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1.  ABSTRACT

The production of hematopoietic cells is regulated
by the availability of key cytokines such as interleukin-3
(IL-3).  IL-3 promotes the survival and proliferation of
bone marrow-derived hematopoietic cells.  Recent studies
using IL-3-dependent cell lines have begun to shed light on
the regulation of apoptosis in cytokine-dependent cells.
These studies indicate that IL-3 inhibits apoptosis by
stimulating the activation of cellular kinases, including
phophatidylinositol (PI) 3-kinase and Akt kinase.  On the
other hand, withdrawal of IL-3 leads to the activation of
caspase proteases and a commitment to cell death.  This
review will discuss the current state of knowledge regarding
the molecular mechanisms of:  a)  suppression of apoptosis
by IL-3, and  b)  activation of apoptosis following IL-3
withdrawal.

2.  INTRODUCTION

IL-3, along with GM-CSF, is produced and
secreted by activated T cells (1-3).  Once released, these
cytokines promote the survival, proliferation, and
maturation of bone marrow-derived multipotential and
lineage-committed hematopoietic progenitors (1-7).  The
fact that IL-3 is produced by activated T cells has led to the
hypothesis that IL-3 plays an important role in the
expansion of hematopoietic populations during
inflammation (2).  Moreover, attenuation of an
inflammatory response may require depletion of IL-3 and
resultant apoptotic death of the expanded IL-3-dependent
cells.  Although recent gene knockout experiments have
raised questions about the precise role of IL-3 (8-11),
studies using IL-3-dependent cells have provided an
excellent working model for understanding the development
and death of cytokine-dependent cells.

In addition to providing insight into the process
of normal hematopoiesis, an understanding of apoptosis
regulation in cytokine-dependent cells also may provide
clues regarding the origin and progression of certain
leukemias and lymphomas.  The observation during the late
1980's that greater than 85% of patients with follicular B
cell lymphoma overexpress the antiapoptotic protein Bcl-2
(12-14), raised the possibility that abrogation of apoptotic
pathways may represent a common mechanism of
malignant progression.  More specifically, abnormal
expression or function of apoptosis regulatory molecules

could play a role in converting normal cytokine-dependent
cells into cancerous cells.  For this reason, it is first
important to identify and understand the normal
mechanisms of apoptosis regulation in cytokine-dependent
cells.  In the following sections, we will describe what is
known about survival pathways that are activated in IL-3
stimulated cells and apoptotic pathways that are activated
in IL-3-deprived cells.

3.  SIGNALS MEDIATED BY THE IL-3 RECEPTOR

The effects of IL-3 are mediated by a high-
affinity cell surface receptor (15-17).  The receptor for IL-
3, like the receptors for GM-CSF and IL-5, consists of two
subunits, the alpha subunit (or IL-3alpha) and the beta
subunit (or betac).  Both the IL-3alpha and the betac
subunit span the membrane once and are oriented with their
amino termini outside the cell.  Neither subunit contains
intrinsic kinase activity in its cytoplasmic domain.  The IL-
3alpha subunit is a 378 amino acid protein (human) which
contains a single cytokine receptor module (CRM) in its
extracellular domain and a short 53 amino acid cytoplasmic
domain (18).  The betac subunit is an 881 amino acid
protein (human) with two CRMs in its extracellular domain
and a cytoplasmic domain of 432 amino acids (19).
Strikingly, the betac subunit of the IL-3 receptor is also
shared by the receptors for GM-CSF and IL-5 (18, 20).  On
the other hand, the IL-3, GM-CSF, and IL-5 receptors each
contain distinct alpha subunits (18, 21-23).  Thus, the
ligand binding specificities of these receptors are determined
by their unique alpha subunits.

The binding of IL-3 to its cognate receptor results
in dimerization of the IL-3alpha and betac subunits,
followed by tyrosine phosphorylation of betac (24-28).
Extensive mutational analyses have determined that while
the cytoplasmic domains of both subunits are important for
normal receptor activation, it is the cytoplasmic domain of
the betac subunit which is primarily responsible for
signaling (25, 29-32).  Since betac is common to the IL-3,
GM-CSF, and IL-5 receptors, studies of betac-mediated
signaling have interchangably used IL-3, GM-CSF, or IL-5
as stimulating ligands.

