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Abstract

Background: The study on Head and Neck Squamous Cell Carcinoma (HNSCC), a prevalent and aggressive form of head and neck
cancer, focuses on the often-overlooked role of soluble mediators. The objective is to leverage a transcriptome-based risk analysis
utilizing soluble mediator-related genes (SMRGs) to provide novel insights into prognosis and immunotherapy efficacy in HNSCC
patients. Methods: We analyzed the expression and prognostic significance of 10,859 SMRGs using 502 HNSCC and 44 normal samples
from the TCGA-HNSC cohort in The Cancer Genome Atlas (TCGA). The samples were divided into training and test sets in a 7:3
ratio, with an additional external validation using 40 tumor samples from the International Cancer Genome Consortium (ICGC). Key
differentially expressed genes (DEGs) with prognostic significance were identified through univariate and Lasso-Cox regression analyses.
A prognostic model based on 20 SMRGs was developed using Lasso and multivariate Cox regression. We assessed the clinical outcomes
and immune status in high-risk (HR) and low-risk (LR) HNSCC patients utilizing the BEST databases and single-sample Gene Set
Enrichment Analysis (ssGSEA). Results: The 20 SMRGs were crucial in predicting the prognosis of HNSCC, with the SMRG signature
emerging as an independent prognostic indicator. Patients classified in the HR group exhibited poorer outcomes compared to those in the
LR group. A nomogram, integrating clinical characteristics and risk scores, demonstrated substantial prognostic value. Immunotherapy
appeared to be more effective in the LR group, possibly attributed to enhanced immune infiltration and expression of immune checkpoints.
Conclusions: The model based on soluble mediator-associated genes offers a fresh perspective for assessing the pre-immune efficacy
and showcases robust predictive capabilities. This innovative approach holds significant promise in advancing the field of precision
immuno-oncology research, providing valuable insights for personalized treatment strategies in HNSCC.
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1. Introduction ment and therapeutic outcomes [4]. Early-stage HNSCC
patients have a 60-95% success rate with primary tumor
resection and neck debulking [5], but most are diagnosed at

advanced stages with metastasis and recurrence [6,7]. Dis-

Head and neck squamous cell carcinoma (HNSCC), a
critical global health concern, ranks as the sixth most preva-

lent cancer worldwide. This group of malignancies, origi-
nating in the oral cavity, lips, nasopharynx, pharynx, and
larynx, presents a significant clinical challenge [1,2]. An-
nually, HNSCC accounts for more than 809,000 new cases
and over 316,000 deaths, constituting approximately 3.6%
of all cancer-related fatalities [3]. The prognosis for HN-
SCC remains daunting despite the array of available thera-
peutic interventions, including surgery, chemotherapy, ra-
diotherapy, and photodynamic therapy. The increasing
morbidity and mortality rates each year underscore the ur-
gent need for enhanced treatment strategies, as the cancer’s
aggressive and heterogeneous nature complicates manage-

ease prognosis heavily depends on the Tumour, node and
metastasis (TNM) stage and histologic grade, influencing
treatment decisions, including immunotherapy [8]. How-
ever, traditional clinicopathological staging may not accu-
rately reflect prognosis due to variable clinicopathologic
characteristics in patients with the same clinical stage [9].

Soluble mediators like cytokines, chemokines, and
growth factors play pivotal roles in the tumor microenvi-
ronment (TME), influencing immune responses and inter-
cellular communication [10,11]. These mediators facilitate
tumor growth, chronic inflammation, and an immunosup-
pressive and pro-angiogenic milieu, challenging the effi-
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cacy of therapies including immunotherapy [12]. Tumor-
associated macrophages, for instance, release soluble me-
diators (e.g., IL-6, IL-10, CCL18, CCL22, TNF «, TGF-
B) promoting tumor signaling [13—19]. The immunosup-
pressive TME in HNSCC is further exacerbated by various
soluble mediators [20], with some (TGF-3, VEGF, IL-10)
known to dampen immune responses [21]. Recent studies
highlight the prognostic potential of soluble mediators in
various cancers [22—24], with markers like soluble mannose
receptors (sSMRs) and soluble hemoglobin scavenger recep-
tors (sCD163) relevant in gastric cancer prognosis [25], and
soluble CD155 predicting liver cancer survival.

Amidst evolving bioinformatics, this study, for the
first time, explores the prognostic and therapeutic impli-
cations of soluble mediator-related genes (SMRGs) in HN-
SCC using the Cancer Genome Atlas-Head and Neck Squa-
mous Cell Carcinoma (TCGA-HNSC) dataset. We metic-
ulously analyzed the association between SMRG expres-
sion patterns and HNSCC prognosis, identifying 20 reli-
able SMRGs. This investigation was driven by the un-
explored potential of SMRGs in diagnosing and prognos-
ticating HNSCC. Consequently, we developed a predic-
tive model based on SMRGs and a risk score, examining
their ties to the immune microenvironment, and associa-
tions with chemotherapy and immunotherapy. This com-
prehensive genetic analysis aims to underscore the utility
of SMRGs in enhancing prognosis, diagnosis, and person-
alized treatment strategies for HNSCC patients.

