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1. ABSTRACT
The immune system is a highly regulated,

complex and integrated system which has evolved to
provide the organism with substantial defenses against
pathogenic organisms. Over the last several decades there
has been an explosion of experimental data in this area, and
new techniques in molecular and cellular biology have been
crucial in deepening our understanding of immune
processes. Most of these new techniques have allowed the
isolation of the process or cell under study so that the
results can be readily interpretable. At the present time,
however, there is an emerging need to understand the
system as it functions as a whole and the language of
mathematics is the one best suited for this purpose. This
review, written from the perspective of an experimental
immunologist, describes some of the recent advances in the
development of mathematical models of the immune
system. Particular emphasis is placed on the rapidly
growing field of modeling in HIV infection and T cell
activation. Immunology as a whole will benefit from the
introduction of the language of mathematics in much the
same way as neuroscience has done in the last decade.

2. INTRODUCTION

The immune system functions primarily to
protect the organism from invading pathogens. In order to
perform this function, the immune system has evolved
strategies that allow successful elimination of a wide variety
of pathogens, including viruses, bacteria and parasites.
These strategies include specific recognition mechanisms
that allow the host to distinguish a dangerous pathogen
from non-pathogenic organisms or physiological changes in
the host. They also allow for the development of
killing/inactivation mechanisms tailored to individual
pathogens. These responses are highly regulated in order to
avoid problems with autoimmunity and to control
responses that can, if left unchecked, have grave
immunopathological consequences. Thus, the immune
response to pathogens is a complex, highly regulated
system involving numerous interactions between different
cell types. The cells of the immune system communicate
with each other by direct cell-cell contact and deliver signals
to each other directly, through cell surface molecules, or

indirectly, via secreted proteins, known as cytokines.
Experimental advances in immunology over the last two
decades have been immense and many of the important
questions surrounding the issues of pathogen recognition,
immune cell development, immune regulation and effector
mechanisms are well on the way to being answered.

In order to obtain interpretable data on many of
these issues, it has been necessary to devise experimental
techniques that isolate the questions of interest. For
example, the actions of a particular cytokine can be
determined using in vitro experiments with individual cell
types and purified cytokines. In addition, the in vivo
relevance of the same cytokine can be determined by
generating a mouse lacking this cytokine through the
targeted disruption of the cytokine gene. These approaches
have been extremely successful in determining the functions
of individual cytokines or cell surface molecules. These
experiments do not, however, allow a true assessment of
the relative importance of each molecule in the naturally
occurring immune response, in which all of the cells and
cytokines are functioning simultaneously. A good example
of this is the case of interleukin (IL-) 2 which, from in vitro
experiments, was thought to be the most important factor
driving T cell proliferation (1, 2). It was a surprise,
therefore, that IL-2 knockout mice showed little to no
impairment of T cell proliferation, but rather appeared to
have defects in T cell death, which lead to the development
of inflammatory bowel disease (3-5). Do these results mean
that IL-2 is not an important factor for T cell proliferation?
Probably not : it is likely that in the normal mouse IL-2
does play a dominant role in T cell proliferation, but that
the expansion of pathogen-specific T cells is such an
important function of the immune system that other
mechanisms can be utilized in the event of IL-2
dysfunction.

These, and other similar experiments, point to the
flaws in using pure experimental techniques to address
complex issues of immune regulation and development.
There is now an increasing need to understand how the
immune system functions as a whole in order to be able to
better understand the development of diseases such as
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autoimmunity, allergy and cancer, and to design effective
strategies to treat them. An important concept is that the
immune response evolves rapidly in time and its
interactions are all highly regulated. The only real way to
study the whole integrated system is through the use of
mathematical modeling. There has been relatively little
interest, on the part of experimental immunologists, in this
area, probably due to the complexity of the mathematics
necessary for this work and the dearth of mathematicians
sufficiently cognizant of the immune system to make such
models useful. This situation appears to be changing (6) and
is most apparent in the study of human immunodeficiency
virus (HIV) infection, where, as discussed in detail below,
mathematical models have been useful in challenging existing
paradigms of AIDS development and are now an integral
part of the HIV research effort.

Mathematical models can serve several distinct
purposes. They can be used to analyze experimental results
and provide predictions and suggestions for follow-up
experiments, or they can attempt to synthesize existing
knowledge and provide a theoretical framework for the
interpretation of existing paradigms. Both types of model
are useful to the experimental immunologist, and the
ultimate merit of particular models depends on the specific
questions they are designed to answer. The more
assumptions that have to be put into the model, the harder
it is to be confident about the conclusions. On the other
hand, a well designed model can test different assumptions
and provide important new insights into questions that
cannot be readily answered experimentally.