In addition to tyrosine phosphorylation of betac,
ligand binding induces a number of other cellular responses,
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including:  A)  tyrosine phosphorylation of Jak2 kinase
(33), Stat5 (34, 35), phosphatidylinositol (PI) 3-kinase
(36), Vav (37), Shc (38-40), and PTP1D phosphatase (41),
B)  activation of Jak2 kinase (33), Stat5 (34, 35), PI 3-
kinase (36), Ras (42, 43), Raf-1 kinase (44), and MAP
kinase (45, 46),  C)  transcription of c-myc, c-fos, and c-jun
(47, 36),  D)  cellular proliferation,  and  E)  suppression of
apoptosis.  This diversity of responses may seem
somewhat remarkable since betac itself does not exhibit
intrinsic kinase activity.  However, numerous studies have
supported a model wherein ligand-induced
heterodimerization of IL-3alpha and betac causes a
conformational change resulting in the activation of Jak2
kinase that is preassociated with the receptor (33).  The
activation of Jak2 then leads to phosphorylation of betac on
several tyrosine residues in its cytoplasmic domain.  These
phosphorylated tyrosine residues serve as docking sites for
SH2-containing adaptor or signaling molecules such as Shc
(38-40) and hematopoietic cell phosphatase (48).  When
brought into close proximity with activated Jak2 kinase, the
SH2-containing molecules themselves can become targets
for phosphorylation and activation.

Recent experiments have demonstrated that
distinct biochemical pathways are responsible for IL-3-
induced DNA synthesis and IL-3-mediated suppression of
apoptosis.  In IL-3-dependent pro-B (Ba/F3) or pro-
myeloid (32D) cells, treatment with genistein during IL-3
stimulation was found to block induction of DNA
synthesis, but not suppression of apoptosis (49).  This
distinction between survival and proliferation pathways has
been defined in even greater detail through studies using
betac receptor mutants (36, 49).  Such studies have
identified three distinct functional domains in the human
betac cytoplasmic region:  a membrane proximal domain
(amino acids 455-517), a membrane distal domain (a.a. 544-
763), and a C-terminal domain (a.a. 763-881).  Deletion of
the C-terminal domain by truncating betac at amino acid 763
increases ligand-dependent PI 3-kinase activity and tyrosine
phosphorylation of betac and Shc, indicating that the C-
terminal region may be important in negative regulation.
The C-terminal region is not essential for induction of DNA
synthesis or suppression of apoptosis.  Removal of the
membrane distal domain by truncation of betac at amino
acids 517 or 544 results in receptors which retain the ability
to promote c-myc transcription and DNA synthesis, but
fail to mediate activation of Ras and the Raf-1/MAP kinase
pathway, induction of c-fos and c-jun, or suppression
apoptosis.  Removal of the membrane proximal domain by
truncation at amino acid 455 results in a receptor which is
unable to bind Jak2 kinase, and unable to mediate
transcription of c-myc and induction of DNA synthesis (33,
36).  Thus, in summary, the membrane proximal domain is
important for ligand-dependent activation of Jak2,
transcription of c-myc, and stimulation of DNA synthesis,
while the membrane distal domain is required for activation
of Ras/Raf-1/MAP kinase, induction of c-fos/c-jun, and
suppression of apoptosis (33, 36, 49).

The mutational studies described above have
determined that the membrane distal domain of betac is
critically important for mediating survival signals from the
IL-3 receptor.  Since this region of betac also is important
for activation of Ras and the Raf-1/MAP kinase pathways,
attention has focused on these molecules as potential
mediators of survival.  Kinoshita et al. (50) have shown that
expression of mutant activated Ras restores Raf-1
activation and cell survival in cells expressing the betac
mutant lacking the membrane distal domain.  The ability of
activated Ras to promote survival may be mediated in part
by Raf-1 kinase, since overexpression of constitutively
activated Raf-1 can suppress apoptosis in IL-3-deprived

cells (50).  At the same time, Raf-1-independent pathways
also appear to be involved, since expression of an activated
Ras mutant which is unable to activate Raf-1 can also
support survival (50).  The Raf-1-independent pathways
are sensitive to wortmannin, a specific inhibitor of PI 3-
kinase, suggesting the involvement of this enzyme in betac-
and Ras-mediated survival pathways (50, 51).  The
potential role of PI 3-kinase will be discussed in greater
detail in the next section.