2. Method
2.1 Data Sources

The TCGA-HNSC cohort, encompassing 502 HNSC
and 44 normal samples, was retrieved from the TCGA
database (https://portal.gdc.cancer.gov/), with 501 HNSC
samples possessing complete clinical data included in sub-
sequent analyses. These samples were randomized into
training and test risk groups (7:3 ratio) using the cart
R package (https://cran.r-project.org/web/packages/caret/
index.html), drawing on relevant clinical information. Ad-
ditionally, 40 patients with comprehensive follow-up data
were sourced from the ICGC as an external validation set.

2.2 Difference Analysis and Enrichment Analysis

Differential expression analysis between normal and
tumor groups was meticulously executed using the ‘limma’
R package [26-28], adhering to stringent criteria of an abso-
lute log fold change (|logFC|) greater than 1 and an adjusted
p-value threshold below 0.05. This approach facilitated the
identification of genes significantly altered in HNSCC com-
pared to normal tissue. Further, we employed the ‘cluster-
Profiler’ R package (version 4.1.3) [29,30] to conduct com-
prehensive enrichment analysis of Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
ways, setting a significance threshold at a p-value of less
than 0.05. The GO enrichment analysis delved into the

molecular functions (MF), biological processes (BP), and
cellular components (CC) associated with these differen-
tially expressed genes. Concurrently, the KEGG pathway
analysis provided insights into the biological pathways im-
plicated in HNSCC, thereby enhancing our understanding
of the molecular underpinnings of this complex disease.

2.3 Consensus Clustering Analysis

TCGA-HNSC cohorts were segregated into distinct
groups based on the consensus expression of soluble media-
associated differentially expressed genes (DE-SMRGs) us-
ing ‘ConsensionClusterPlus’ R software (Version 4.1.3,
Chapel Hill, NC, USA) [31]. The MCPcounter R package
(Version 4.1.3, Paris, France) [32] was employed to evalu-
ate the content of immune-related cells in these clusters and
to generate violin plots.

2.4 Model Construction and Validation

The prognostic value of SMRGs in the HNSCC cohort
was meticulously evaluated through univariate Cox regres-
sion analysis. This statistical approach allowed us to deter-
mine the individual impact of each SMRG on patient sur-
vival. Further, to refine our analysis and identify the most
influential genes within the vast array of SMRGs, we em-
ployed LASSO Cox regression analysis using the “glmnet”
R package [33]. This method effectively pinpointed key
genes and their corresponding regression coefficients, re-
ducing the risk of overfitting by penalizing the complexity
of the model. The risk scores for each patient were then cal-
culated using a comprehensive formula that combines the
expression levels of these key mRNAs and their respective
regression coefficients. The formula is structured as fol-
lows: risk score = Expression mRNA1 x Coef mRNA1
+ Expression. mRNA2 x Coef mRNA2 + ... + Expres-
sion. mRNAn x Coef mRNAn. This risk scoring system
encapsulates the cumulative impact of multiple gene ex-
pressions on the prognosis of HNSCC, enabling a more nu-
anced and precise prediction of clinical outcomes.

2.5 Model Formulae

Risk scores for patients in our study were accurately
computed using the “survminer” R package, based on the
established model equations derived from the combination
of gene expressions and their corresponding coefficients.
This calculation enabled the categorization of patients into
high-risk (HR) and low-risk (LR) groups, a division based
on the median value of the calculated risk scores. Follow-
ing this stratification, survival curves for each group were
meticulously plotted to visually represent and compare the
survival probabilities over time between these two distinct
risk categories. To quantitatively assess the predictive ac-
curacy of our prognostic model, the concordance index (C-
index) was determined using the ‘pec’ R program. The C-
index is a crucial metric in survival analysis, providing a
measure of the model’s ability to accurately predict sur-
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vival outcomes [34]. Additionally, we utilized the ‘sur-
vivalROC’ R package for conducting time-dependent Re-
ceiver Operating Characteristic (ROC) curve analysis. This
analysis is essential for evaluating the predictive potential
of the genetic markers identified in our study over time, of-
fering insights into the temporal robustness and reliability
of the prognostic model in assessing patient outcomes in
HNSCC.

2.6 Independent Prognostic Analysis and Nomogram
Construction

The evaluation of the risk score’s effectiveness as an
independent prognostic factor for HNSCC was thoroughly
conducted using both univariate and multivariate Cox re-
gression models. These models are instrumental in discern-
ing the extent to which the calculated risk score can predict
patient outcomes independently of other clinical variables.
Furthermore, to translate our findings into a practical tool
for clinical use, we utilized the “rms” R package [35] to cre-
ate detailed nomograms. These nomograms integrate sev-
eral key parameters, including the risk score derived from
our model, patient age, tumor stage, and the expression lev-
els of the model genes. They are designed to predict the 1,
3, and 5-year overall survival rates for patients in the TCGA
HNSC cohort.