This review is written from the point of view of
an experimental immunologist who has been engaged in
close collaboration with mathematicians in the development
of mathematical models describing the Th1/Th2 system of
immune regulation. As such, this review will focus on
aspects of modeling that appear, to this writer, to have
contributed significantly to the understanding of the
immune system.

3. MODELS OF HIV INFECTION AND OTHER
INFECTIOUS DISEASES

An area of intense research in recent years has
been that of mathematical models of HIV infection and the
progression to AIDS. HIV infects CD4+ cells (T cells and
monocytes) through interaction of its envelope
glycoprotein, gp120, with CD4 and by interaction with
another cell surface protein, the chemokine receptor
CXCR4 (7, 8). The infection is characterized by a long
latent phase with a low viral load in which CD4+ T cell
numbers either remain stable or gradually fall, followed by
an increase in viral load associated with a rapid decline of
CD4+ T cells and the development of AIDS. This
phenomenon has been intriguing to immunologists and
virologists alike, and the use of mathematical models has
been instrumental in deepening our understanding of this
infection. It was realized early on that HIV has a high
mutation rate, which would allow the escape of virus
mutants from immune detection. This concept formed the
basis of one of the first models of HIV infection, which
postulated that during the latent phase of the infection the
immune system and the virus were engaged in a race for
dominance (9). It was postulated that the immune system
could successfully remove most of the initial viral inoculum,

but that mutant viruses requiring additional responses
would continually appear. This process could continue for
some time, but because the target for HIV infection was the
CD4+ T cell which would be gradually depleted over time,
the immune system would eventually be unable to respond
to new mutant viruses. This point was termed a “diversity
threshold” and, since the immune system would fail to
respond to the new mutant virus, AIDS would ensue (9).
This model made some important predictions, and much
debate and new experiments followed.

A major breakthrough occurred when two groups
used mathematical models to calculate the viral turnover and
the lifespan of infected CD4+ T cells (10, 11). In these
studies it was observed that the use of powerful anti-viral
drugs, such as protease inhibitors, resulted in a rapid drop
in the viral load and a concomitant increase in the CD4
count. From these results, it was possible to calculate the
replication rate of HIV which proved to be much higher
than people had expected; in addition, the lifespan of
infected cells was calculated to be around 2 days (10, 11).
The models were also used to calculate the CD4
lymphocyte turnover and this was found to be of the order
of 109 CD4+ T cells/day (10, 11). These papers were
important in the field because they revealed that HIV
infection was a dynamic process with continuing viral
replication, even during periods of apparent quiescence and
stable CD4 counts. In addition it was shown that the failure
of single agent therapy was associated with the emergence
of viral mutants, that were resistant to the drug being used
(11). These studies changed the way that people thought
about HIV infection and made some concrete predictions
and suggestions about therapy. Thus, it was argued that
therapy should be started as early as possible, with
multiple agents, in order to prevent the evolution of drug
resistant mutants, which has become the standard mode of
therapy.

The mathematical models used in these studies
were relatively simple and did not incorporate the immune
response to HIV. This has proved to be a point of some
debate since some individuals believe that the progression
to AIDS is simply a reflection of the virus/host dynamics,
and the immune system is only involved because immune
cells are targets for infection. Others believe that the
immune system plays an important role in the ability of
individuals infected with HIV to combat this infection and
may determine whether individuals are fast or slow
progressors. Many mathematical models have been
proposed to address this question, and it is clear that it is
possible to reproduce the clinical results using models that
do not evoke an immune response to the virus (12-17). One
of these models considers that HIV can only productively
infect activated CD4+ T cells; this model is capable of
reproducing the time course of HIV infection with
progression to AIDS, without invoking a diversity
threshold (13,14). Another model describes the progression
to AIDS as a direct effect of HIV on CD4 depletion
coupled with homeostatic mechanisms that lead to holes in
the T cell repertoire (16). Whether these models capture the
reality of HIV infection or not, they prove that
mathematical models can be used to test particular
hypotheses.

