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Abstract

Background: The survival rate of hepatocellular carcinoma (HCC) is low and the prognosis is poor. Metabolic reprogramming is still
an emerging hallmark of cancer, and reprogramming of cholesterol metabolism plays a crucial action in tumor pathogenesis. Increasing
evidence suggests that cholesterol metabolism affects the cell proliferation, invasion, migration, and resistance to chemotherapy of HCC.
To date, no long noncoding RNA (lncRNA) signature associated with cholesterol metabolism has been developed to predict the outcome
of patients with HCC.Methods: The RNA-seq data as well as the prognostic and clinical data were obtained from The Cancer Genome
Atlas (TCGA) database. We conducted univariate and multivariate analyses to assess cholesterol metabolism-related lncRNAs correlated
with the prognosis of patients with HCC in order to construct a prognostic signature. Functional differences between low- and high-risk
groups were investigated using genomic enrichment analysis (GSEA). Kaplan-Meier (KM) curves were applied to explore the overall
survival (OS) of the low- and high-risk groups. Single-sample genomic enrichment analysis (ssGSEA) was applied to investigate the
association between this predictive signature and immune function. We subsequently examined how this signature relates to treatment
response in HCC patients. Results: A prognostic signature comprising six lncRNAs related to cholesterol metabolism was constructed
(AC124798.1, AL031985.3, AC103760.1, NRAV,WAC-AS1 and AC022613.1). We found that low-risk groups showed a better prognosis
than high-risk groups. In HCC patients, the cholesterol metabolism-related lncRNA signature may be served as an independent prognostic
factor. Cholesterol metabolism-related lncRNA signature had higher diagnostic efficiency compared to clinicopathologic variables. After
stratifying patients according to different clinicopathological variables, patients with low-risk had a longer OS compared with high-risk
patients. The ssGSEA demonstrated that this signature was closely related to the immune status of HCC patients. GSEA analysis
demonstrated that immune- and tumor-related pathways were predominantly enriched in the high-risk group. High-risk patients were
more responsive to immune checkpoint inhibitors (ICIs) and conventional chemotherapeutic agents. Conclusions: This cholesterol
metabolism-related lncRNA signature can predict the prognosis of HCC patients and guide the clinical management of HCC patients,
including immunotherapy.
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1. Introduction

Among primary liver cancers, hepatocellular carci-
noma (HCC) is the most common and remains a global
health challenge and the third leading cause of cancer-
related death globally [1]. Despite the variety of treatment
options now available, including locoregional treatments,
liver resection/transplantation, and systemic medications,
the treatment of HCC still has many limitations [2]. The
discovery of immune checkpoints and the development of
immunotherapy have brought new hope to patients with
HCC, which is amajor breakthrough in the history of cancer
treatment. Immune checkpoint inhibitors (ICIs) are increas-
ingly used in HCC treatment, but only 20% of patients ben-
efit from immunotherapy [3]. Therefore, more research is

needed to explore new therapeutic targets, prognostic signa-
tures, and immunotherapeutic response markers for HCC.

Reprogramming of lipid metabolism plays a crucial
action in tumor pathogenesis, with cholesterol being a
major lipid [4]. It has been reported that cholesterol
metabolism modulates the development of HCC in a num-
ber of ways, including cell proliferation, migration, inva-
sion, and resistance to chemotherapy [5–7]. Cholesterol is
typically enriched in the tumor microenvironment (TME)
which includes stromal and immune cells and a repertoire
of secreted molecules, cytokines, and chemokines [8], and
dysregulated cholesterol homeostasis drives the produc-
tion of immunosuppressive monocytes/macrophages (Mφ).
HCC patients with high serum cholesterol levels have
shorter survival times and lower response rates to anti-PD-
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1 therapy [9]. In addition, studies have demonstrated that
modulation of cholesterol levels shows great potential in the
treatment for HCC, especially in immunotherapy [10]. Ap-
proximately 90% of human genomic DNA has been tran-
scribed, of which 98% is noncoding RNA (ncRNA). Long
noncoding RNAs (lncRNAs) are ncRNAs that are over 200
nucleotides in length and do not have the ability to code for
proteins [11]. LncRNAs regulate epigenetic, transcriptional
and post-transcriptional levels of genes through binding to
RNA, proteins and DNA. Several studies have confirmed
that the aberrant lncRNA expression in HCC plays a critical
action in the development of HCC [12–14]. The lncRNA
SNHG6 has been reported to increase the progression of
nonalcoholic fatty liver disease (NAFLD) to HCC by regu-
lating cholesterol-induced activation of mTORC1 [15].