2.7 Immunity Analysis of the Risk Signature

We employed a multifaceted approach to quantify im-
mune infiltration scores, utilizing a suite of established
methodologies. These included XCELL [36,37], TIMER
[38,39], QUANTISEQ [40,41], MCPCOUNT [32], EPIC
[42], CIBERSORT [43,44] and CIBERSORT-ABS [45].
The integration of these diverse tools enabled a thorough
analysis of the immune landscape within the HNSCC tumor
microenvironment. We conducted Spearman correlation
analysis to investigate the relationship between the calcu-
lated risk scores and the presence of various immune cells,
providing insights into the interplay between genetic risk
factors and the immune milieu. Furthermore, the single-
sample Gene Set Enrichment Analysis (ssGSEA) method
was applied to determine the immune cell characteristics in
HNSCC patients. This approach was instrumental in differ-
entiating the immune infiltration status between high-risk
(HR) and low-risk (LR) groups, offering a nuanced under-
standing of how risk levels correlate with immune response.

Our analysis extended to examining 20 suppressive
immune checkpoints identified in Auslander’s study [46],
focusing on their variations between the HR and LR groups.
Additionally, we referenced a gene set pertaining to the
cancer immune cycle from Xu ef al.’s website [44] (http:
//biocc.hrbmu.edu.cn/TIP/) and drew upon Mariathasan’s
research for a list of genes associated with favorable re-
sponses to the anti-PD-L1 drug atezolizumab [47]. To as-
sess the enrichment of gene features related to the cancer
immune cycle and immunotherapy response, we employed
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the Gene Set Variation Analysis (GSVA) method [48] was
employed. A p-value of less than 0.05 was considered in-
dicative of a significant difference between the HR and LR
groups. The ‘ggcor’ R package (version 4.1.3) was utilized
to further analyze the association between risk scores and
these genetic characteristics, providing a comprehensive
overview of how genetic risk factors might influence the
efficacy of immunotherapeutic interventions in HNSCC.

2.8 Drug Sensitivity

The evaluation of treatment response in high-risk
(HR) and low-risk (LR) patient groups with HNSCC was
meticulously conducted using half-maximal inhibitory con-
centration (IC50) data. This data was sourced from the
Genomics of Drug Sensitivity in Cancer (GDSC) database,
accessible at https://www.cancerrxgene.org/. Utilizing the
“pRRophetic” R package (version 4.1.3) [49], we were able
to predict and compare the response of HR and LR groups
to various anticancer drugs.

2.9 Tumor Immune Single Cell Hub Database

The Tumor Immune Single-Cell Hub (TISCH)
database, accessible at http://tisch.comp-genomics.org,
played a pivotal role in our research, particularly in the
study of tumor microenvironment (TME) heterogeneity
in HNSCC. As a comprehensive repository of single-cell
RNA sequencing data, TISCH specializes in providing
detailed insights into the TME across a variety of cancer
types, datasets, and cell types [50].

2.10 Immunohistochemical Analysis

The verification of the expression levels of soluble
mediator-related genes (SMGs) in our study on HNSCC
was significantly bolstered by utilizing immunohistochem-
ical sections from the Human Protein Atlas (HPA) database
(https://www.proteinatlas.org/). HPA is an extensive re-
source that integrates proteomic, transcriptomic, and sys-
tems biology data to provide a comprehensive view of hu-
man protein expression across various tissues and cells.

2.11 Statistical Analysis

In our comprehensive study, all statistical analyses
were rigorously performed using R software, version 4.1.3.
We adhered to stringent statistical criteria, considering both
p-values and false discovery rate (FDR) g-values below the
threshold of 0.05 to denote statistical significance. This ap-
proach ensured a robust and reliable interpretation of our
data, minimizing the likelihood of false positives and pro-
viding a solid foundation for our conclusions.

3. Result

3.1 Soluble Mediators Related Genes are Associated with
Immunological Function

The graphic flowchart in Fig. 1 succinctly encapsu-
lates the methodology and structure of our extensive study


http://biocc.hrbmu.edu.cn/TIP/
http://biocc.hrbmu.edu.cn/TIP/
https://www.cancerrxgene.org/
http://tisch.comp-genomics.org
https://www.proteinatlas.org/
https://www.imrpress.com

on the role of SMRGs in HNSCC. Our research entailed a
detailed analysis of clinical information and mRNA expres-
sion data from 546 HNSCC samples, which were sourced
from The Cancer Genome Atlas (TCGA). In the initial
phase of our study, we identified a comprehensive gene
set of soluble mediators, totaling 10,859 genes, from the
Genecard database. This extensive list served as a foun-
dational reference for our subsequent analyses. Employing
the “limma” R package, we conducted differential gene ex-
pression analysis on HNSCC tumor tissues. We set a strin-
gent threshold of an absolute logy fold change (|logaFC|)
greater than 1, which led to the identification of 1943 upreg-
ulated and 537 downregulated genes (Fig. 2A). To visually
represent these findings, a heatmap was generated, show-
casing the mRNA expression differences between tumor
samples (n = 502) and normal samples (n = 44) (Fig. 2B).
This visualization provided an immediate and clear com-
parison of gene expression patterns between the two sam-
ple types. Further, we intersected the differentially ex-
pressed genes identified in tumor samples with the ini-
tial soluble mediator gene set. This intersection resulted
in the identification of 2361 differentially expressed SM-
RGs (DE-SMRGs). These DE-SMRGs were then subjected
to further analysis using the Clusterprofiler R package for
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment. The criteria for significant
enrichment were set at an adjusted p-value (p.adj) of less
than 0.05 and a false discovery rate (FDR) of less than 0.25.
The results of this enrichment analysis were presented in
bubble maps (Fig. 2C,D), highlighting the top 25 GO and
top 20 KEGG enrichment results. These results predomi-
nantly showed enrichment in pathways related to T cell ac-
tivation, lymphocyte regulation, and immune responses, in-
cluding Th1 and Th2 cell differentiation, T cell receptor sig-
naling, TNF signaling, and IL-17 signaling pathways. The
enrichment in these specific pathways underscores the po-
tential immunological functions and implications of SM-
RGs in the pathology of HNSCC.