Recently, models of viral dynamics in the
presence of anti-viral drugs have been used to provide
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detailed characteristics of viral replication and to suggest the
best strategies of drug therapy to maximize HIV control
and, potentially, viral elimination (18-23). Wein et al
proposed a model that assessed the benefit of using a
dynamic therapeutic approach in which drug therapy was
changed based on the evolution of the infection (23). The
results suggested that a dynamic multidrug approach would
result in lower viral loads, higher CD4 counts and a delay in
the progression to AIDS. Perelson et al have used clinical
data obtained from patients receiving combination therapies
for the first time to obtain accurate assessment of the rate
of viral loss and to estimate how long treatment would
theoretically have to be continued in order to eliminate the
virus (24). These studies predicted that therapy would need
to be continued for 2-3 years after the viral load has become
undetectable in order to remove all of the virus from the
blood and tissue compartments (24). Whether such
estimates will be used in clinical practice remains to be seen.
Estimates of the lifespan of the infected cell and the viral
generation time were also made (25), although these results
were challenged by Herz et al (22) who suggest that while it
is possible to calculate the lifespan of the infected cell it is
not possible from the existing data to arrive at an accurate
estimate of the intracellular lifespan of HIV.

The issue of the role of the immune response in
HIV infection has been directly addressed in several recent
models. In these papers, models that either did or did not
incorporate the immune response were compared (26-28).
In simple models of viral replication and interaction with
host cells, it was possible to develop a stable equilibrium of
virus and CD4 cells, but this appeared to occur at higher
viral loads than are observed clinically. The introduction of
the immune (virus-specific CTL response) response into
the model resulted in a low viral load (27, 29). The
relevance of the CTL response has been questioned since no
correlation has been observed between rate of progression
and the level of measured specific CTL activity in the
blood. However, the model demonstrates a potential
explanation for this, by suggesting that the levels of
measured CTL response do not necessarily reflect the
“strength” of these responses (27). In this case the
“strength” or responsiveness of an individual is
distinguished from the measured response, and an individual
who has an effective CTL response, that maintains the viral
load low, may have a low measured CTL response in the
blood because there is little viral antigen available to
maintain it. Further predictions are made to suggest that the
rate of progression is likely to be slow in individuals with
strong CTL responses but rapid in those with weak
responses. The strength of the CTL response may be
reflected in the immunogenetics of individuals such that
people with particular MHC alleles might generate
particularly effective CTL responses. Thus, the overall
conclusion from these studies was that while some aspects
of HIV infection can be captured in models of pure viral
dynamics, individual variations in disease progression rates
may be related to differences in immune responsiveness.

Similar models have been used to address the role
of the immune system in other infectious diseases such as
hepatitis B (30) and malaria (31). A recent model of the
CTL response in the case of malarial infection has used
both the concept of host/parasite interactions and that of
antagonist peptides in T cell activation (31). In this system,
it was observed that two allelic HLA-B35 epitopes were

antagonists for each other, such that CTL specific for one
epitope would be inhibited by the presence of the other
epitope. In addition, the presence of co-infection with
malarial strains containing both alleles was observed more
frequently than expected (31). A model of these
interactions was developed that predicted, among other
things, that the increase in observed mixed infections could
be attributed to the presence of antagonism both at the level
of CTL induction and effector function. In particular,
antagonism at the level of CTL induction alone was not
sufficient to account for the increase in mixed infections.
The complex interrelations between the host immune
system and invading pathogens can, in this way, be
unraveled with the help of mathematical models.

One of the beauties of mathematical modeling is
that it raises questions that may not have been addressed
before. The calculation of the CD4+ T cell turnover rate
(109 T cells/day) during HIV infection was considered by
some immunologists to be highly inaccurate and it was
proposed that the rate of increase in the CD4 count
following anti-viral therapy could be accounted for by the
recirculation of CD4+ T cells from lymphoid organs, and
there was ample experimental evidence to support this
concept (32). As a result of this debate new models of
lymphocyte recirculation have been developed, which can
be incorporated into existing models of HIV disease (33,
34). However, a recent paper describing CD4+ T cell
turnover in uninfected and SIV-infected macaques
demonstrated that SIV infection does result in a marked
increase in turnover rate for CD4+, CD8+ T cells, NK and B
cells (35). The debate on this issue is not over and
questions still remain in order to resolve this issue.