In our research, we conducted a cholesterol
metabolism-related lncRNA signature to predict the
prognosis of HCC and the response of HCC patients to
immunotherapy. Additionally, we performed internal
validation and explored possible mechanisms through
GSEA.

2. Materials and Methods
2.1 Data Download and Differential Expression Analysis

We obtained gene sequence data of 374 patients with
HCC and 50 normal samples as well as clinical information
from the TCGA database (https://cancergenome.nih.gov/).
We obtained metabolism-related genes from genecards (ht
tps://www.genecards.org/). The downloaded data from
TCGA were processed and analyzed by Perl (https://strawb
erryperl.com/, version: 5.38.2) and R (https://www.r-proje
ct.org/, version: 4.2.0) software. The mRNA expression of
these cholesterol metabolism-related genes in normal and
HCC tissues was assessed using the “Wilcox.test” method.
The R package “ggboxplot” was applied to plot the boxplot.

2.2 Enrichment Analyses of Differential Expressed
Cholesterol Metabolism-Related Genes

|Log2(FC)|>1 and False discovery rate (FDR)<0.05
were the thresholds for differentially expressed genes
(DEGs). Kyoto Encyclopedia of Genes and Genomes
(KEGG) and Gene Ontology (GO) analyses were per-
formed using “ggplot2” package [16].

2.3 Construction and Validation of Cholesterol
Metabolism-Related lncRNA Prognosis Prediction Model

Screening of lncRNAs associated with cholesterol
metabolism-related geneswas conducted using the “limma”
package with p < 0.001 and correlation coefficient filter
>0.3. Univariate Cox regression analysis was applied to
obtain lncRNAs that are correlated with the outcome of
HCC (p < 0.05). Then a metabolism-related lncRNA sig-
nature was created by the least absolute shrinkage and se-
lection operator (LASSO). Subsequently, multivariate Cox
regression analysis was performed to obtain the lncRNAs

that were used to construct a cholesterol metabolism-related
lncRNA prediction model (p< 0.05). The formula was cal-
culated as follows:

Risk score =
n∑

i=1

(Coefi × xi)

The x denoted the expression value of the cholesterol
metabolism-related lncRNAs, and Coef represented the co-
efficient value. We used the formula to calculate the risk
score of each patient. The lncRNA and mRNA interactions
graph was produced by cytoscape software. The cytoscape
related analysis were followed by a k-means cluster analy-
sis to find associated protein subgroups. Patients with HCC
were categorized into high or low-risk groups based on the
median value. The two risk groups’ survival status were as-
sessed by KM and tested using the log-rank test. We calcu-
lated the patient’s Youden index using the formula Youden
= TP – FP. In order to assess the accuracy of the prognos-
tic model, receiver operating characteristic (ROC) curves
and calibration curves were performed. Survival curves of
the low- and high-risk groups under different clinicopatho-
logical conditions were explored by the “survminer” and
“survival” packages. Moreover, we internally validated the
prognostic model by dividing the downloaded TCGA data
into training and validation sets. The Spearman correlation
analyses were further performed to validate the between re-
lationship between risk score and clinical characteristics.

2.4 Construction of Nomogram
Clinicopathologic characteristics such as grade, stage,

gender, T-, N-, and M-stage combined with risk scores to-
gether constructed a nomogram that could predict survival
in HCC patients. Calibration curves were applied to check
if predicted survival matched the actual survival [17].

2.5 GSEA Analysis
We used GSEA (https://www.gsea-msigdb.org/gsea/i

ndex.jsp, Version 4.1.0 [18]) to explore which pathway
genes were predominantly enriched in the high-risk group.
Nominal p < 0.05 and FDR <0.25 were regarded as the
thresholds [19].