3.2 Immunological Clustering of DE-SMGs in Two
Clusters with Different Clinical Outcomes of HNSCC

We categorized the TCGA-HNSC cohort into groups
based on expression of DE-SMRGs using the Consensus-
ClusterPlus R program (Supplementary Figs. 1,2). A con-
sensus matrix with k value equal to 2 was found to minimize
crossover between HNSC samples (Fig. 3A). Survival dif-
ferences between clusters were analyzed using the Cluster-
Survival R package, revealing better overall survival (OS)
in one cluster compared to the other (Fig. 3B). To elucidate
the reasons behind these prognostic differences, we exam-
ined the levels of immune-related cells in both clusters us-
ing the MCPcounter R package, including B lineage, CDS8
T cells, cytotoxic lymphocytes, endothelial cells, monocyte
lineage, bone marrow dendritic cells, NK cells, and T cells.
We found significantly higher infiltration of these cells in

one cluster (Fig. 3C-J), suggesting a correlation between
immune cell infiltration and better patient prognosis in HN-
SCC.

3.3 Construction and Validation of SMRGs Signature and
Its Prognostic Value

In our study, we developed a sophisticated risk score
model based on SMRGs to predict outcomes in HN-
SCC patients. Initially, univariate Cox analysis, executed
via the “survival” R package, identified 274 prognostic-
related SMRGs (p < 0.05). Further refinement through
lasso regression analysis distilled these to 45 key SM-
RGs (Fig. 4A,B, Supplementary Table 1). Employing a
multifactorial Cox proportional hazard regression model,
we narrowed down to 20 pivotal SMRGs, specifically
CSF2, ITGA4, LGALS3BP, EPO, EZH2, SFRP1, PSMAI,
TNFRSF4, GRIA3, CYP2D6, SLC2544, CCNAI, PRPSI,
UCN2,CCL28, HEXA, SPINK 1, HTN3, TLL1, and SPINK6
(Fig. 4C). The corresponding regression coefficients for
these genes were calculated as follows: 0.3415, —0.5791,
0.9097, —0.7959, —0.5625, —0.1741, 0.8485, —0.8744, —
0.8864, —0.7582, 0.5207, 0.3389, 1.4621, —0.3439, —
0.3837, 1.2022, 0.4666, 0.484, 0.4744, and —0.3499. This
linear prediction model, derived from multivariate Cox
analysis, based on 20 weighted SMRGs, allowed us to cal-
culate a patient-specific risk score.

To ensure the robustness of our prognostic model, we
divided the patients into a training cohort (n = 353) and a
testing cohort (n = 148), following a 7:3 ratio. The train-
ing cohort results aligned with the overall findings, where
HR patients had significantly worse outcomes (p < 0.001)
(Fig. 4D), and the ROC curve area under the curve (AUC)
values for 1, 3, and 5-year predictions were 0.745, 0.838,
and 0.839, respectively (Fig. 4G). This trend was consistent
in the testing cohort, with HR patients demonstrating poorer
prognoses (p = 0.017) (Fig. 4E), although the ROC curve
AUCs at 1, 3, and 5 years were 0.708, 0.635, and 0.564,
respectively (Fig. 4H). For external validation, we utilized
40 samples from the International Cancer Genome Consor-
tium (ICGC) database as an independent test cohort. The
results were consistent with the earlier findings, indicating
a poorer prognosis for HR patients (p = 0.022) (Fig. 4F),
and the ROC curves showed AUCs of 0.850 at 1 year and
0.870 at 1.5 years (Fig. 4I).

To explore the biological mechanisms behind the aber-
rant expression of the 20 target genes, we conducted gene
correlation analysis (Fig. 4]) and pathway analysis. The
pathway analysis revealed significant involvement of these
SMRGs in regulating critical processes such as apopto-
sis, epithelial-mesenchymal transition (EMT), DNA dam-
age response, and the cell cycle, among other tumor-related
pathways (Fig. 4K). We further classified these pathways
into activated (A) and repressed (I) categories, as depicted
in Fig. 4L. Notably, these genes were found to influence
the activation of the PI3K/AKT pathway in HNSCC pa-
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Fig. 1. The workflow of identification of the SMRGs signature for patients with HNSCC. PCA, principal components analysis;
TCGA, The Cancer Genome Atlas; SMRGs, soluble mediator-related genes; ICGC, International Cancer Genome Consortium; TISCH,
Tumor Immune Single-Cell Hub; ROC, Receiver Operating Characteristic; HNSCC, Head and Neck Squamous Cell Carcinoma; K-M,

Kaplan-Meier.

tients. Other pathways, including apoptosis, EMT, RTK,
RAS/MAPK, cell cycle, Hormone ER, Hormone AR, and
DNA damage response, exhibited varying degrees of acti-
vation or repression.