Mathematical models of HIV infection, as
illustrated above, have provided important new insights
into the development of AIDS and pathogenesis of HIV.
Even in situations where the models might have been
subsequently proved wrong they have provided a forum for
debate that has helped researchers, both basic and clinical,
deepen their understanding of the disease process and what
therapeutic regimens might be most efficacious. The value
of a model in this situation, and probably in any situation,
is measured by the clarity of the question it aims to answer.
By using models to address very specific questions in HIV
pathogenesis and treatment, mathematicians have provided
important new insights into this devastating disease.

4. MODELS OF T CELL ACTIVATION AND
PROLIFERATION

T cells recognize antigen presented as a peptide
bound to self MHC class I or class II molecules. The
specificity of the TCR:ligand interaction is such that, in
general, only foreign peptides are recognized. It has been
shown that MHC molecules can bind many different
peptides and that at least 2000 different peptides are
presented at any one time on a given antigen presenting cell
(APC). A particular MHC/peptide complex may only be
represented 100 times on an APC and the T cell expresses
at least 104 T cell receptors (TCR) on its surface. An area
of considerable interest, both experimentally and
theoretically, has been to determine the requirements for T
cell activation such that the T cell is sensitive enough to
recognize small numbers of MHC/peptide complexes (36-
38) without allowing a significant number of “false
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positive” responses that could lead to destructive
autoimmune disease. T cell activation is thus both highly
specific and extremely sensitive, despite the fact that the
measured affinity between TCR and MHC/peptide
complex is relatively low (39). Lanzavecchia and colleagues
have provided experimental data to support the concept
that T cell activation requires, in some cases, serial
triggering of the TCR, such that a single MHC/peptide
complex can trigger many hundreds of TCR (40). The
interaction between individual TCR and MHC/peptide is
brief and is determined by the dissociation rate constant; it
is postulated that a certain length of association is required
in order to trigger the intracellular cascade of events that
lead to full T cell activation. They also demonstrated that
once the TCR has been triggered it is internalized and
degraded (41), whereas the MHC/peptide complex is
released to bind more TCR. The experimental evidence for
this is based on the observation that the level of TCR
expression goes down following T cell activation, and has
been elegantly confirmed in studies by Sykulev et al who
demonstrated that a single MHC/peptide complex could
trigger CTL function (36). From these data it has been
calculated that up to 8000 TCR/MHC/peptide interactions
are required in order to trigger the T cell, in the absence of
costimulation (42). Recently Valetutti and Lanzavecchia
have developed a computer model of this concept and have
been able to demonstrate the function of agonist and
antagonist peptides based on varying the time of interaction
between TCR and MHC/peptide complex. They suggested
that the TCR can be considered a “tunable switch that may
transduce different signals depending on the time of
ligation” (43).

Several other models have been proposed for this
important interaction. One that attracted a lot of attention
among immunologists was that of McKeithan, who used
the concept of kinetic proofreading as a way to explain the
high degree of sensitivity in the presence of high specificity
of a low affinity receptor (44). TCR activation was
modeled as a series of steps that had to be completed before
a full signal to activate was delivered, similar to that
described by Hopfield for DNA replication (45). In this
scenario the TCR interacts with the MHC/peptide complex
leading to a modification of the receptor, which then moves
through a series of steps before reaching a state of
irreversible activation. Mistakes would be avoided by
postulating that each step had a unique dissociation rate
constant and, that if dissociation were too rapid, the next
step would not be achieved. It was postulated that
nonspecific interactions would be avoided since it is
unlikely that short-lived interactions would be able to
sustain the number of steps required for full T cell
activation. This model again predicts that the degree of T
cell activation is controlled by the off rate of the
TCR/MHC/peptide complex.

A more recent version of the kinetic proofreading
model has been proposed and has been termed kinetic
discrimination (46). In this case, if a ligand interacts with
the TCR to produce a modified receptor, it can either be
further modified and eventually lead to T cell activation, or
it can dissociate and deliver a negative signal to inhibit
activation. This model incorporates the concept of serial
engagement and introduces the concept of a suboptimal
ligand delivering a negative signal rather than simply failing
to activate. This model incorporates, therefore, the

experimental observations showing that antagonist peptides
can inhibit the simultaneous activation via an agonist
peptide. Again, this model is dependent on the dissociation
rate constant for the TCR from the MHC/peptide complex.