Finally, it should be noted that in the mouse, two
closely related IL-3 receptor beta subunits, betac and betaIL-

3 (52), have been identified (as opposed to only one beta
subunit in all other species studied).  The betac subunit, as
described above, serves as a common beta subunit for the
IL-3, GM-CSF, and IL-5 receptors.  By contrast, betaIL-3 is
specific to the murine IL-3 receptor, associating only with
the murine IL-3alpha receptor subunit.  The role of betaIL-3
in IL-3 receptor-mediated signaling in the murine system is
largely undefined.

4.  Bcl-2, BAD, AND AKT KINASE

In the previous section we began by discussing
signaling events that originated with the cell surface IL-3
receptor, then followed these pathways into the interior of
the cell.  In this section we will focus on molecules and
events in the interior of the cell and then trace our way back
towards the receptor.  This will serve to link known
intracellular regulators of apoptosis with receptor-mediated
survival signals.  We will begin with a discussion of the Bcl-
2 oncoprotein.

The bcl-2 protooncogene was initially identified
as a cellular gene located at the site of a frequent
chromosomal translocation in follicular B cell lymphomas
(12, 13).  Follicular B cell lymphomas represent one of the
most common cancers of the human hematopoietic system.
Greater than 85% of these lymphomas, as well as 20% of
diffuse B cell lymphomas, exhibit a t(14;18) chromosomal
translocation, which results in elevated expression of wild-
type Bcl-2 protein (52, 12, 14).  A considerable body of
experimental evidence indicates that Bcl-2 contributes to
the progression of these diseases by blocking apoptosis in
cells that are normally destined to die.  For example,
targeted overexpression of Bcl-2 in the B lymphocytes of
transgenic mice results in extended B cell survival and an
expanded B cell compartment (54).

The deleterious effects of Bcl-2 overexpression
may not be limited to cancers of hematopoietic cells.
Deregulated expression of Bcl-2 has also been documented
in neuroblastoma (55), androgen-independent prostate
cancer (56), breast cancer (57, 58), melanoma (59, 60), and
gastrointestinal cancer (61).  Thus, the disruption of
apoptotic pathways by Bcl-2 or Bcl-2-like molecules may
be a common step during tumor development.

The expression of Bcl-2 also appears to play an
important role in the normal development and maintenance
of the hematopoietic system.  In the adult, Bcl-2 is
expressed in bone marrow progenitor cells representing all
lineages, suggesting a role in the survival of these immature
cells (62).  Further clues about the role of Bcl-2 have come
from bcl-2-/- gene knockout mice (63, 64).  These mice are
born normal, and initially demonstrate apparently normal
hematopoiesis.  However, shortly after
birth the knockout mice exhibit massive lymphocyte
apoptosis.  Furthermore, thymocytes from these mice
undergo accelerated apoptosis in response to
dexamethasone or radiation.  Eventually, most bcl-2-/-
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Figure  1.  Potential pathway for suppression of apoptosis
by IL-3.

knockout mice die prematurely from polycystic kidney
disease.

In cell culture sytems, Bcl-2 has been shown to
block apoptosis in response to a variety of apoptotic
stimuli, including cytokine withdrawal (65, 66).  A great
deal of effort has been invested to determine the molecular
mechanism of Bcl-2 action.  Bcl-2 is a 25 kDa integral
membrane protein that is localized primarily to membranes
of the mitochondria, endoplasmic reticulum, and nucleus
(67-69, 106, 107).  Although the primary amino acid
sequence of Bcl-2 is not homologous to any known
enzymatic proteins, a number of Bcl-2 related proteins have
been isolated and cloned.  Together these proteins
constitute the Bcl-2 protein family (70).  Functional studies
have determined that the different members of the Bcl-2
protein family act either to suppress (Bcl-2, Bcl-XL, Mcl-1,
A1) or promote (Bax, Bcl-XS, Bad, Bak, Bik, Bid)
apoptosis (70-72).  Members of the Bcl-2 protein family
can homodimerize or heterodimerize with other members of
the family.  Importantly, the functional properties of these
proteins are altered by heterodimerization interactions (73,
74).