3.4 Clinical Subgroup Analysis of the SMRGs Risk Model

We undertook a detailed clinical subgroup analysis to
evaluate the variations in patient prognosis across diverse
clinical parameters. This analysis was essential to under-
stand how different patient characteristics might influence
outcomes when assessed through the lens of our SMRGs
risk model. To this end, we meticulously stratified the HN-
SCC patient cohort into various subgroups. These sub-
groups were based on critical clinical criteria such as T
stage (T1-2 and T3-4), pathological stage (I-11l and ITI-1V),
pathological N stage (grades NO and N1-3), tumor grade
(grades I-1I and I1I-1V), age (>65 years), and gender (male
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and female), as illustrated in Fig. 5. The stratification al-
lowed us to conduct a nuanced and comprehensive analysis
of survival outcomes across these different subgroups. Re-
markably, the results consistently indicated that patients in
the high-risk (HR) group, as determined by our SMRGs risk
model, had significantly poorer overall survival (OS) in all
the clinical subgroups examined (Fig. 5). This finding not
only validates the predictive strength of our risk model but
also highlights its applicability and robustness across var-
ious clinical scenarios in HNSCC. It underscores the po-
tential of the SMRGs-based risk model as a powerful prog-
nostic tool capable of guiding treatment decisions and pre-
dicting outcomes in a wide range of clinical contexts within
HNSCC management.
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Fig. 2. Biological process analysis of soluble mediators related genes. (A) Volcano map of DE-SMRGs. (B) DE-SMRGs in HNSCC
tumor samples and normal samples. (C) GO enrichment analysis DE-SMRGs. (D) KEGG pathway analysis of DE-SMRGs. DE-SMRGs,
differentially expressed SMRGs; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; FC, fold change.

3.5 Nomogram Construction in Conjunction with Clinical
Features

Our in-depth study on HNSCC entailed rigorous uni-
variate and multivariate Cox regression analyses to eval-
uate the prognostic potential of our SMRGs-based model.
These analyses were crucial for determining whether our
20-SMRGs-based prognosis signature could act as an inde-
pendent prognostic factor, considering the overall survival
(OS) of HNSCC patients in conjunction with their clini-
cal characteristics. The univariate analysis yielded signif-
icant findings, revealing a strong correlation between sev-
eral clinical parameters—age, stage, grade, T, N—and the

risk score with patient prognosis (p < 0.001) (Fig. 6A). This
association underscored the relevance of these clinical fac-
tors in determining patient outcomes. Moving to the mul-
tivariate analysis, the risk score continued to stand out as a
robust and independent prognostic indicator within our pa-
tient cohort (p < 0.01) (Fig. 6B). To further illustrate these
relationships, a heatmap was generated, showcasing the as-
sociation between the expression levels of the 20 identified
SMRGs in our prognostic risk model and various clinical
parameters—age, grade, stage, T, N, and risk score—across
all HNSCC patient samples from the TCGA (Fig. 6C). Inan
effort to enhance the clinical utility of our risk model, we
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Fig. 3. Immunotyping of differentially expressed genes associated with soluble mediators. (A) Consensus clustering matrix for K =

2. (B) Survival curves of different immune genotypes. (C—J) The content of important immune cells among different types.

developed a comprehensive nomogram. This nomogram
incorporated a range of variables: age, grade, stage, T, N,
the expression levels of the 20 SMRGs, and the risk score,
to predict 1, 3, and 5-year survival probabilities for HNSCC
patients (Fig. 6D). The results from the nomogram clearly
highlighted the dominance of the risk score in predicting
0S8, suggesting that our 20-SMRGs-based model offers a
more precise prognostic prediction for HNSCC compared
to conventional clinical parameters. The accuracy and re-
liability of this nomogram were further validated through
calibration curves, which showed a close match between
the predicted and observed values for 1-year, 3-year, and 5-
year OS (Fig. 6E). Notably, the AUC value of 0.731 for the
risk score derived from the 20 SMRGs demonstrated its su-
perior predictive power for HNSCC prognosis, surpassing
that of common clinicopathological features such as age,
grade, pathological stage, T, and N (Fig. 6F). This find-
ing reinforces the model’s significance in clinical decision-
making, evidenced by its high net benefit depicted in the
decision curve analysis (Fig. 6G).
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3.6 In Prognostic Prediction, the SMRGs Signature
Outperformed Others

We developed a novel SMRGs signature and com-
pared its predictive power against four established HNSCC
prognostic signatures: the Lian signature [51], Tang sig-
nature [52], Xue signature [53], and Huang signature [54]
(Fig. 7A-D). Uniform risk scores were calculated for each
HNSCC sample across all TCGA cohorts to ensure a stan-
dardized comparison. Time-dependent ROC curve analy-
sis revealed that our SMRGs signature consistently outper-
formed the other signatures, exhibiting higher AUC val-
ues at l-year, 3-year, and 5-year survival intervals. No-
tably, it achieved the highest C-index of 0.718 (Fig. 7E),
demonstrating superior predictive performance. This un-
derscores the potential of our SMRGs signature as a more
effective prognostic tool in HNSCC, offering enhanced ac-
curacy in predicting patient outcomes and informing per-
sonalized treatment strategies.
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Fig. 5. Prognostic power of the SMRGs risk model for overall survival for multiple HNSC subtypes. (A) Age >65 years. (B) Age
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3.7 Correlation Analysis of Risk Scores and
Clinicopathological Characteristics

We explored the correlation between our SMRGs-
based risk models and key clinicopathological characteris-
tics of patients. Using the Wilcoxon test, we analyzed vari-
ations in risk scores across subgroups defined by gender, T
stage, pathological stage, tumor grade, and age. The results
indicated no significant association between risk scores and
age, N stage, or gender. However, a notable correlation
was found with tumor grade (p < 0.01), T stage (p < 0.05),
and pathological stage (p < 0.05) (Fig. 8). This analysis
highlights the relevance of our SMRGs-based risk model,
particularly in relation to tumor severity and progression in
HNSCC, offering valuable insights for patient management
and treatment planning.