These models all postulate that variant ligands
will result in different signaling events triggered via the
TCR, and there has been extensive experimental evidence
that this is the case. One of the earliest events triggered via
the TCR is an increase in intracellular calcium, which has
recently been studied in detail and correlated with the model
of kinetic discrimination described above (47). In these
experiments Wülfing et al identified several types of
calcium signal and classified them according to the
percentage of cells responding, the quality and timing of the
response. The differences in calcium response were
correlated with downstream activation events such as
cytokine production and proliferation, and the results
suggested that the calcium response represented the
accumulated signal received by the T cell. Thus, the T cell
appeared to have counted the different signals received
before the calcium flux is initiated. These results were used
to refine the model, and introduced the requirement for the
accumulation of a particular amount of an intracellular
signaling molecule in order to trigger proliferation, a kind of
activation threshold (47). The ability of individual peptides
to signal the T cell to accumulate the threshold quantity of
signal transduction product could be reproduced in
computer simulations of this model. The authors concluded
from these results, and the subsequent model, that
commitment to T cell activation was not dependent on the
rate of MHC/peptide/TCR complex formation or on
oligomerization of the TCR, but rather on the accumulation
of an intracellular signal transducing molecule (47).

These ideas have been debated for many years
and it has been proposed by several groups that
oligomerization of TCR, often in the presence of the
accessory molecule CD4, was necessary for T cell
activation (48, 49). The models of kinetic discrimination
and serial engagement do not include any need for
oligomerization or complex formation on the T cell surface.
Hampl et al recently reported that CD4 appeared to bind
after the TCR had interacted with MHC/peptide complex,
that it was most necessary in short lived (1-2s) interactions,
and that it had very little impact on interactions that lasted
longer (50). Thus, the presence of CD4 can convert a weak
agonist peptide into a strong agonist but it has little effect
on already strong agonist peptides. The models described
above clearly do not take into account all of the factors
known to be important in T cell activation, such as the role
of costimulation and CD4 accessory molecules. It has been
shown that the presence of CD28 results in a reduction in
the threshold number of activated TCR from 8000 to 1500
(42), but these facts have yet to be incorporated into a
meaningful model.

T cell activation has also been modeled as a
consequence of aggregation of the TCR on the cell surface,
and these models differ from those discussed above since
they concentrate on the signal transduction pathway
initiated following T cell activation (51). In these studies,
the investigators develop a model with the aim of
understanding antigen-induced unresponsiveness and it is
concluded that the activity of  phosphorylating enzymes,
triggered after activation, does not return immediately to
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baseline levels. This could provide a plausible explanation
for the phenomenon of T cell unresponsiveness following
prior antigenic stimulation, and it is suggested that if
suboptimal ligands interact with the TCR they could
function by delivering a phosphorylation signal that is
insufficient for activation but sufficient to induce
unresponsiveness. Thus, this model specified what the
negative signal, discussed in the kinetic discrimination
model, might be, but used a different paradigm for T cell
activation. It will be interesting in the future to see some of
these models put together

A recent report by De Boer and Perelson utilizes
the Michaelis-Menten type quasi-steady-state assumption
which allows for an almost enzymatic amplification of the
T cell response (52). This model is the latest in a series by
the same group and it represents an improvement over the
previous models since it allows for a maximal level of T cell
proliferation. This model utilizes an interesting concept of
T cell activation but it does not address the fundamental
issues of interest to many T cell immunologists, namely the
role of antagonist peptides and the high degree specificity
and sensitivity in a relatively low affinity receptor.

Another model that has provided some important
new insights is a detailed model of T cell activation that
incorporates the antigen presentation step. All of the
previous models discussed above utilized MHC/peptide
complexes as a variable but did not model their generation.
A recent model of T cell/APC interaction by Agrawal and
Linderman specifically models the antigen processing
pathway in antigen-specific B cells and performs a detailed
kinetic analysis of this process (53). This model details the
path that antigen takes from the surface immunoglobulin of
a specific B cell, through intracellular compartments and
interaction with newly synthesized  MHC molecules. The
effects of varying the method of antigen uptake, the affinity
of antigen for immunoglobulin, the affinity of peptide for
MHC and TCR affinity for MHC/peptide are all examined
in detail. This model does not address the fundamental
issues of sensitivity and specificity of T cell activation but
it elegantly delineates the important parameters of antigen
processing and presentation by B cells. It will be interesting
to see this kind of model used in conjunction with models
that more specifically describe T cell activation.