2.6 Analysis of the Association of the Prognostic Signature
between Immune Pathways, Immune Cell Infiltrates, and
Immune Checkpoint Expression

We employed the “GSVA” package for single-sample
geneGSEA (ssGSEA) to calculate the activities of immune-
correlated pathways and the infiltration scores of immune
cells. Immune checkpoint expression analysis and mapping
was performed by the “reshape2”, “limma”, “ggpubr”, and
“ggplot2” packages [20].
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Fig. 1. Construction of the cholesterol metabolism-related 6 long noncoding RNA (lncRNA) prognostics signature in patients
with hepatocellular carcinoma (HCC). (A) Cholesterol metabolism-related differentially expressed genes (DEGs) in normal and HCC
tissues. (B) Gene Ontology (GO) analysis of cholesterol metabolism-related DEGs. (C) Kyoto Encyclopedia of Genes and Genomes
(KEGG) analysis of cholesterol metabolism-related DEGs. (D) 6 lncRNAs (AC124798.1, AL031985.3, AC103760.1, NRAV, WAC-AS1
and AC022613.1) that construct the prognostic signature. (E) The lncRNA-mRNA protein-protein interaction (PPI) network of the 6
lncRNAs. (F) Sankey diagram of the 6 lncRNAs.
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Fig. 2. Validation of the cholesterol metabolism-associated lncRNA prognostic signature as a prognostic factor for HCC patients.
(A) Survival analysis of HCC patients in low- and high-risk groups. (B) Distribution of the risk scores in patients with HCC. (C)
The number of alive and dead HCC patients with various risk scores. Univariate Cox regression analysis (D) and multivariate Cox
regression analysis (E) for the risk score and other clinical factors. (F) Receiver operating characteristic (ROC) curves at 1-, 3- and
5-years survival for the cholesterol metabolism-associated lncRNA prognostic signature. (G) The ROC curve and area under curves
(AUCs) of clinicopathological variables and the risk score.

2.7 The Patients’ Response to Drug Therapy

The half-maximal inhibitory concentration (IC50) of
commonly used chemotherapy drugs used in the clini-

cal treatment of HCC was calculated. We compared the
IC50 values between low- and high-risk groups using
the Wilcoxon signed-rank test. The “limma”, “ggpubr”,
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Fig. 3. The relationship between the prognostic signature and clinicopathologic variables in the low- and high-risk groups. (A)
AC124798.1, AL031985.3, NRAV, and WAC-AS1 were highly expressed in the high-risk group, whereas AC103760.1 and AC022613.1
were highly expressed in the low-risk group. (B) Nomograms containing the risk score and clinicopathologic variables predicted 1-, 3-,
and 5-year overall survival (OS) in HCC patients. (C–E) Calibration curves examined the consistency between actual OS and predictions
of 1-, 3-, and 5-year survival.

“pRRophetic” and “ggplot2” packages [21] were used to
predict which high-risk and low-risk groups have different
susceptibilities to the drug.

2.8 Principal Component Analysis (PCA)

We performed PCA analysis [22] by the “scatter-
plot3d” and “limma” packages to investigate the distribu-
tion of patients with different risk scores.
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2.9 Statistical Analysis
Statistical analyses were conducted by R software

(Version 4.2.0, https://www.r-project.org/). We used the
Wilcoxon test to assess the expression of cholesterol
metabolism-related DEGs in normal and cancer tissues. We
used the univariate Cox regression analysis to explore the
association between OS and cholesterol metabolism-related
lncRNAs. Multivariate Cox analysis was employed to con-
struct the signature. Furthermore, we used the log-rank
test and KM method to explore the patients’ OS different
groups. The ROC curves and the AUC values were deter-
mined using the “survivalROC” package.

