IMR Press / FBL / Volume 3 / Issue 4 / DOI: 10.2741/A335

Frontiers in Bioscience-Landmark (FBL) is published by IMR Press from Volume 26 Issue 5 (2021). Previous articles were published by another publisher on a subscription basis, and they are hosted by IMR Press on imrpress.com as a courtesy and upon agreement with Frontiers in Bioscience.

Article
Biological and molecular basis of human breast cancer
Show Less
1 Breast Cancer Research Laboratory, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
Front. Biosci. (Landmark Ed) 1998, 3(4), 944–960; https://doi.org/10.2741/A335
Published: 1 September 1998
Abstract

Human breast cancer remains the most common malignancy in the American women. The ultimate cure of this disease relies on a better understanding of the mechanisms underlying the initiation and progression of this disease. The neoplastic transformation of HBEC in vitro represents a successful model for obtaining knowledge on the molecular and biological alterations that may contribute to the tumorigenic mechanisms. We have presented here a current understanding of chemically transformed HBEC in the following aspects: 1. Factors affecting the transformation of HBEC such as genetic predisposition and differentiation status and prior immortalization; 2. New targets for studying the mechanism of cell immortalization such as alterations in telomerase activity and differential expression of cell cycle dependent genes as well as others recently isolated through differential cloning such as H-ferritin, and a calcium binding protein; 3. Epigenetic and genetic mechanisms underlying cell transformation; 4. The association of microsatellite instability in specific loci on chromosomes 11, 13, and 16 with the progression of cell transformation; and 5. The application of microcell mediated chromosome transfer technique as an approach to testing the functional role of specific genes whose dysregulation or loss of function may contribute to the ultimate cell transformation. Further efforts in this cell system will be directed to determine the roles of identified molecular changes as well as the mapping/cloning of tumor suppressor or senescence genes such as those that may reside on chromosomes 11 or 17.

Share
Back to top