Recently the crystal structure of the Bcl-2 family
member, Bcl-XL, was elucidated, revealing striking
similarities between Bcl-XL and the pore-forming proteins
diptheria toxin and the colicins (75).  Based on this
observation, subsequent experiments have determined that
Bcl-XL (76), Bcl-2 (77, 103), and Bax (74, 103), all have ion
channel-forming ability when studied in artificial lipid
membranes.  The prominent localization of Bcl-2 family
members to the mitochondria suggests that the mechanism
of action of these molecules may be to regulate the
permeability of the mitochondria to ions or potentially to
other larger molecules (The role of mitochondria will be
discussed in greater detail in the next section).
Interestingly, pores that are formed by the proapoptotic
molecule Bax exhibit properties that are different from
those formed by the antiapoptotic molecule Bcl-2 (74,
103).  Moreover,  the unique properties of the Bax channel
can be blocked by heterodimerization with Bcl-2 (74).

In addition to serving as a channel-forming
protein, Bcl-2 can also act as a binding or docking site for
other proapoptotic molecules, such as Bad (78).  Although
Bad is a member of the Bcl-2 protein family, it is not
anchored to a membrane and exists as a cytoplasmic
protein.  Overexpression of Bad can inhibit the ability of
Bcl-2 to prevent apoptosis in IL-3-deprived cells (78).
However, in the presence of IL-3, Bad becomes
phosphorylated on serine 112 and serine 136, and Bad-

promoted apoptosis is suppressed (79).  Zha et al. (79)
have found that unphosphorylated Bad binds to Bcl-XL
(and possibly Bcl-2), while phosphorylated Bad is bound
up by the cytoplasmic protein 14-3-3 (Figure 1).  Thus, IL-
3-mediated phosphorylation of Bad likely serves to free up
antiapoptotic Bcl-2 family members to perform their
function of inhibiting apoptosis.

Since the ability of IL-3 to promote
phosphorylation of Bad appears to be important in the
suppression of apoptosis, efforts have been made to
identify the kinase that is responsible for Bad
phosphorylation.  Recently, Datta et al. (80) discovered
that Akt kinase can phosphorylate serine 136 of Bad, both
in vitro and in vivo.  Furthermore, Akt-mediated
phosphorylation of serine 136 appears to be sufficient for
inhibition of apoptosis in cultured cells.  These findings are
consistent with previous studies which have shown that
activated Akt can inhibit apoptosis under a number of
different circumstances, including cytokine withdrawal (81,
51, 82-85).  Importantly, the discovery that Akt can
phosphorylate Bad provides an important link to IL-3
receptor-initiated signaling.  This is because Akt kinase is
known to be activated by PI 3-kinase (86-89), and PI 3-
kinase is activated soon after IL-3 binds to its receptor (36).
PI 3-kinase, like Akt, has been shown in a number of
different studies to suppress apoptosis (90-92, 51, 82, 85).
Activation of PI 3-kinase may occur via Ras-dependent
pathways (93, 94), but also may involve Ras-independent
mechanisms.  Once activated, PI 3-kinase phosphorylates
inositol phospholipids at the D-3 position.  Akt activation
results, at least in part, by the binding of PI 3-kinase-
generated phosphorylated lipids to the pleckstrin homology
domain of the Akt molecule (95, 96).

Figure 1 presents a summary of a potential
mechanism for IL-3-mediated suppression of apoptosis.
Briefly, the binding of IL-3 to its receptor results in Ras
activation, through sequences represented by the membrane
distal domain of the betac receptor subunit.  Activation of
Ras may lead to the activation of PI 3-kinase.
Alternatively, PI 3-kinase may be activated through a Ras-
independent pathway.  Activated PI 3-kinase
phosphorylates inositol phospholipids, which then bind to
and activate Akt kinase.  Akt then phosphorylates Bad, and
potentially other apoptosis-regulatory molecules, resulting
in the association of Bad with 14-3-3.  The sequestration of
Bad by 14-3-3 frees up antiapoptotic proteins such as
Bcl-XL or Bcl-2, allowing them to bind to proapoptotic
molecules such as Bax and inhibit apoptosis.

