFβ were associated with failure of
development of protective immunity (82).  As noted, M.
tuberculosis and its moieties induce TGFβ in mononuclear
cells (12, 26, 27, 31). The above considerations need to be
incorporated in the design of a new vaccine to successfully
induce protective immunity against the M. tuberculosis.

5. M. TUBERCULOSIS INFECTION DURING HIV
DISEASE

As noted, conditions that weaken cell-mediated
immunity increase the chance of terminating M. tuberculosis
latency subsequent to a primary infection, and increase the
chance of development of tuberculosis. The fact that
infection with human immunodeficiency (HIV) is the
strongest risk factor for development of tuberculosis in the
M. tuberculosis infected host, underscores the role of T-
cells, and in particular CD4 cells, in immunosurveillance
against M. tuberculosis infection. On the other hand, the
fact that tuberculosis is the commonest and the earliest
opportunistic infection in HIV infected subjects worldwide,
in turn underscores the virulence of M. tuberculosis in
humans.

However, during active M. tuberculosis infection
in an HIV-infected subject, an intense interaction is initiated
between the host and these pathogens which ultimately
culminates in enhanced viral load (83), and augmented HIV-
related mortality and morbidity (84).  With regard to
immunologic responses to M. tuberculosis, patients with
dual infection display even more dramatic suppression of

IFNγ production (85), and increase in  TNF α (86) and
TGFβ (85).  Enhanced  TNF α and TGFβ activity during
dual HIV tuberculosis may contribute to augmentation of
viral replication and dissemination.
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