3. Results
3.1 Enrichment Analysis of Cholesterol
Metabolism-Related Genes

We obtained 59 genes correlated to cholesterol
metabolism that were differentially expressed in normal
versus HCC tissues, including 41 up-regulated genes and
18 down-regulated genes (Fig. 1A). GO biological process
analysis illustrated that DEGs were primarily enriched in
the processes of alcohol metabolic process, lipid localiza-
tion, cholesterol metabolic process, steroid metabolic pro-
cess, lipid transport and cholesterol transport. GO cellu-
lar components category showed the metabolism-related
DEGs were mainly located at the lipoprotein particle,
plasma lipoprotein particle, high-density lipoprotein parti-
cle and protein lipid complex. GOmolecular function anal-
ysis showed that metabolism-related DEGs were mainly
enriched in steroid hydroxylase activity, steroid binding,
steroid binding, tetrapyrrole binding and oxidoreductase
activity (Fig. 1B). Subsequently, we performed KEGG
pathway analysis on these genes, and found that choles-
terol metabolism-related DEGs were primarily enriched in
the steroid hormone biosynthesis, cholesterol metabolism,
metabolism of arachidonic acid, lipid and atherosclerosis,
linoleic acid metabolism and steroid biosynthesis pathways
(Fig. 1C).

3.2 Construction of Cholesterol Metabolism-Related
lncRNA Predictive Signature

We obtained 455 lncRNAs that associated with
the cholesterol metabolism-related DEGs (Supplementary
Table 1). A univariate Cox regression analysis demon-
strated that 52 of these 455 lncRNAs were related to
HCC patients’ prognosis (Supplementary Fig. 1). By
using multivariate Cox regression analysis, 6 cholesterol
metabolism-related lncRNAswere identified (AC124798.1,
AL031985.3, AC103760.1, negative regulator of antivi-
ral response (NRAV), WAC antisense RNA 1 (WAC-
AS1) and AC022613.1) to construct a predictive signature.
These 6 lncRNAs were up-regulated in patients with HCC
(Fig. 1D). Subsequently, we constructed the network map
of the 6 lncRNAs with associated mRNAs using cytoscape
software (version:3.8.2, https://cytoscape.org/) (Fig. 1E).

We used an additional k-means cluster analysis to divide
the associated protein into 3 subgroups (Supplementary
Fig. 2). AC124798.1 was co-expressed with SLC25A19,
SMARCA4 and DYNC2LI1. AL031985.3 was co-
expressed with NPC1, LBR, SLC25A19, PPARD, VDR,
ALDH2, SMARCA4 and DYNC2LI1. AC103760.1 was
co-expressed with CYP3A4 and CYP2C9. NRAV was co-
expressed with NPC1, ALB, CYP2C9, CAV1, CYP2C8,
COG2, LBR, SLC25A19, PPARD, ALDH2, SMARCA4
and DYNC2LI1. WAC-AS1 was co-expressed with NPC1,
ALB, COG2, LBR, SLC25A19, PPARD, SMARCA4,
DYNC2LI1, STARD3 and HSD11B2. AC022613.1 was
co-expressed with HSD11B2. Fig. 1F showed that
AC022613.1 and AC103760.1 are protective factors. Be-
sides, AC124798.1, AL031985.3, NRAV and WAC-AS1
were risk factors.

3.3 The Prognostic Value of the Cholesterol
Metabolism-Related lncRNA Predictive Signature

Based on the formula, the risk score of each patient
with HCC was measured and the patients were catego-
rized into low- and high-risk groups based on the median.
KM analysis of the OS rate of HCC patients shown that
high-risk group patients had a markedly worse prognosis
than low-risk group (Fig. 2A). Fig. 2B showed the risk
scores of the low- and high-risk groups. Moreover, we
found the higher the risk score, the more HCC patients die
(Fig. 2C). We also performed the KM analysis again by tak-
ing the cutoff value of the risk scores at the maximum of the
Youden-Index (Supplementary Fig. 3). Furthermore, we
performed univariate Cox regression analysis to determine
whether the signature could serve as an independent prog-
nostic factor for HCC patients. The result indicated that
risk score, T stage, M stage, and stage were correlated with
the prognosis of patients with HCC (Fig. 2D). Moreover,
risk score was also an independent predictor of HCC pa-
tients’ OS (Fig. 2E). The (area under curves) AUCs of the
signature at 1, 3, and 5-years survival were 0.795, 0.756
and 0.763, respectively, indicating an accurate predictive
value of the metabolism-related lncRNA predictive signa-
ture (Fig. 2F). The AUC of the risk score was 0.805, show-
ing a better predictor of prognosis in patients with HCC
than other clinicopathologic variables (Fig. 2G). Clinical
factors like age and gender that do not have a significant
impact on the patient’s prognosis may have smaller AUC
values. Fig. 3A showed the heat map of the distribution of
clinicopathologic variables and the six prognostic choles-
terol metabolism-related lncRNAs in the low- and high-
risk groups. AC124798.1, AL031985.3, NRAV, and WAC-
AS1 were expressed higher in the high-risk group, whereas
AC103760.1 and AC022613.1 were highly expressed in the
low-risk group.