5. MITOCHONDRIAL CHANGES DURING
APOPTOSIS

The discovery that several Bcl-2 family members
are localized to the outer mitochondrial membrane has
raised speculation that mitochondria play an important role
in the regulation of apoptosis.  In support of this, recent
work has shown that a number of mitochondrial events
occur during early apoptotic cell death.  These events
include:  A)  release of cytochrome c from the mitochondrial
intermembranous space into the cytoplasm (97, 98),  B)
mitochondrial swelling and outer membrane rupture (99),
and  C)  loss of mitochondrial membrane potential (100).
Each of these mitochondria-associated events has been
demonstrated in IL-3-deprived FL5.12 pro-B cells (99), as
well as other cell lines stimulated with a variety of different
apoptotic stimuli.

The release of cytochrome c from mitochondria is
particularly intriguing.  Apo-cytochrome c is encoded by a
nuclear gene and is transported, by an unknown
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Figure  2.  Potential pathway outlining caspase activation
and cellular destruction following IL-3 withdrawal.  Current
experimental evidence has demonstrated that IL-3
withdrawal leads to cytochrome c release from the
mitochondria, and eventual caspase-mediated cleavage of
cellular proteins and fragmentation of genomic DNA.
However, the mechanism of caspase activation in IL-3-
deprived cells remains unknown.  The figure shows a
pathway for caspase activation that has been elucidated in
cytokine-independent cells (97, 101, 102, 145-147).

mechanism, into the space between the inner and outer
mitochondrial membranes.  Once transported, apo-
cytochrome c binds with heme and assumes its important
role in oxidative phosphorylation.  The release of
cytochrome c from mitochondria during an early stage of
apoptosis was initially discovered by the laboratory of
Xiaodong Wang (97).  This group was searching for
cytoplasmic proteins that contributed to the activation of a
class of apoptotic effectors, caspase proteases (caspases
are discussed at length in the next section).  One of the
proteins they purified and determined to be important for
activation of caspases was cytochrome c.  As depicted in
figure 2, subsequent studies (101, 102) have shown that
cytochrome c that is released from the mitochondria forms a
complex with two other proteins,  procaspase-9 and Apaf-
1 (a mammalian homolog of the C. elegans death protein
CED-4).  Formation of this complex in the presence of
dATP results in the processing of inactive procaspase-9 to
active caspase-9 (102).  Active caspase-9 then promotes
the processing and activation of caspase-3, which may lead
to a cascade of other caspases being activated.  Currently, it
is unclear how cytochrome c contributes to the cytochrome
c/Apaf-1/procaspase-9 activation complex, and how the
redox potential of the cytochrome c heme group might be
involved.  Also, with respect to IL-3 withdrawal-induced
apoptosis, it remains to be determined whether caspase-9 is
the initial caspase that is activated.

Another unsolved problem concerns the
mechanism of cytochrome c release from the mitochondria.
One possible mechanism for this release would involve
pores in the outer mitochondrial membrane.  Since the
proapoptotic molecule Bax has demonstrated pore-forming

ability (74, 103) it has been intriguing to speculate that Bax
may form the pore through which cytochrome c passes.
The observation that Bcl-2, via heterodimerization, alters
the properties of Bax pores (74), and also blocks the release
of cytochrome c (104, 105), supports this idea.  However,
current experimental evidence suggests that the pores
formed by Bax are more likely to be limited to the passage
of ions or much smaller molecules (74, 103).  Nonetheless,
it remains a possibility that Bax, or some as yet unknown
pore, may be responsible for transport of cytochrome c to
the cytoplasm.

Another possible mechanism for the release of
cytochrome c would involve rupture of the outer
mitochondrial membrane.  Vander Heiden et al. (99) have
reported that apoptosis caused by IL-3 withdrawal
(FL5.12) or stimulation of Fas antigen (Jurkat T leukemic
cells) is marked by early swelling of the mitochondria and
rupture of the outer membrane.  These events, which can be
blocked by expression of Bcl-XL, may account for the
release of cytochrome c.  However, it is unclear whether
mitochondrial swelling and outer membrane rupture occur
universally in apoptotic cells, and whether membrane
rupture actually precedes the earliest release of cytochrome
c.

In addition to cytochrome c, a protein called AIF
(apoptosis-inducing factor) has been reported to be released
from mitochondria during apoptosis, and appears to be
involved in caspase activation (108).  AIF is a 50 kDa
protein which awaits purification and cloning.  It will be
interesting to see whether other critically important
proteins are released from the mitochondria.