3.8 TME and Immune Cell Infiltration are Predicted by the
SMRGs Risk Score

We conducted an in-depth investigation into the re-
lationship between the SMRGs risk score and the tumor
microenvironment (TME) in HNSCC, focusing particularly
on immune cell infiltration. Utilizing a comprehensive set
of algorithms, including XCELL, QUANTISEQ, TIMER,

&% IMR Press

MCPCOUNTER, CIBERSORT-ABS, CIBERSORT, and
EPIC (Fig. 9A), we sought to understand the complex dy-
namics within the TME. Our findings indicated a significant
inverse relationship between the SMRGs risk score and the
presence of various immune cells, including myeloid den-
dritic cells, T cells, CD8 T cells, B lineage cells, and NK
cells (Fig. 9B). Moreover, single-sample Gene Set Enrich-
ment Analysis (ssGSEA) revealed pronounced differences
in immune function between high-risk (HR) and low-risk
(LR) groups (Fig. 9C). A particularly striking discovery was
the differential expression of immune checkpoints between
the HR and LR groups. This aspect is of critical importance
in the context of checkpoint-based immunotherapy. The
LR group showed heightened expression of twelve immune
checkpoint genes, notably including LAIRI, IDO1, CTLA-
4, PD-1, TIGIT, CD200R1, CEACAM]I1, CD200, KIR3DL,
BTLA, and ADORA2A, with a pronounced expression of
PD-1. This pattern suggests a dependency on the PD-
1/PD-L1 pathway for immune evasion in LR tumor cells
(Fig. 9D), implying that treatments targeting PD-1 might
be particularly effective in this subgroup. The activation
of these immune checkpoints, such as PD-1, is typically
associated with an inflamed TME [55], suggesting an in-
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constructed by others. (E) C-indexes for five risk models.

flammatory milieu in LR patients. Complementing this,
our comparison of ssGSEA scores for various immune cells
and functions revealed that all immune cell types, except
for macrophages, were significantly more abundant in the
LR group. Additionally, nine immune functions, including
HLA and CCR, scored higher in the LR group (Fig. 9E,F).
This comprehensive analysis underscores not only the ro-
bustness of our SMRGs risk score in prognostic prediction
for HNSCC but also its significant implications in shaping
personalized immunotherapeutic strategies. The insights
garnered from this study could potentially guide more ef-
fective and tailored treatments for patients with HNSCC.
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3.9 The Risk Score of the SMRG Predicts Immunotherapy
Response

We initiated our analysis by exploring the Im-
munotherapy Prediction Pathway, focusing on the com-
parison between high-risk (HR) and low-risk (LR) groups.
We discovered significant differences in several pathways
(Fig. 10A). Notably, the LR group exhibited elevated Sys-
temic lupus erythematosus risk scores, while other path-
ways such as Homologous recombination, Spliceosome,
Progesterone-mediated oocyte maturation, and RNA degra-
dation presented lower risk scores compared to the HR
group (Fig. 10B). This suggests a better prognosis in the LR
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group, potentially influenced by aberrant RNA degradation
processes impacting gene expression and cancer progres-
sion [56]. Further, we utilized the tumor immune cycle as
a framework to evaluate the impact of immunomodulators
and chemokine systems [44,57]. Our comparison of the HR
and LR groups showed marked differences in the activities
of various steps of the tumor immune cycle. Activities re-
lated to the expression of cancer cell antigen (step 2), ini-
tiation and activation (step 3), transport of immune cells to
the tumor (step 4), infiltration into tumors (Step 5), recog-
nition of cancer cells by T cells (Step 6), and the killing
of cancer cells (step 7) were predominantly upregulated in
the LR group. In contrast, the release of cancer cell anti-
gens (step 1) demonstrated decreased activity (Fig. 10C).
Analysis of risk scores related to these differences indicated
higher scores in steps 3, 4, 5, 6, and 7 in the LR group, while
other steps showed no significant variation (Fig. 10D).
Additionally, we explored the correlation between
immune checkpoint blockade (ICB)-related signals and
SMRG risk scores. This analysis revealed a negative corre-
lation of the risk scores with pathways including DNA repli-
cation, Cell cycle, Fanconi anemia pathway, Homologous
recombination, Nucleotide excision repair, Mismatch re-
pair, Oocyte meiosis, Progesterone-mediated oocyte matu-
ration, Spliceosome, Pyrimidine metabolism, and Systemic
lupus erythematosus, while a positive correlation was ob-
served with RNA degradation. Other pathways did not
show significant correlations (Fig. 10E). Moreover, we
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found that SMRG risk scores were inversely related to most
tumor immune processes, except for cancer cell antigen
release, Th22, eosinophil, neutrophil, basophil, or MDSC
cell recruitment (Fig. 10E). Finally, our analysis using the
BEST database demonstrated that the SMRGs Score has
high sensitivity in predicting responses to immunotherapy
in cancer patients (Fig. 10F-J). This finding provides valu-
able insights into the potential of SMRGs as a tool for guid-
ing immunotherapeutic strategies, underscoring the signifi-
cance of our comprehensive approach in understanding and
predicting HNSCC treatment outcomes.