A nomogram including the risk score and clinico-
pathological variables was constructed to predict the 1, 3,
and 5-years prognosis of HCC patients (Fig. 3B). The re-
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Fig. 4. The OS of patients in low- and high-risk groups categorized according to different clinicopathologic variables. In HCC
patients with age ≤65 or ≥65, grade 1, 2 and 3, stage 1 and 3, T1 and T3, N0 and M0, high-risk group had a worse prognosis.

sults showed that the higher the risk score, the higher the
T, M, grade, and stage rating, the higher the score obtained,
and the worse the 1-, 3-, and 5-year prognosis of the patient
was. We performed Spearman correlation analyses to val-
idate the between relationship between risk score and clin-
ical characteristics. We found that the risk score was not
associated with age (R = 0.078, p = 0.247) and M stage (R
= 0.043, p = 0.526). The risk score was negatively corre-

lated with gender (R = –0.143, p = 0.034), survival status
(R = –0.406, p< 0.001) and survival time (R = –0.365, p<
0.001), and positively correlated with grade (R = 0.147, p
= 0.029), T stage (R = 0.321, p < 0.001) and N (R = 0.134,
p = 0.046) stage (Supplementary Fig. 4). The calibration
curves revealed good concordance between the predicted
survival rates and the actual OS ratio at 1-, 3- and 5- years
(Fig. 3C–E).
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Fig. 5. Internal validation of the cholesterol metabolism-associated lncRNA prognostic signature. (A) Heatmap of the signature in
the first internal cohort. (B) Distribution of the risk scores in patients with HCC in the first internal cohort. (C) The number of alive and
dead HCC patients with various risk scores in the first internal cohort. (D) Kaplan-Meier (KM) analysis of OS rates in the first internal
cohort. (E) ROC curve and AUCs at 1-year, 3-years and 5-years survival in the first internal cohort. (F) Heatmap of the signature in the
second internal cohort. (G) Distribution of the risk scores in patients with HCC in the second internal cohort. (H) The number of alive
and dead HCC patients with various risk scores in the second internal cohort. (I) KM analysis of OS rates in the second internal cohort.
(J) ROC curve and AUCs at 1-year, 3-years and 5-years survival in the second internal cohort.
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Fig. 6. Genomic enrichment analysis (GSEA) analysis of low- and high-risk groups of the cholesterol metabolism-associated
lncRNA prognostic signature in HCC. This lncRNA prognostic signature is associated with cell cycle, ERBB pathway, pathways in
cancer, lysosome, MTOR pathway, MAPK pathway, RIG_I like receptor pathway, VEGF pathway, notch pathway, fatty acid metabolism,
PPAR pathway, and biosynthesis of unsaturated fatty acids.

We grouped HCC patients according to age, stage,
grade, T-, N- and M-stage. In HCC patients with age ≤65
or age ≥65, grade 1, 2 and 3, stage 1 and 3, T1 and T3, N0
andM0, high-risk group showed a worse prognosis (Fig. 4).
This suggests that this prognosis signature may predict the
outcome of HCC patients in these clinicopathologic vari-
ables.

3.4 Internal Validation of the Cholesterol
Metabolism-Related lncRNA Predictive Signature

To validate the cholesterol metabolism-related
lncRNA predictive signature based on the entire TCGA
dataset, we randomized 342 HCC patients into two groups
(n = 171). In both cohorts, patients with HCC in the
low-risk group had better OS than high-risk group, con-
sisting with the results observed across the entire dataset
(Fig. 5A–D,F–I). The 1-, 3-, and 5-year survival’s AUCs in
the first cohort were 0.803, 0.771, and 0.805, respectively
(Fig. 5E). The AUCs for 1-, 3-, and 5-year survival in the

second cohort were 0.783, 0.741, and 0.739, respectively
(Fig. 5J). The results demonstrated that the cholesterol
metabolism-related lncRNA predictive signature is a
promising predictor of prognosis in patients with HCC.