The loss of mitochondrial membrane potential
(also referred to as mitochondrial permeability transition)
has also been observed in a variety of different cell types in
response to a variety of different apoptotic stimuli (100,
109).  A poorly defined pore, capable of large conductance
and located in the inner mitochondrial membrane, is
responsible for mitochondrial permeability transition (98).
Several studies indicate that the opening of this pore is
preceded by mitochondrial swelling, outer membrane
rupture, and cytochrome c release (104, 105, 99).  Thus, the
importance of mitochondrial permeability transition in the
propagation of apoptosis signaling events remains
unknown.  However, as with other mitochondrial events,
mitochondrial permeability transition is efficiently inhibited
by expression of antiapoptotic Bcl-2 family members
(109).

6. ACTIVATION OF CASPASE PROTEASES
FOLLOWING IL-3 WITHDRAWAL

In a variety of model systems, the execution stage
of apoptosis is known to be associated with the activation
of a family of cellular proteases called caspases (110-112).
Caspases are cysteine proteases which cleave substrate
proteins after aspartate residues found in specific sequence
contexts.  To date, ten distinct members of the caspase
protease family (caspase-1 through -10) have been
identified and cloned (113).  During apoptosis the
activation of caspases often proceeds in a cascade-like
fashion, with one member of the family serving to activate
another (see figure 2).  In this fashion the proteolytic signal
may be amplified.  Ultimately, caspase activation leads to
the destruction of the cell, presumably due to the cleavage
of multiple intracellular substrate proteins.  The activation
of caspases has been shown to occur during apoptosis
caused by a variety of different stimuli, including treatment
with chemotherapy or radiation (114-119), stimulation of
cell surface Fas or TNF receptor (120-122), detachment
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from extracellular matrix (123), or withdrawal of essential
neurotrophic factor (124, 125).  As discussed below, more
recent data indicates that withdrawal of cytokines, such as
IL-3, results in caspase activation in cytokine-dependent
hematopoietic cells.

Detailed studies of caspase proteases have
required convenient methods for assessing caspase
activation.  Many of these studies have made use of the fact
that caspases are initially synthesized as inactive
precursors.  Activation involves proteolytic processing of
the inactive procaspase form to two smaller subunits which
associate into a heterotetrameric active enzyme form (110-
112).  Thus, the activation of a specific caspase can be
assessed via Western blotting, by measuring conversion of
the high molecular weight precursor form to smaller active
subunits.  In the same way, the cleavage of known caspase
substrate proteins can be used as a measure of caspase
activation.  A number of important caspase substrate
proteins have been identified, including poly(ADP-ribose)
polymerase (PARP), an enzyme involved in DNA repair
(126-131).  PARP is known to be cleaved by several
different members of the caspase family, and cleavage of
PARP has commonly been used as a hallmark indicator of
caspase activation.  Finally, caspase activation can also be
assessed by measuring the cleavage of fluorogenic peptides
that are based on peptide cleavage sites in caspase substrate
proteins.  The most commonly used peptides contain the
core sequence YVAD (recognized specifically by caspase-
1), VAD (recognized by multiple caspases), or DEVD
(recognized at least by caspase-3).

The role of caspase proteases in various
apoptotic processes has been studied using two types of
caspase inhibitors:  1)  peptides based on cleavage sites in
substrate proteins (132, 133), and 2)  virally-encoded
caspase inhibitors, including cowpox virus CrmA (134-136)
and baculovirus p35 (137, 138) proteins.  Experiments
using the CrmA inhibitor have shown that caspases are
important for apoptotic execution following neurotrophic
factor withdrawal (124), Fas or TNFR stimulation (120-
122), detachment from extracellular matrix (123), and
treatment with chemotherapy (118).

Although relatively little work has been done to
investigate the mechanism of IL-3 withdrawal-induced
apoptosis, recent work has begun to document an
important role for caspases in this process.  Early studies
by Kumar (139) demonstrated that a number of IL-3-
dependent cell lines expressed mRNA for caspase-2.
Moreover, expression of antisense caspase-2 in IL-3-
dependent FDCP-1 cells (murine myeloid progenitor cell
line) resulted in moderately enhanced survival following IL-
3 withdrawal (139).  Subsequent Western blotting
experiments using extracts of Mo7e cells (IL-3-dependent
human megakaryoblastic cell line) have revealed rapid
processing/activation of caspase-2 and caspase-7 following
IL-3 withdrawal (140).  At later timepoints, caspase-3 was
also activated, indicating that a cascade of caspases may be
initiated in IL-3-deprived Mo7e cells.