3.10 Differences in IC50 of Immunotherapy Drugs by Risk
Score

A.770041 (p = 3.4 x 10713), AS601245 (p = 6.9 x
10710), AZ628 (p = 4.8 x 10~'1), and AZD.0530 (p =
1.9 x 107°) had greater IC50s in the LR group compared
to the HR group when used to treat HNSC, out of a to-
tal of nine immunotherapeutic agents (Fig. 11A,F,H,I). The
IC50 for the other 5 chemical or targeted medicines was
lower in the LR group: ABT.263 (p = 0.024), ABT.888
(p =21 x 1077), AICAR (p = 5.4 x 107°), AKT in-
hibitor VIII (p = 1.9 x 10~7), and ATRA (p=9.1 x 10~11)
(Fig. 11B,C,D,E,G). The risk score allows for more in-
depth research into the immunotherapy response in HNSC
patients and more targeted medication therapy.
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3.11 Correlation Analysis of SMRGs and TME

We leveraged the single-cell dataset HNSC
GSE103322 from the TISCH database to explore the
expression profiles of 20 selected SMRGs in tumor
microenvironment (TME)-related cells. The dataset en-

&% IMR Press

compasses 20 distinct cell clusters, representing 11 unique
cell types, as detailed in Fig. 12A. Our analysis revealed
a varied expression pattern of SMRGs among different
cell types. Notably, a spectrum of immune cells, including
proliferating T, myofibroblasts, CD8" T, CD4* T, and
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B cells, exhibited pronounced expression of LGALS3BP,
PSMA1, HEXA, and PRPS1. Conversely, malignant
cells predominantly expressed SPINK6, TLL1, UCN2,
CCNAL1, EPO, and CCL28. Proliferating T cells were
characterized by elevated levels of ITGA4, TNFRSF4,
PRPS1, and CYP2D6. Additionally, we observed a
heterogeneous expression of PSMA1 and EZH2 across
various immune cell types. LGALS3BP and HEXA, while
displaying low to moderate expression in several immune
cell populations, were markedly expressed in fibroblasts,
myofibroblasts, and malignant cells. Furthermore, SFRP1
was notably present in fibroblast cells, whereas SLC25A4
was primarily found in myofibroblasts. Lastly, fibroblasts
and cancer cells exhibited substantial expression of CSF2,
GRIA3, HTN3, and SPINK1 (Fig. 12B, Supplementary
Fig. 3).
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3.12 Immunohistochemical Analysis was Used to Verify
Gene Expression.

To further validate gene expression, we used im-
munohistochemical analysis. The results showed that
LGALS3BP, EZH2, SFRP1, CCNA1 and SPRINK1 were
highly expressed in HNSCC, while SLC25A4 was highly
expressed in normal samples (Fig. 13).

4. Discussion

In this comprehensive study, we delve into the aggres-
sive nature of HNSCC, a malignancy with a grim prog-
nosis in advanced stages. Recent advancements, partic-
ularly in single-cell analyses targeting HNSC, have un-
derscored the pivotal role of the tumor microenvironment
(TME) in tumorigenesis [58,59]. Various cell populations
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within the TME secrete a plethora of soluble mediators, in-
cluding chemokines, that sculpt the TME dynamics [60—
63]. Furthermore, the burgeoning field of immunotherapy
has shifted focus towards immune checkpoints, encompass-
ing early diagnosis, combination therapies, and prediction
of patient responses to treatment [64—66], with soluble im-
mune checkpoint markers emerging as predictive indicators
for response to immune checkpoint blockade (ICB) therapy
[67].

Soluble mediators, including chemokines, Hsp70
family proteins, soluble sugars, lymphokines, and others,
predominantly enter the extracellular compartment via exo-
somal vesicles [68—74]. Their extensive involvement in tu-
mor progression and impact on patient prognosis is evident
yet underexplored [75-78]. Our investigation focused on
differentially expressed genes (DEGs) of soluble mediators
in HNSCC, revealing their concentration in areas related
to stromal tissue, humoral immune response, T cell activa-
tion, and regulation of lymphocyte activity. This indicates a
strong immunological function association of these genes.
Cluster analysis based on DE-SMRG highlighted signifi-
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cant immune infiltration and survival differences among
groups. Notably, prognostic clusters exhibited substantial
infiltration of NK and CD8 T cells, key players in combat-
ing HNSC [79-82]. Previous studies have shown that CD8
T cell activation enhances radiotherapy efficacy in HNSC
[83] and boosts NK and T cell effector functions [79,84,85].
Meta-analysis further supports the association of the NK
cell ligand Fas with improved HNSC patient survival [86].