3.5 GSEA Analysis of Cholesterol Metabolism-Related
lncRNA Predictive Signature

In order to investigate the possible mechanisms for
the different OS of the low- and high-risk groups, we per-
formed GSEA analysis. The results demonstrated that cell
cycle, ERBB signaling pathway, pathways in cancers, lyso-
some, MAPK pathway, MTOR pathway, VEGF pathway,
notch pathway, and RIG I like receptor pathway were sig-
nificantly enriched in the high-risk group (Fig. 6). These re-
sults illustrated that high-risk patients were closely associ-
ated with immune- and tumor-related pathways, which may
be related to their poor prognosis.
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Fig. 7. The association between the cholesterol metabolism-associated lncRNA prognostic signature and the immune status of
HCC patients. (A) Relationship between the risk score and immune cell infiltration in HCC. (B) Association of the risk score with im-
mune pathways in HCC. (C) Association between the risk score and the immune checkpoint genes expression in HCC. ns, no significance,
*p < 0.05, **p < 0.01, ***p < 0.001.

3.6 Analysis of Immune Checkpoint Expression,
Immune-Related Pathways and Immune Cell Infiltration

We then explored the correlation between risk scores
and immune function and immune cell infiltrates. We found
that mast cells were increased in low-risk group, while ac-
tivated dendritic cells (aDCs), macrophages, Th2 cells and
Treg cells were elevated in high-risk group (Fig. 7A). Com-
pared with low-risk group, the immune function scores of
MHC class I were higher in the high-risk group, while the
immune function scores of type I and type II interferon
(IFN) response were lower in high-risk group (Fig. 7B).

Additionally, it was revealed that immune checkpoint genes
expressed higher in high-risk group patients, indicating that
metabolism-related lncRNA predictive signature may be a
predictor for the patient’s response to ICIs (Fig. 7C).

3.7 The Correlation between the Cholesterol
Metabolism-Related lncRNA Predictive Signature and
Patients’ Response to Clinical Therapy

We investigated the correlation between the prognos-
tic signature of cholesterol metabolism-associated lncR-
NAs and patients’ response to clinically available drugs for
HCC treatment. We found that the riskscore could indicate
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Fig. 8. Analysis of sensitivity to therapeutic drugs in patients in low- and high-risk groups.

patient response to relevant drugs and guide more appro-
priate dosing regimens (Fig. 8). Moreover, PCAmaps were
used to visualize the distribution of patients according to the
whole genome (Fig. 9A), all lncRNAs (Fig. 9B), differential
expressed genes (Fig. 9C), and the model-screened choles-
terol metabolism-related lncRNAs (Fig. 9D). The results

indicated that the two groups were separated to a greater
extent by the 6 lncRNAs risk model than by all lncRNAs,
59 DEGs and whole-genome expression profiles; that is,
through this lncRNA signature HCC patients could be di-
vided into high- and low-risk groups that differed signifi-
cantly with respect to cholesterol metabolism status.
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Fig. 9. The construction of principal component analysis (PCA) maps. The PCA maps visualize the distribution of HCC patients
according to the whole genome (A), all lncRNAs (B), differential expressed genes (C), and the model-screened cholesterol metabolism-
related lncRNAs (D).

4. Discussion
Patients with HCC have a poor prognosis and low

survival rate. Despite advances in systemic therapies like
surgery, radiation therapy, chemotherapy and immunother-
apy, the OS rate of HCC patients is still low [23]. Numerous
studies have demonstrated that cholesterol plays an essen-
tial part in the development of HCC, but there have been
no studies on cholesterol metabolism-related lncRNAs as
a prognostic signature to predict the prognosis of patients
with HCC and to guide therapy.