A number of studies, using  Ba/F3, Mo7e, 32D,
or FDCP-1 cells, have observed cleavage of PARP protein
following IL-3 withdrawal (140-143;  see Figure 2).  In
general, PARP cleavage immediately preceded
fragmentation of genomic DNA to oligonucleosomal-length
fragments.  The IL-3 withdrawal-induced PARP cleavage
was inhibited both in vivo and in vitro by overexpression of
Bcl-2, or by incubation with the inhibitory peptides z-
VAD-fluoromethyl ketone (z-VAD-FMK) or z-DEVD-
fluoromethyl ketone (z-DEVD-FMK) (141-143).  These
inhibitors also delayed DNA fragmentation and loss of cell

viability, indicating an important role for caspases in
apoptotic execution following IL-3 withdrawal (141, 142).
On the other hand, YVAD peptide, an inhibitor of caspase-
1, had no effect on PARP cleavage or apoptosis, suggesting
that caspase-1 is not involved (142).  In addition, PARP
cleavage, DNA fragmentation, and loss of cell viability were
not inhibited by expression of CrmA protein (143, 144), a
potent inhibitor of apoptosis caused by neurotrophic factor
withdrawal (124) or Fas stimulation (120-122).  This
suggests that the repertoire of caspases activated by IL-3
withdrawal is different from the repertoires activated by
other apoptotic stimuli.

In still further experiments, extracts from IL-3-
deprived cells have been shown to cleave the fluorogenic
peptides DEVD-7-amino-4-trifluoromethyl coumarin
(DEVD-AFC) (140) and DEVD-4-methylcoumaryl-7-
amide (DEVD-MCA) (142).  The cleavage of DEVD-AFC
and DEVD-MCA by these extracts has been interpreted to
indicate that caspase-3 is an important mediator of IL-3
withdrawal-induced apoptosis.  However, it is possible that
other members of the caspase family also can cleave this
peptide (133).  Peptides thought to be specific for caspase-
1 were not cleaved by extracts from IL-3-deprived cells
(140, 142), consistent with experiments described above.

On a technical note, it should be pointed out that
in vivo inhibition of PARP cleavage or apoptosis in the IL-
3-dependent cells that have been studied, typically requires
much higher concentrations of inhibitory peptide than is
needed in other cell types (ex. Fas-stimulated Jurkat T
leukemic cells).  Perhaps the inhibitory peptides are poorly
taken up, or are rapidly metabolized by IL-3-dependent cell
lines.

Ultimately IL-3 withdrawal leads to
fragmentation of genomic DNA and loss of cell viability.  In
related systems, protein purification has led to the
discovery of a caspase-activated deoxyribonuclease (CAD)
that mediates DNA fragmentation in apoptotic cells (145,
146).  Normally, CAD exists as an inactive enzyme,
complexed with an inhibitor called ICAD/DFF (145-147;
see Figure 2).  However, in the presence of an apoptotic
stimulus, activated caspase-3 cleaves and inactivates the
ICAD/DFF inhibitor (145-147).  This enables CAD to
perform its function of cleaving genomic DNA.  It will be
interesting to see whether ICAD/DFF and CAD are
involved in DNA fragmentation during IL-3 withdrawal-
induced apoptosis.

In summary, although it is now clear that IL-3
withdrawal leads to caspase activation and cleavage of
caspases substrates, a number of questions remain
unanswered:  Which members of the caspase protease
family are activated by IL-3 withdrawal, and in what order?
Are different caspases activated in different hematopoietic
lineages?  What is the mechanism of caspase activation
following IL-3 withdrawal?  Which events commit
cytokine-deprived cells to a pathway of apoptotic
execution?  Is CAD activated in IL-3-deprived cells?
Further experiments will be needed to address these and
other important questions.