T cell proliferation is  a very late consequence of
T cell activation and is thought to be mediated via cytokines
such as interleukin (IL-)-2 and IL-4, secreted following
activation. The ability of IL-2 and IL-4 to stimulate
proliferation is related to the expression of high affinity
receptors for IL-2 (IL-2R) and IL-4 (IL-4R) on activated T
cells. In our studies of T cell proliferation we have been
interested in developing a mathematical model that would
take into account two apparently contradictory
experimental results. IL-2 and IL-4 have been shown to act
in synergy in stimulating T cell proliferation (54, 55). Thus,
the presence of IL-4 when only limiting amounts of IL-2 are
present will result in an enhanced T cell proliferation that is
greater than additive. In contrast, it has been shown that
pretreatment of both B and T cells with IL-4 results in a
downregulation in the number of high affinity IL-2R on the
surface of these cells (56, 57). In addition, whereas both IL-
2 and IL-4 can stimulate proliferation of B cells
individually, the combined treatment of B cells with IL-2
and IL-4 results in inhibition of proliferation. We developed

a mathematical model of these events that was able to
provide a plausible explanation for these apparently
contradictory results (55). In this model both the synergy
effect and the downregulatory effect of IL-4 on IL-2R
expression were included. We were able to show that the
appearance of synergy or antagonism between IL-2 and IL-
4 depended on several variables, including the initial number
of IL-2R and IL-4R expressed on the cell and the threshold
number of binding events required to stimulate proliferation
(55, 58). Thus, if as in the case of B cells, the number of IL-
2R is low relative to the number of IL-4R, the presence of
IL-4 will result in the downregulation of IL-2R expression
to level at which the threshold number of bindings can no
longer occur and antagonism will result. In contrast, in T
cells that express high levels of IL-2R the synergistic effect
of IL-4 on the IL-2 response occurs before the reduction in
the number of IL-2R, in the presence of IL-4, falls below
the threshold required for proliferation.  We have
subsequently used this model to estimate the threshold
number of binding events required for IL-2-mediated and
IL-4-mediated proliferation and have been able to generate
synergy terms that allow accurate simulation of
experimental results (58).

In this area, apparent paradoxes in experimental
results, such as in T cell activation and cytokine effects, can
be clarified by the use of mathematical models. In many
cases, such as that of IL-2 and IL-4, a mathematical model
that incorporates known biological phenomena can be used
to simulate apparently contradictory experimental results,
demonstrating that the same underlying principles can
explain synergy and antagonism in two different systems.

5. SIGNAL TRANSDUCTION MODELS

Activation of the T cell via the TCR, as discussed
above, is not thought to require extensive
oligomerization/aggregation of the receptor for signals to be
transduced. This is still a matter of some debate, but it is
clear, on the other hand, that some receptor systems do
require a significant degree of aggregation for a signal to be
transduced. An example of this is the high affinity Fc
receptor for IgE (FcεRI), which is found on mast cells and
basophils. When this receptor is triggered degranulation of
the mast cell/basophil occurs and mediators important in
allergic reactions are released. The kinetics and degree of
aggregation required for signaling has been extensively
studied by several groups and several models have been
developed of this system (59-62). Results that have
emerged from these studies have revealed that simple cyclic
dimers of bound FcεRI are not sufficient to induce
activation (60), and this suggested that complex structures
were required in order to trigger internal signaling events.
This concept has been investigated further by the
identification and detailed kinetic analysis of
phosphorylation events occurring following controlled
FcεRI aggregation (61, 63). In this way, it could be
demonstrated that cyclic dimers of Fc�RI only stimulate
partial phosphorylation of the receptor (63).