In our work, we first screened 59 cholesterol
metabolism-related genes that expressed differen-
tially in normal and HCC tissues, and then finally
obtained 6 cholesterol metabolism-related lncRNAs
(AC124798.1, AL031985.3, AC103760.1, NRAV, WAC-
AS1 and AC022613.1) that were correlated to the prognosis
of HCC patients by univariate and multivariate analysis.
AC124798.1 has been proved to be associated with cuprop-
tosis [24]. It has been shown that relevant lncRNA models,
including AL031985.3, are associated with CD4+ regular
T cells and correlate with HCC prognosis, treatment, and
tumor microenvironment [25]. Additionally, AL031985.3
was corelated to N1-methyladenosine methylation reg-

ulators, m6A, circadian clock and necroptosis in HCC
[26–29]. A study found that AC103760.1 was associated
with senescence and the correlation signature could be
used as a prognostic factor for HCC [30]. NRAV was
shown to correlate with pyroptosis and immunotherapy
efficacy in HCC [31]. In addition, it was demonstrated
that NRAV promotes the development of pancreatic ductal
adenocarcinoma by targeting miR-299-3p [32]. It was re-
ported that small extracellular vesicles delivering lncRNA
WAC-AS1 exacerbated ischemia-reperfusion injury in
renal transplantation by inducing ferroptosis propagation
[33]. Besides, WAC-AS1 Promotes glycolysis and HCC
progression [34]. AC022613.1 was showed to be related
to N7-methylguanosine and the correlation signature could
serve as a prognostic predictor of HCC [35]. We also found
mRNA (SLC25A19, SMARCA4, DYNC2LI1, NPC1, LBR,
PPARD, VDR, ALDH2, CYP3A4, CYP2C9, ALB, CAV1,
CYP2C8, COG2, STARD3 and HSD11B2) co-expressed
with the lncRNAs. Among them, SMARCA4 was reported
to have oncogenic potential to activate AKR1B10 and
Gankyrin in liver cancer via IRAK1 enhancer [36].

We calculated the risk score of each patient based on
the formula and categorized the patients into low- and high-
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risk groups according to the median. We found that pa-
tients with HCC had longer OS in low-risk group than in
high-risk group. ROC curves demonstrated that the predic-
tive signature could be used as an independent prognostic
factor for HCC, and its prognostic performance was better
than clinicopathologic variables. The predictive signature
could predict the outcome of patients with HCC in most
clinicopathologic variables. Moreover, we confirmed the
good predictive performance of the predictive signature by
internal validation. Drug sensitivity analyses also validated
the usefulness of this prognostic signature for predicting
patient responsiveness to drugs such as sorafenib, and for
guiding clinical therapy. For example, in patients with a
low riskscore score sorafenib may be more effective.

GSEA showed that pathways in cancers, lysosome,
MTOR pathway, MAPK pathway, VEGF pathway, RIG I
like receptor pathway, notch pathway were significantly en-
riched in the high-risk group. mTOR signaling and cellu-
lar metabolism are common determinants of cancer [37],
mTOR inhibitor effectively improves prognosis in liver
transplant patients with HCC [38]. The MAPK signaling
pathway is a fundamental pathway in mammalian cells and
is closely associated with physiological activities such as
cell differentiation, proliferation, apoptosis and angiogen-
esis. It was demonstrated that the abnormal activation of
certain proteins in the MAPK pathway is a major cause of
many types of cancers, and intervention in this pathway is
a promising strategy for the treatment of tumors [39,40].
It has been reported that mutant RIG-I enhances cancer-
associated inflammation by activating CircRIG-I signaling
[41]. Besides, intrinsic RIG-I can regulate the antitumor ac-
tivity of CD8+ T cells by inhibiting STAT5 activation [42].
Therapeutic targeting RIG I like receptor pathway may not
only provoke anti-infection effects, but also induce anti-
cancer immunity or sensitize “immune-cold” tumors to im-
mune checkpoint blockade. RLRs signaling is a therapeutic
targeting in cancer. The integration of RIG I like receptor
agonism with RNA interference or CAR-T cells provides
new dimensions that complement cancer immunotherapy
[43]. Angiogenesis is an important pathophysiological pro-
cess, and VEGF is a key signaling pathwaymediating phys-
iological angiogenesis and a major therapeutic target. Anti-
VEGF drugs are widely used in tumor therapy and, com-
bined with immunotherapy or chemotherapy, and are now
standard of care for many malignancies [44]. The notch
signaling pathway mediates the influence and regulation of
the external environment on cells by participating in cell-
to-cell interactions, whereas in a variety of cancers, the
programmed disruption of this class of pathways in vari-
ous forms contributes to the formation and maintenance of
various features of cancer cells, such as proliferation, resis-
tance to apoptosis, and neovascularization [45]. Patients in
the high-risk group may have a shorter OS time due to the
activation of these cancers- and immune-related pathways.