7.   THE IMPORTANCE OF p53

The ability of p53 to promote apoptosis has been
well documented in a variety of systems.  In the case of IL-
3 withdrawal-induced apoptosis, p53 appears to be
critically important (148-150).  Studies using 32D cells
have shown that overexpression of wild-type p53 results in
accelerated apoptosis following IL-3 withdrawal (149).  By
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Figure  3.  Potential pathways of p53-mediated apoptosis.
The p53 protein plays an important role in IL-3
withdrawal-induced apoptosis (see text).  In other systems,
p53 has been shown to induce transcription of Bax, DR5
death receptor, and enzymes involved in the production and
regulation of cellular reactive oxygen species (ROS).  The
figure depicts potential pathways of p53-mediated caspase
activation.

contrast, disruption of p53 function by overexpression of
dominant-negative p53 serves to protect IL-3-deprived 32D
or DA1 cells from apoptosis (148, 149).  Thus, p53
function seems to be required for IL-3 withdrawal-induced
apoptosis of hematopoietic cells.

The precise mechanism whereby p53 promotes
apoptosis in IL-3-deprived cells remains unclear.  However,
it seems likely that activation of caspase proteases may be
a downstream effect of p53 action.  In M1 myeloid
leukemic cells, overexpression of wild-type p53 has been
shown to elicit caspase activation (151).  Incubation of
these cells with IL-6 cytokine can inhibit the p53-mediated
caspase activation.

Recent studies have provided clues regarding p53-
mediated events that are more proximal than caspase
activation, and suggest that early biochemical events may
depend on the ability of p53 to act as a transcription factor
(figure 3).  These studies have shown that overexpression
of p53 induces transcription of proapoptotic Bax protein
(152, 153), as well as DR5 (154), a cell surface receptor
that is directly linked to activation of caspases.  In addition,
Polyak et al. (155) have demonstrated that overexpression
of p53 in a colorectal cancer cell line leads to the induction
of a limited number of p53-inducible-genes (PIGS).  Of the
14 PIGs they identified, several turned out to encode
enzymes involved in the production or regulation of
intracellular reactive oxygen species (ROS).  Polyak et al.
(155) proposed that p53-mediated induction of these

enzymes could lead to the generation of ROS, oxidative
damage to the mitochondria, release of proteins from the
damaged mitochondria, and activation of caspases by the
released mitochondrial proteins (figure 3).  Future
experiments will help to determine the role of p53-inducible
genes and ROS in IL-3 withdrawal-induced apoptosis.

8.  PERSPECTIVES

Athough much has been learned in recent years
concerning the regulation and execution of apoptosis, many
questions are left to be answered.  One area of research that
promises to be particularly exciting will be the
characterization of channels formed by Bcl-2 family
members.  Studies of these channels should shed light on
the regulation of mitochondrial function and the mechanism
of cytochrome c release.  In addition, these studies will help
to determine how proteins such as Bad, through their
interactions with antiapoptotic membrane channels, serve
to promote apoptosis.

With respect to IL-3 withdrawal-induced
apoptosis, it now seems clear that caspases play an
important role in the execution process.  However,
questions remain regarding which caspases are activated,
and in what order, following IL-3 withdrawal.  Furthermore,
it is not known whether the individual members of the
caspase family are developmentally regulated or lineage-
restricted during hematopoiesis.  A clearer understanding of
caspase expression patterns will be useful when asking
whether caspase expression or function is altered in
leukemias or lymphomas.

Finally, it remains to be determined, from a
mechanistic perspective, how caspases become activated
following IL-3 withdrawal.  Evidence from other systems
has delineated two distinct models of caspase activation.  In
one model, ligand-induced activation of a cell surface
receptor (ex. Fas, DR5) results in direct activation of a
caspase (ex. caspase-8) that is part of a signaling complex
associated with the receptor cytoplasmic domain (156,
157).  In the second model, depicted in figure 2, caspases
become activated in response to the release of cytochrome c
from the mitochondria.  The release of cytochrome c has
been observed following IL-3 withdrawal (99), suggesting
that the activation of caspases in IL-3-deprived cells may
occur via this second model.  However, it remains possible
that caspases are activated at the cell surface, or by some
other unique mechanism, following IL-3 withdrawal.  A
greater understanding of caspase activation pathways will
assist the development of therapies aimed at restoring
apoptotic potential in apoptosis-resistant leukemias and
lymphomas.
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