Our study constructs a multi-gene signature based on
soluble mediator-related genes, proving effective in prog-
nostic assessment for HNSC patients. Risk scores were
calculated for each patient, categorizing them into high-
risk (HR) and low-risk (LR) groups based on the expres-
sion levels of this signature. A nomogram incorporating
clinicopathological criteria was developed, with decision
curve analysis (DCA) demonstrating its clinical utility over
single-factor models. This tool enables clinicians to tailor
HNSC treatment strategies based on individual patient pro-
files.

Investigating immune infiltration levels across differ-
ent risk groups, we found that the LR group showed higher
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levels of immune cell infiltration, suggesting our model’s
efficacy in distinguishing ‘cold’ and ‘hot’ tumor subtypes
in HNSC, with ‘hot’ subtypes indicating a more favorable
prognosis. Given the potential of immune checkpoint in-
hibitors (ICIs) in HNSC treatment, particularly as primary
treatments in advanced stages [87], the findings are signif-
icant. For instance, CD276 is highly expressed in CSCs in
human HNSC, with elevated levels in the HR group corre-
lating with reduced immune infiltration and immune eva-
sion [88]. This underscores the need for combination im-
munotherapies in the HR group [89]. Targeting immune
checkpoints like IDO1, PD-1, CEACAMI, and TIGIT,
which show raised expression in the LR group, could ben-
efit patients in this subset [90—92]. This hypothesis gains
further credibility from immunotherapy response assess-
ments across two risk subtypes using data from the BEST
database.

The TME’s complexity is evident from its diverse cell
populations, including platelets, immune cells, and cancer-
associated fibroblasts, all interconnected through soluble
mediators [58,93-96]. Single-cell data analysis has en-
hanced our understanding of the distribution of soluble me-
diators across these cells. We observed significant enrich-
ment of LGALS3BP, PSMA1, HEXA, and PRPS1 in vari-
ous immune cells, including proliferating T, CD4™ T, and B
cells. In contrast, CSF2, GRIA3, HTN3, and SPINK 1 were
mainly found in fibroblasts and malignant cells. The crucial
role of cancer-associated fibroblasts in tumor progression
has been established [97-99], suggesting these mediators
as potential targets for HNSC treatment.

The granularity and spatial heterogeneity inherent in
single-cell analyses have significantly enhanced our under-
standing of soluble mediators’ roles in HNSCC. By focus-
ing on these finer details, our study elucidates how solu-
ble mediator-related gene (SMRG) expression impacts HN-
SCC prognosis and progression. The strength of our find-
ings primarily lies in the predictive accuracy of the SMRG
risk score and the derived nomogram. However, it’s im-
portant to note that the current study’s dataset is limited in
size, necessitating future calibration of the prediction model
with larger datasets for robustness. Moreover, the assess-
ment of the signature’s efficacy in predicting immunother-
apy responses was conducted indirectly, due to the absence
of mRNA expression profile data from HNSCC patients
undergoing such treatments. This approach, while neces-
sary, may not fully represent real-world scenarios. Conse-
quently, future research should integrate data from HNSCC
patients who have received immunotherapy to validate and
refine our findings.

In clinical practice, the developed nomogram offers a
valuable tool for physicians, enabling the creation of per-
sonalized treatment plans for HNSCC patients. The predic-
tive accuracy of our multi-gene model in determining pa-
tient survival underscores its potential in guiding precision
medicine. Going forward, in-depth research into the molec-
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ular mechanisms underlying the actions of these therapeu-
tically relevant soluble mediators, coupled with prospec-
tive randomized clinical trials, will be pivotal in advancing
patient-specific therapeutic strategies and improving out-
comes in HNSCC.

Acknowledging the limitations of our research is cru-
cial for advancing our understanding and application of
the findings in clinical settings. Primarily, our study’s re-
liance on the TCGA dataset, while extensive, encounters
constraints due to the inherent biases and data limitations
of available mRNA information. Our efforts to validate the
findings with external datasets are commendable, yet they
fall short of capturing a comprehensive real-world scenario.
To bolster the credibility and applicability of our prognostic
model, future validations must integrate a broader spectrum
of real-world data. Secondly, the inclusion of 20 SMRGs as
independent prognostic variables for HNSCC was intended
to enhance the model’s specificity and accuracy. Neverthe-
less, this approach might impose a financial burden on pa-
tients due to the costs associated with comprehensive gene
profiling. Addressing this concern is imperative to not only
enhance the model’s practicality but also to ensure its eq-
uitable application across diverse patient populations. As
we progress in our research, refining our methodologies to
overcome these challenges will be vital for improving the
clinical utility and relevance of our findings in the treatment
of HNSCC.

5. Conclusions

In conclusion, our study represents a systematic ex-
ploration of SMRGs in the context of HNSCC. We have
successfully developed a prognostic signature comprising
20 SMRGs. This signature stands out for its ability to accu-
rately evaluate the prognosis and immune status of HNSCC
patients. Crucially, it equips clinicians with a powerful tool
to identify specific patient subgroups who are likely to re-
spond favorably to immunotherapy and chemotherapy. The
application of this signature in clinical settings promises to
enhance the personalization of treatment strategies, tailor-
ing them to the unique molecular and immunological land-
scapes of individual HNSCC cases.
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