Moreover, we found that aDCs, Th2 cells,
macrophages, and Treg cells are upregulated in high-
risk group. Th2 cytokines are known to promote cancer
metastasis [46]. Tregs play an important role in tumor
immune evasion by suppressing the immune response
of immune cells attacking tumors [47]. Dendritic cells
(DCs) with their potent antigen presenting ability are
long considered as critical factor in antitumor immunity.
Despite high potential in promoting antitumor responses,
tumor-associated DCs are largely defective in their func-
tional activity and can contribute to immune suppression
in cancer [48]. Th2 cell-mediated type 2 immunity may
influence the tumor microenvironment (TME) and on
tumor progression. Th2 cells contribute to antitumor im-
munity. The specific metabolic properties of Th2 cells may
prove beneficial in treating cancer by modulating TME
[49]. Treg cells are closely related to tumor immunity,
and their number and function fluctuate during the tumor
occurrence and development, as well as their mutual devel-
opmental plasticity. In different tumor tissues, Treg cells
may play antitumor or tumor suppression role [50]. The
M1/M2 macrophage paradigm plays a key role in tumor
progression. M1 macrophages are historically regarded
as anti-tumor, while M2-polarized macrophages, com-
monly deemed tumor-associated macrophages (TAMs),
are contributors to many pro-tumorigenic outcomes in
cancer through angiogenic and lymphangiogenic regula-
tion, immune suppression, hypoxia induction, tumor cell
proliferation, and metastasis [51]. Mast cells (MCs) are
a non-negligible population of immune cells in the tumor
microenvironment (TME). In most tumor types, MCs
accumulate in both the tumor tissue and the surrounding
tissue. MCs interact with multiple components of the
TME, affecting TME remodeling and the tumor cell fate.
However, controversy persists regarding whether MCs
contribute to tumor progression or trigger an anti-tumor
immune response [52]. Here, in the high-risk group, the
more malignant the tumor progresses to advanced stages,
the more anti-tumor immune cells are needed, that may
be the reason why aDCs, Th2 cells are more numerous.
Risk scores are not only associated with the immune cell
infiltrates but also with immune-related pathways. In
addition, immune checkpoint gene expression was gener-
ally higher in patients with high-risk scores, suggesting a
stronger response to ICIs. Overall, the prognostic signature
could predict the responsiveness to immunotherapy and
the tumor immune microenvironment in HCC patients.

However, there are some shortcomings in our study.
First, only TCGA database was used for internal validation
of our signature, which should be further followed up with
external datasets or clinical data for further validation. Sec-
ond, we did not conduct in vitro and in vivo experiments to
explore the mechanism of action of our signature in depth.
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5. Conclusions
In summary, the cholesterol metabolism-associated

lncRNA signature may be used as an independent predic-
tor of the prognosis of HCC patients and their response
to ICIs. Patients with high-risk scores may have worse
prognosis because of the activation of cancer, immune-
related pathways. Additionally, based on the level of the
model’s risk score and its relationship to the IC50, patients
may be guided on the precise administration of some of
their chemotherapeutic agents. Meanwhile, this signature
is highly correlated with cholesterol metabolism pathways,
which helps researchers gain insight into the correlation be-
tween metabolism and tumorigenesis. Hopefully, this will
provide a new perspective for exploring biomarkers in the
cholesterol metabolism microenvironment of HCC tumors.
But the prognostic signature still needs further experimental
verification and the validation of clinical data in the future.
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