6. IMMUNE NETWORKS

Over 20 years ago Neils Jerne proposed the
network theory of immune regulation (64), which
postulated that the immune system was regulated by a
network of idiotype/anti-idiotype interactions. This
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network would be responsible for the control of the
immune response and would also allow the development of
self tolerance. The concept of networks was very attractive
to mathematicians and many models have been developed
around this concept (65-68). These models demonstrated
that a network of interacting antibody molecules was self-
organizing and could generate states of tolerance, immune
response and memory. These models were all based on the
bell shaped curve of lymphocyte activation, which allowed
the inactivation/deletion of clones that were of too high an
affinity for the antigen. While this was attractive, the
network theory did not become an accepted part of
mainstream immunology due to the ability of clonal
selection theory to explain immune responsiveness and
tolerance through selective clonal expansion or deletion
respectively (69). However, it has become apparent that
networks of interconnected antibodies do exist involving
around 20% of the circulating lymphocytes in the newborn,
with this degree of network connection falling significantly
with age (70, 71). For some immunologists, clonal selection
theory has never adequately explained the maintenance of
self tolerance or the development of autoimmunity (69).
Recent experiments and models have permitted the
refinement of the network theory, and have demonstrated
that the presence of a network involving a small percentage
(15%) of lymphocytes is sufficient to maintain tolerance,
and has unstable properties that could occasionally allow
autoimmunity to develop (72-75). In addition, the
development of immune memory can be seen to emerge
naturally from such a network model, rendering obsolete the
requirement for long-lived memory cells or persistent
antigen. While the network theory is still, to some extent,
on the fringes of mainstream immunology it is a good
example of a productive collaboration between
immunologists and mathematicians leading to a deeper
understanding of immune regulation. In a recent editorial
(69), Coutinho elegantly described the evolution of the
network theory and postulated that the immune response
to foreign antigen is mediated by clonal expansion of
lymphocyte clones but that a network involving a small
proportion of lymphocytes is necessary for the
maintenance of self tolerance. This perspective has resulted
in development of a new model that incorporates both B
and T cells in a network that is restricted to a small
proportion of these cells (76).

7. OTHER IMMUNOLOGICAL MODELS

The development of T cells in the thymus has
been a fertile area of research and recently has attracted the
attention of modelers (77-79). A recent model by Mehr and
colleagues (80, 81) describes the role of mature CD4+ T
cells on T cell development in the thymus. It has been
observed experimentally that the addition of mature T cells
profoundly affects the developing thymocytes, resulting in
a reduction in the numbers of double positive (DP)
thymocytes and an increase in the numbers of mature CD4+

T cells (81). These effects were markedly increased in older
mice. In order to reproduce these results the mathematical
model had to introduce two levels of regulation by CD4+ T
cells. One was a negative effect on the proliferation and
expansion of DP thymocytes and the other was a positive
effect on the differentiation of CD4+  T cells.

Several other models of basic immunological
phenomena have been reported including models of

Th1/Th2 crossregulation (82, 83), the development of
germinal centers (84) and B cell homeostasis (85).

8. CELLULAR AUTOMATA IN IMMUNOLOGY

Most of the mathematical models described in the
preceding sections involve the use of differential equations;
there have been few models using the concept of cellular
automata, computer simulations in which the body is
depicted as a grid and all of the components of the system
are defined. An immune response can be followed in this
system by allowing the system to evolve over several
discrete time steps and introducing a series of basic rules of
interaction among cells, antigen, antibodies etc. The
recognition receptors and antigens can be modeled as a
series of bit maps and the recognition requirements for
activation are specifically defined. The advantage of this
type of model is that it allows spatial configuration of the
immune system and adds the extra dimension of structure
to the model. However, it does not allow extensive
mathematical analysis since the results are analyzed after
each individual simulation, and only then can the
parameters of the automaton be modified. Celada and
Seiden have extensively used this modeling system and have
produced models of the immune response (86, 87), somatic
hypermutation of B cells (88), and the thymus (89). All of
these models have been able to reproduce existing
experimental data and have suggested new interpretations of
the data with further experiments to be performed. Cellular
automata can be a useful step for immunologists interested
in modeling since all of the elements of the model are
defined and it is readily understood. In the complex area of
the interacting immune system, when there is potentially
insufficient information available to construct a detailed
mathematical model, cellular automata can be used to
simulate what is known about the interactions and thus to
highlight where the gaps in the knowledge are the most
problematic.

9. CONCLUSIONS

The explosion of research in immunology has led
to the need to develop integrated ways of describing the
system. Many of the recent experimental advances in the
field have relied on the isolation of the objects of study,
using either knockout or transgenic mouse models. These
powerful technologies provide important insights into the
relative importance of certain cytokines, cell surface
molecules and cell types, but do not ultimately tell us how
the system functions when all of the components are
present and active. It seems, to this immunologist at least,
that the language of mathematics is ideally suited to the
understanding of the integrated immune system as a whole,
and that it will become an increasingly important part of the
study of the immune system. Physics was transformed
from a study of phenomena into the powerful subject it is
today through the introduction of mathematics as its main
language. In biological sciences, mathematics have come to
play an important role in the study of the nervous system
and have contributed greatly the development of
quantitative neurobiology. It remains to be seen how
profoundly mathematics can influence the study of the
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immune system, but in the examples described above it can
be seen that its impact is already being felt.
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